AILIS: effective hardware accelerator for incremental learning with intelligent selection in classification

Incremental learning for resource-constrained systems has been noticed for its ability to incorporate new learning. This paper presents accelerator for incremental learning with intelligent selection, a low-latency hardware implementation for incremental learning based on a hardware-modified model....

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercomputing Vol. 81; no. 4; p. 509
Main Authors HosseinpourFardi, Nafiseh, Alizadeh, Bijan
Format Journal Article
LanguageEnglish
Published New York Springer US 17.02.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-8542
1573-0484
DOI10.1007/s11227-025-07017-z

Cover

Abstract Incremental learning for resource-constrained systems has been noticed for its ability to incorporate new learning. This paper presents accelerator for incremental learning with intelligent selection, a low-latency hardware implementation for incremental learning based on a hardware-modified model. The model consists of two components: (1) feature extractor using convolutional layers (2) classifier based on a customized K-nearest neighbor (KNN) algorithm. We modified classifier to reduce resource usage by utilizing two groups of data: (1) data closest to the class mean for general features (2) boundary data for distinguishing features. The implementation focuses on two strategies: first, simultaneous feature computation for minimal latency, and second, processing features in batches to reduce resource consumption. The first strategy reduced latency by 5 to 912 times compared to previous works. In the second strategy, LUT and DSP usage dropped by 4.8 and 21 times, respectively, and decreased delay was also observed in most cases. Despite these improvements, accuracy remained nearly the same as prior methods.
AbstractList Incremental learning for resource-constrained systems has been noticed for its ability to incorporate new learning. This paper presents accelerator for incremental learning with intelligent selection, a low-latency hardware implementation for incremental learning based on a hardware-modified model. The model consists of two components: (1) feature extractor using convolutional layers (2) classifier based on a customized K-nearest neighbor (KNN) algorithm. We modified classifier to reduce resource usage by utilizing two groups of data: (1) data closest to the class mean for general features (2) boundary data for distinguishing features. The implementation focuses on two strategies: first, simultaneous feature computation for minimal latency, and second, processing features in batches to reduce resource consumption. The first strategy reduced latency by 5 to 912 times compared to previous works. In the second strategy, LUT and DSP usage dropped by 4.8 and 21 times, respectively, and decreased delay was also observed in most cases. Despite these improvements, accuracy remained nearly the same as prior methods.
Author HosseinpourFardi, Nafiseh
Alizadeh, Bijan
Author_xml – sequence: 1
  givenname: Nafiseh
  surname: HosseinpourFardi
  fullname: HosseinpourFardi, Nafiseh
  organization: School of Electrical and Computer Engineering, College of Engineering, University of Tehran
– sequence: 2
  givenname: Bijan
  surname: Alizadeh
  fullname: Alizadeh, Bijan
  email: b.alizadeh@ut.ac.ir
  organization: School of Electrical and Computer Engineering, College of Engineering, University of Tehran
BookMark eNpFUE1PAjEQbQwmAvoHPDXxXJ3tx7Z4I8QPEhIPct90yxQW1y62iyT8eouYeJhM8t6bNzNvRAahC0jIbQH3BYB-SEXBuWbAFQMNhWbHCzIslBYMpJEDMoQJB2aU5FdklNIWAKTQYkg-pvPF_P2Rovfo-uYb6cbG1cFGpNY5bDHavovU52qCi_iJobctbdHG0IQ1PTT9JjM9tm2zzhxNeSYbdSGj1LU2pcY3zp6Qa3LpbZvw5q-PyfL5aTl7ZYu3l_lsumC7fHHPuDVcec9NrZVXciXqUqMyEwQ5Aa5rtZIloHAAwmgvDJQGBQhpJce6dGJM7s62u9h97TH11bbbx5A3VoKrsgQ1KSGrxFmVdjE_gvFfVUB1CrU6h1rlUKvfUKuj-AFVOm09
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID JQ2
DOI 10.1007/s11227-025-07017-z
DatabaseName ProQuest Computer Science Collection
DatabaseTitle ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
ExternalDocumentID 10_1007_s11227_025_07017_z
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAP
EBLON
EBS
EIOEI
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
MA-
N9A
NB0
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCJ
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
.4S
AAPKM
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BGNMA
JQ2
M4Y
NU0
TUS
ID FETCH-LOGICAL-p157t-2a825ff28b75f54d3b67e589e049027b5d460e3c00387f38068e3034a42eb6c3
IEDL.DBID U2A
ISSN 0920-8542
IngestDate Mon Oct 06 18:33:29 EDT 2025
Fri Feb 21 02:47:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords K-nearest neighbor methods
Incremental learning
On-chip training
FPGA
AI accelerators
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p157t-2a825ff28b75f54d3b67e589e049027b5d460e3c00387f38068e3034a42eb6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256605960
PQPubID 2043774
ParticipantIDs proquest_journals_3256605960
springer_journals_10_1007_s11227_025_07017_z
PublicationCentury 2000
PublicationDate 2025-02-17
PublicationDateYYYYMMDD 2025-02-17
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-17
  day: 17
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
SSID ssj0004373
Score 2.3698995
Snippet Incremental learning for resource-constrained systems has been noticed for its ability to incorporate new learning. This paper presents accelerator for...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 509
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Classification
Compilers
Computer Science
Datasets
Embedded systems
Feature extraction
Field programmable gate arrays
Hardware
Interpreters
K-nearest neighbors algorithm
Learning
Machine learning
Neural networks
Neurons
Processor Architectures
Programming Languages
Title AILIS: effective hardware accelerator for incremental learning with intelligent selection in classification
URI https://link.springer.com/article/10.1007/s11227-025-07017-z
https://www.proquest.com/docview/3256605960
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLagXVi4EYVSeWAkUuojdthS1NJydKGVyhQ5toMqpILaIKT-ep7dhAjEwhTlHPy9-H32Oz6ELo0RKnfGayUzAVNxHCh3mhGmpFZSUN_A9HEcDafsbsZnZVHYqsp2r0KSfqaui926hIjAya-CmcLcut5GTe7aeYEVT0lSV0NSQcvymL_f-0Emf8U_vVsZ7KPdkg_iZAPgAdqyi0O0V2kt4PLXO0Kvyehh9HSNN_kXMEVhVy71qZYWK63Bd_hwOQYKiucLvdn0g--WohAv2O234vl3_80Cr7wADqACV7F2HNolDXmcjtFk0J_cDINSKCF473JRBETBOi_PicwEzzkzNIuE5TK2LqxHRMYNi0JLtQsDipzKMJIWXBdTjNgs0vQENRZvC3uKcAzrpzg0PDQyB9-dy1CZSFvgGEoIJWkLtauhS0tjX6UUaFPkZHzCFrqqhrO-XTdGdkCkAETqgUjXZ_97_BztEA8jCbqijRrF8sNeACUosg5qJoNeb-yOt8_3_Y63iC8h3rUp
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHPQiPiOKugePlpTdbXfrjRgU5HEREjw12-3WEBI0UGLCr3e2tBKJF459ZjMzO_PNzgvgPo6FSqzwGsljh6sgcJS9jChXUispWNbAtD_w2yP-OvbGeVHYosh2L0KSmabeFLs1KBWOHb-KYoq6dbUPZY4OCi1Bufny3m1t6iGZYHmBzP9f_oGTWxHQzLA8V2BULGmdTzKtL9Oorldb3Rp3XfMxHOVIkzTXonECe2Z2CpViigPJN_UZTJudXuftkawzO1D5EVuI9a3mhiit0SplgXiC4JZMZnp9nIj_zcdNfBB7kksmv509U7LIRusgv_Eu0Rad23SkTALOYfjcGj61nXwEg_PV8ETqUIUeZJJQGQkv8XjMIl8YTwbGBgypiLyY-65h2gYYRcKk60uDRpErTk3ka3YBpdnnzFwCCdAzC9zYc2OZICpIpKtiXxtEL0oIJVkVagVLwnwbLUKGgMy3A4LcKjwUFN483rRctmQOkcxhRuZwdbXb63dw0B72e2GvM-hewyHNGEadhqhBKZ0vzQ0CjzS6zeXsB_yE0jo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46Qbz4W5xOzcGjZV2SNqm3oY5N5xDcYLeSJqkMoY6tIuyv9yVtrYoXj23THvK95n3J-_EhdKk1l6k1XiOY9piMIk_ay4QwKZQUnLoGpo-jsD9h99Ng-q2K32W7VyHJoqbBdmnK8vZcp-268K1DCPesFCuYLKyzq3W0wWyjBLDoCenWlZGU07JU5u_3fhDLX7FQ52J6u2i75Ia4W4C5h9ZMto92Kt0FXP6GB-i1OxgOnq9xkYsByxW2pVMfcmGwVAr8iAudY6CjeJap4gAQvlsKRLxge_aKZ1-9OHO8dGI4gBDcxcryaZtA5DA7ROPe3fim75WiCd68E_DcIxL2fGlKRMKDNGCaJiE3gYiMDfERngSahb6hyoYEeUqFHwoDboxJRkwSKnqEGtlbZo4RjmAvFfk68LVIwY-nwpc6VAb4huRcCtpErWrq4tLwlzEFChVaSR-_ia6q6awf102SLRAxABE7IOLVyf-GX6DNp9tePByMHk7RFnGIEq_DW6iRL97NGTCFPDl3xvAJ_k-5QQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AILIS%3A+effective+hardware+accelerator+for+incremental+learning+with+intelligent+selection+in+classification&rft.jtitle=The+Journal+of+supercomputing&rft.au=HosseinpourFardi%2C+Nafiseh&rft.au=Alizadeh%2C+Bijan&rft.date=2025-02-17&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=81&rft.issue=4&rft.spage=509&rft_id=info:doi/10.1007%2Fs11227-025-07017-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon