AILIS: effective hardware accelerator for incremental learning with intelligent selection in classification
Incremental learning for resource-constrained systems has been noticed for its ability to incorporate new learning. This paper presents accelerator for incremental learning with intelligent selection, a low-latency hardware implementation for incremental learning based on a hardware-modified model....
Saved in:
| Published in | The Journal of supercomputing Vol. 81; no. 4; p. 509 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
17.02.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-8542 1573-0484 |
| DOI | 10.1007/s11227-025-07017-z |
Cover
| Abstract | Incremental learning for resource-constrained systems has been noticed for its ability to incorporate new learning. This paper presents accelerator for incremental learning with intelligent selection, a low-latency hardware implementation for incremental learning based on a hardware-modified model. The model consists of two components: (1) feature extractor using convolutional layers (2) classifier based on a customized K-nearest neighbor (KNN) algorithm. We modified classifier to reduce resource usage by utilizing two groups of data: (1) data closest to the class mean for general features (2) boundary data for distinguishing features. The implementation focuses on two strategies: first, simultaneous feature computation for minimal latency, and second, processing features in batches to reduce resource consumption. The first strategy reduced latency by 5 to 912 times compared to previous works. In the second strategy, LUT and DSP usage dropped by 4.8 and 21 times, respectively, and decreased delay was also observed in most cases. Despite these improvements, accuracy remained nearly the same as prior methods. |
|---|---|
| AbstractList | Incremental learning for resource-constrained systems has been noticed for its ability to incorporate new learning. This paper presents accelerator for incremental learning with intelligent selection, a low-latency hardware implementation for incremental learning based on a hardware-modified model. The model consists of two components: (1) feature extractor using convolutional layers (2) classifier based on a customized K-nearest neighbor (KNN) algorithm. We modified classifier to reduce resource usage by utilizing two groups of data: (1) data closest to the class mean for general features (2) boundary data for distinguishing features. The implementation focuses on two strategies: first, simultaneous feature computation for minimal latency, and second, processing features in batches to reduce resource consumption. The first strategy reduced latency by 5 to 912 times compared to previous works. In the second strategy, LUT and DSP usage dropped by 4.8 and 21 times, respectively, and decreased delay was also observed in most cases. Despite these improvements, accuracy remained nearly the same as prior methods. |
| Author | HosseinpourFardi, Nafiseh Alizadeh, Bijan |
| Author_xml | – sequence: 1 givenname: Nafiseh surname: HosseinpourFardi fullname: HosseinpourFardi, Nafiseh organization: School of Electrical and Computer Engineering, College of Engineering, University of Tehran – sequence: 2 givenname: Bijan surname: Alizadeh fullname: Alizadeh, Bijan email: b.alizadeh@ut.ac.ir organization: School of Electrical and Computer Engineering, College of Engineering, University of Tehran |
| BookMark | eNpFUE1PAjEQbQwmAvoHPDXxXJ3tx7Z4I8QPEhIPct90yxQW1y62iyT8eouYeJhM8t6bNzNvRAahC0jIbQH3BYB-SEXBuWbAFQMNhWbHCzIslBYMpJEDMoQJB2aU5FdklNIWAKTQYkg-pvPF_P2Rovfo-uYb6cbG1cFGpNY5bDHavovU52qCi_iJobctbdHG0IQ1PTT9JjM9tm2zzhxNeSYbdSGj1LU2pcY3zp6Qa3LpbZvw5q-PyfL5aTl7ZYu3l_lsumC7fHHPuDVcec9NrZVXciXqUqMyEwQ5Aa5rtZIloHAAwmgvDJQGBQhpJce6dGJM7s62u9h97TH11bbbx5A3VoKrsgQ1KSGrxFmVdjE_gvFfVUB1CrU6h1rlUKvfUKuj-AFVOm09 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | JQ2 |
| DOI | 10.1007/s11227-025-07017-z |
| DatabaseName | ProQuest Computer Science Collection |
| DatabaseTitle | ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| ExternalDocumentID | 10_1007_s11227_025_07017_z |
| GroupedDBID | -4Z -59 -5G -BR -EM -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAP EBLON EBS EIOEI ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM MA- N9A NB0 NPVJJ NQJWS O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV ROL RPX RSV S16 S1Z S27 S3B SAP SCJ SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX .4S AAPKM ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA BGNMA JQ2 M4Y NU0 TUS |
| ID | FETCH-LOGICAL-p157t-2a825ff28b75f54d3b67e589e049027b5d460e3c00387f38068e3034a42eb6c3 |
| IEDL.DBID | U2A |
| ISSN | 0920-8542 |
| IngestDate | Mon Oct 06 18:33:29 EDT 2025 Fri Feb 21 02:47:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | K-nearest neighbor methods Incremental learning On-chip training FPGA AI accelerators |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p157t-2a825ff28b75f54d3b67e589e049027b5d460e3c00387f38068e3034a42eb6c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3256605960 |
| PQPubID | 2043774 |
| ParticipantIDs | proquest_journals_3256605960 springer_journals_10_1007_s11227_025_07017_z |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-17 |
| PublicationDateYYYYMMDD | 2025-02-17 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| SSID | ssj0004373 |
| Score | 2.3698995 |
| Snippet | Incremental learning for resource-constrained systems has been noticed for its ability to incorporate new learning. This paper presents accelerator for... |
| SourceID | proquest springer |
| SourceType | Aggregation Database Publisher |
| StartPage | 509 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Classification Compilers Computer Science Datasets Embedded systems Feature extraction Field programmable gate arrays Hardware Interpreters K-nearest neighbors algorithm Learning Machine learning Neural networks Neurons Processor Architectures Programming Languages |
| Title | AILIS: effective hardware accelerator for incremental learning with intelligent selection in classification |
| URI | https://link.springer.com/article/10.1007/s11227-025-07017-z https://www.proquest.com/docview/3256605960 |
| Volume | 81 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLagXVi4EYVSeWAkUuojdthS1NJydKGVyhQ5toMqpILaIKT-ep7dhAjEwhTlHPy9-H32Oz6ELo0RKnfGayUzAVNxHCh3mhGmpFZSUN_A9HEcDafsbsZnZVHYqsp2r0KSfqaui926hIjAya-CmcLcut5GTe7aeYEVT0lSV0NSQcvymL_f-0Emf8U_vVsZ7KPdkg_iZAPgAdqyi0O0V2kt4PLXO0Kvyehh9HSNN_kXMEVhVy71qZYWK63Bd_hwOQYKiucLvdn0g--WohAv2O234vl3_80Cr7wADqACV7F2HNolDXmcjtFk0J_cDINSKCF473JRBETBOi_PicwEzzkzNIuE5TK2LqxHRMYNi0JLtQsDipzKMJIWXBdTjNgs0vQENRZvC3uKcAzrpzg0PDQyB9-dy1CZSFvgGEoIJWkLtauhS0tjX6UUaFPkZHzCFrqqhrO-XTdGdkCkAETqgUjXZ_97_BztEA8jCbqijRrF8sNeACUosg5qJoNeb-yOt8_3_Y63iC8h3rUp |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHPQiPiOKugePlpTdbXfrjRgU5HEREjw12-3WEBI0UGLCr3e2tBKJF459ZjMzO_PNzgvgPo6FSqzwGsljh6sgcJS9jChXUispWNbAtD_w2yP-OvbGeVHYosh2L0KSmabeFLs1KBWOHb-KYoq6dbUPZY4OCi1Bufny3m1t6iGZYHmBzP9f_oGTWxHQzLA8V2BULGmdTzKtL9Oorldb3Rp3XfMxHOVIkzTXonECe2Z2CpViigPJN_UZTJudXuftkawzO1D5EVuI9a3mhiit0SplgXiC4JZMZnp9nIj_zcdNfBB7kksmv509U7LIRusgv_Eu0Rad23SkTALOYfjcGj61nXwEg_PV8ETqUIUeZJJQGQkv8XjMIl8YTwbGBgypiLyY-65h2gYYRcKk60uDRpErTk3ka3YBpdnnzFwCCdAzC9zYc2OZICpIpKtiXxtEL0oIJVkVagVLwnwbLUKGgMy3A4LcKjwUFN483rRctmQOkcxhRuZwdbXb63dw0B72e2GvM-hewyHNGEadhqhBKZ0vzQ0CjzS6zeXsB_yE0jo |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46Qbz4W5xOzcGjZV2SNqm3oY5N5xDcYLeSJqkMoY6tIuyv9yVtrYoXj23THvK95n3J-_EhdKk1l6k1XiOY9piMIk_ay4QwKZQUnLoGpo-jsD9h99Ng-q2K32W7VyHJoqbBdmnK8vZcp-268K1DCPesFCuYLKyzq3W0wWyjBLDoCenWlZGU07JU5u_3fhDLX7FQ52J6u2i75Ia4W4C5h9ZMto92Kt0FXP6GB-i1OxgOnq9xkYsByxW2pVMfcmGwVAr8iAudY6CjeJap4gAQvlsKRLxge_aKZ1-9OHO8dGI4gBDcxcryaZtA5DA7ROPe3fim75WiCd68E_DcIxL2fGlKRMKDNGCaJiE3gYiMDfERngSahb6hyoYEeUqFHwoDboxJRkwSKnqEGtlbZo4RjmAvFfk68LVIwY-nwpc6VAb4huRcCtpErWrq4tLwlzEFChVaSR-_ia6q6awf102SLRAxABE7IOLVyf-GX6DNp9tePByMHk7RFnGIEq_DW6iRL97NGTCFPDl3xvAJ_k-5QQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AILIS%3A+effective+hardware+accelerator+for+incremental+learning+with+intelligent+selection+in+classification&rft.jtitle=The+Journal+of+supercomputing&rft.au=HosseinpourFardi%2C+Nafiseh&rft.au=Alizadeh%2C+Bijan&rft.date=2025-02-17&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=81&rft.issue=4&rft.spage=509&rft_id=info:doi/10.1007%2Fs11227-025-07017-z&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |