Classification of fertilizer type based on soil minerals using voting classification over k-nearest neighbour algorithm
Using the vote classifier, predict the type of fertiliser based on soil minerals. For forecasting the accuracy % of fertiliser type, a Voting Classifier with a sample size of 10 and a K-Nearest Neighbor (KNN) with a sample size of 10 were iterated at different times. A Voting Classifier is a machine...
Saved in:
| Published in | AIP conference proceedings Vol. 2822; no. 1 |
|---|---|
| Main Authors | , |
| Format | Journal Article Conference Proceeding |
| Language | English |
| Published |
Melville
American Institute of Physics
14.11.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0094-243X 1551-7616 |
| DOI | 10.1063/5.0172896 |
Cover
| Abstract | Using the vote classifier, predict the type of fertiliser based on soil minerals. For forecasting the accuracy % of fertiliser type, a Voting Classifier with a sample size of 10 and a K-Nearest Neighbor (KNN) with a sample size of 10 were iterated at different times. A Voting Classifier is a machine learning model that trains on a large ensemble of models and predicts an output (class) based on the highest likelihood of the chosen class being the outcome. The findings shown that Voting Classifier achieved substantial results with 96% accuracy when compared to KNN with 96% accuracy. The voting classifier and KNN have a statistical significance of p=0.001 (p<0.05). The most successful algorithm for classifying fertiliser types based on soil minerals is the Voting Classifier than KNN. |
|---|---|
| AbstractList | Using the vote classifier, predict the type of fertiliser based on soil minerals. For forecasting the accuracy % of fertiliser type, a Voting Classifier with a sample size of 10 and a K-Nearest Neighbor (KNN) with a sample size of 10 were iterated at different times. A Voting Classifier is a machine learning model that trains on a large ensemble of models and predicts an output (class) based on the highest likelihood of the chosen class being the outcome. The findings shown that Voting Classifier achieved substantial results with 96% accuracy when compared to KNN with 96% accuracy. The voting classifier and KNN have a statistical significance of p=0.001 (p<0.05). The most successful algorithm for classifying fertiliser types based on soil minerals is the Voting Classifier than KNN. |
| Author | Bandaiah, K. Parvathy, L. Rama |
| Author_xml | – sequence: 1 givenname: K. surname: Bandaiah fullname: Bandaiah, K. organization: Department of CSE, SIMATS School of Engineering,SIMATS – sequence: 2 givenname: L. Rama surname: Parvathy fullname: Parvathy, L. Rama organization: Department of CSE, SIMATS School of Engineering,SIMATS |
| BookMark | eNpdkEtLAzEUhYNUsK0u_AcBd8LUvB9LKb6g4EbB3ZCZybSp02RM0kr99U5tV67O4p773XPPBIx88BaAa4xmGAl6x2cIS6K0OANjzDkupMBiBMYIaVYQRj8uwCSlNUJES6nG4HvemZRc62qTXfAwtLC1MbvO_dgI8763sDLJNnCYpeA6uHHeRtMluE3OL-Eu5IPU_yi7Yfmz8NZEmzL01i1XVdhGaLpliC6vNpfgvB0o9uqkU_D--PA2fy4Wr08v8_tF0WNKc4FbThvVKFzhislWSqGMwEhahjFrMKmZplYzpSQhqrUVp6oSgvJaV5oIK-kU3By5fQxf2yFMuR5y-OFkSZTSkhGOxeC6PbpS7fLfC2Uf3cbEfYlReSi25OWpWPoLibZtyQ |
| CODEN | APCPCS |
| ContentType | Journal Article Conference Proceeding |
| Copyright | Author(s) 2023 Author(s). Published by AIP Publishing. |
| Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published by AIP Publishing. |
| DBID | 8FD H8D L7M |
| DOI | 10.1063/5.0172896 |
| DatabaseName | Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1551-7616 |
| Editor | Balasubramanian, PL Jeganathan, M. Sathish, T. Srinivasan, R. Babu, A.B. Karthick Anand Vijayan, V. |
| Editor_xml | – sequence: 1 givenname: R. surname: Srinivasan fullname: Srinivasan, R. organization: Tamil University – sequence: 2 givenname: V. surname: Vijayan fullname: Vijayan, V. organization: K. Ramakrishnan College of Technology – sequence: 3 givenname: A.B. Karthick Anand surname: Babu fullname: Babu, A.B. Karthick Anand organization: Tamil University – sequence: 4 givenname: PL surname: Balasubramanian fullname: Balasubramanian, PL organization: Tamil University – sequence: 5 givenname: M. surname: Jeganathan fullname: Jeganathan, M. organization: Global Scientific Research Services – sequence: 6 givenname: T. surname: Sathish fullname: Sathish, T. organization: Saveetha University |
| ExternalDocumentID | acp |
| Genre | Conference Proceeding |
| GroupedDBID | -~X 23M 5GY AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACZLF ADCTM AEJMO AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN F5P FDOHQ FFFMQ HAM M71 M73 RIP RQS SJN ~02 8FD ABJGX ADMLS H8D L7M |
| ID | FETCH-LOGICAL-p133t-1f53d8d81b1b47f7768a6107e4114d12c493e94887228feb538b6635c9b926e73 |
| ISSN | 0094-243X |
| IngestDate | Sun Jun 29 12:30:00 EDT 2025 Fri Jun 21 00:10:18 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Published by AIP Publishing. 0094-243X/2023/2822/020144/5/$30.00 |
| LinkModel | OpenURL |
| MeetingName | THE 4TH INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE AND APPLICATIONS |
| MergedId | FETCHMERGED-LOGICAL-p133t-1f53d8d81b1b47f7768a6107e4114d12c493e94887228feb538b6635c9b926e73 |
| Notes | ObjectType-Conference Proceeding-1 SourceType-Conference Papers & Proceedings-1 content type line 21 |
| PQID | 2889742516 |
| PQPubID | 2050672 |
| PageCount | 5 |
| ParticipantIDs | scitation_primary_10_1063_5_0172896 proquest_journals_2889742516 |
| PublicationCentury | 2000 |
| PublicationDate | 20231114 |
| PublicationDateYYYYMMDD | 2023-11-14 |
| PublicationDate_xml | – month: 11 year: 2023 text: 20231114 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | Melville |
| PublicationPlace_xml | – name: Melville |
| PublicationTitle | AIP conference proceedings |
| PublicationYear | 2023 |
| Publisher | American Institute of Physics |
| Publisher_xml | – name: American Institute of Physics |
| References | Praveen, Narayanan, Muthusekhar, Baig (c15) 2001; 39 Jain (c16) 2017; 8 Philibert, Loyce, Makowski (c22) 2013; 177 Rao, Rao, Pai, Kotian (c14) 1989; 42 Sathish, Karthick (c17) 2020; 9 Shook, Gangopadhyay, Wu, Ganapathysubramanian, Sarkar, Singh (c21) 2021; 16 Neelakantan, Subbarao, Subbarao, De-Deus, Zehnder (c9) 2011; 44 Lakshmi, Krishnan, Rajendran, Madhusudhanan (c12) 2015; 9 Coulibali, Cambouris, Parent (c20) 2020; 15 Mootha, Malaiappan, Jayakumar, Varghese, Thomas (c11) 2016; 2016 Ling, Aneiros, Vieu (c8) 2020; 61 Chen, Tang, Sun, Veeraraghavan, Mohan, Cui (c13) 2019; 197 Zhang, Li, Zong, Zhu, Wang (c5) 2018; 29 Sekhar, Narayanan, Baig (c18) 2001; 39 Sherazi, Bae, Lee (c4) 2021; 16 Krishnan, Lakshmi (c10) 2013; 4 Xiao, Fan, Ni, Li, Xu, Yi (c19) 2017; 60 |
| References_xml | – volume: 39 start-page: 134 year: 2001 ident: c18 article-title: Role of antimicrobials in third molar surgery: prospective, double blind,randomized, placebo-controlled clinical study – volume: 16 start-page: e0252402 year: 2021 ident: c21 article-title: Crop yield prediction integrating genotype and weather variables using deep learning – volume: 197 start-page: 111518 year: 2019 ident: c13 article-title: 6-shogaol, a active constiuents of ginger prevents UVB radiation mediated inflammation and oxidative stress through modulating NrF2 signaling in human epidermal keratinocytes (HaCaT cells) – volume: 61 start-page: 423 year: 2020 ident: c8 article-title: kNN estimation in functional partial linear modeling – volume: 4 start-page: 78 year: 2013 ident: c10 article-title: Bioglass: A novel biocompatible innovation – volume: 9 start-page: 3481 year: 2020 ident: c17 article-title: Wear behaviour analysis on aluminium alloy 7050 with reinforced SiC through taguchi approach – volume: 42 start-page: 249 year: 1989 ident: c14 article-title: Mandibular canine index--a clue for establishing sex identity – volume: 2016 start-page: 3507503 year: 2016 ident: c11 article-title: The Effect of Periodontitis on Expression of Interleukin-21: A Systematic Review – volume: 39 start-page: 138 year: 2001 ident: c15 article-title: Hypotensive anaesthesia and blood loss in orthognathic surgery: a clinical study – volume: 177 start-page: 156 year: 2013 ident: c22 article-title: Prediction of N2O emission from local information with Random Forest – volume: 9 start-page: 41 year: 2015 ident: c12 article-title: Azadirachta indica: A herbal panacea in dentistry-An update – volume: 60 start-page: 1051 year: 2017 ident: c19 article-title: Prediction of nitrogen release from sigmoid-type controlled release fertilizers in greenhouse production of strawberry and cucumber – volume: 15 start-page: e0230888 year: 2020 ident: c20 article-title: Site-specific machine learning predictive fertilization models for potato crops in Eastern Canada – volume: 44 start-page: 491 year: 2011 ident: c9 article-title: The impact of root dentine conditioning on sealing ability and push-out bond strength of an epoxy resin root canal sealer – volume: 16 start-page: e0249338 year: 2021 ident: c4 article-title: A soft voting ensemble classifier for early prediction and diagnosis of occurrences of major adverse cardiovascular events for STEMI and NSTEMI during 2-year follow-up in patients with acute coronary syndrome – volume: 8 start-page: 171 year: 2017 ident: c16 article-title: Clinical and Functional Outcomes of Implant Prostheses in Fibula Free Flaps – volume: 29 start-page: 1774 year: 2018 ident: c5 article-title: Efficient kNN Classification With Different Numbers of Nearest Neighbors |
| SSID | ssj0029778 |
| Score | 2.3401194 |
| Snippet | Using the vote classifier, predict the type of fertiliser based on soil minerals. For forecasting the accuracy % of fertiliser type, a Voting Classifier with a... |
| SourceID | proquest scitation |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Accuracy Algorithms Classifiers Fertilizers Machine learning Minerals Soil classification Soils |
| Title | Classification of fertilizer type based on soil minerals using voting classification over k-nearest neighbour algorithm |
| URI | http://dx.doi.org/10.1063/5.0172896 https://www.proquest.com/docview/2889742516 |
| Volume | 2822 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1551-7616 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0029778 issn: 0094-243X databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bb9MwFICt0gnBG5chBgNZAvESBRbbiZM3Jtg0UDcm0Up9ixLHgYouKU0G0n495ziJk3YVErxEVVq5kT_H5-JzIeQ1T0CoCa7cUINtIqIAXikZKBeTInMf7mWmTef5RXA2E5_n_nw0ej_MLqnTt-pmZ17J_1CFe8AVs2T_gawdFG7AZ-ALVyAM19uMd4qa40-XGDjeFYvtf1MN14LpfIkxQVY_zDGcerm40evGCYvCLMODg6pcLJ2rhalFXTnXxpPwqzSx0WprFJgu54dbYBHcqnYK9LGii9RJlt_K9aL-fjX0KDCOqXVe71G0R0Ub4QomIFUNHYhgGLpMmG6-IEna7dP3XBk02ZPd_oqBqtsr6dbGDZoSzDaWUJVgAu4ojn3xJT6dTSbx9GQ-fbP66WLfMDxfb5uo3CF7jMPuNSZ7xx_PJ1-t0Q36bSON26ftqksF_J39tw3r4h6oHk0UxEDRmD4g-30KJr20NB-SkS4ekbvt9DwmvzeR0jKnPVKKSKlBSuE7REo7pNQgpQ1SqrZGAaTUIqUWKbVI98ns9GT64cxte2i4K4_z2vVyn2dhBsaJlwqZS7AuE9CYpRZgCGceUyLiOoJdXDIW5joF-ZeiEqqiNGKBlvwJGRdloZ8SGgoUCGFyxGUuOMuSo0zw1A-yTHKWKn1ADrtZjNuXpIpZGILFCkp0cEBe2ZmNV00pldiEQAQ89uMWxbO_D_Kc3O9X7CEZ1-tr_QK0wjp92YL_A9CUaqY |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=AIP+conference+proceedings&rft.atitle=Classification+of+fertilizer+type+based+on+soil+minerals+using+voting+classification+over+k-nearest+neighbour+algorithm&rft.date=2023-11-14&rft.pub=American+Institute+of+Physics&rft.issn=0094-243X&rft.eissn=1551-7616&rft.volume=2822&rft.issue=1&rft_id=info:doi/10.1063%2F5.0172896&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-243X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-243X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-243X&client=summon |