Research for the Mixed Disturbance Detection of Power System Using LMD Algorithm

In order to realize the accurate identification of mixed disturbance signal in power system, the local mean decomposition (LMD) algorithm is applied to the mixed disturbance detection in power system for the first time. The typical power quality mixed disturbance signal include harmonics and voltage...

Full description

Saved in:
Bibliographic Details
Published inSensors & transducers Vol. 161; no. 12; p. 352
Main Authors Wensi, Cao, Yan, Xu
Format Journal Article
LanguageEnglish
Published Toronto IFSA Publishing, S.L 01.12.2013
Subjects
Online AccessGet full text
ISSN2306-8515
1726-5479
1726-5479

Cover

Abstract In order to realize the accurate identification of mixed disturbance signal in power system, the local mean decomposition (LMD) algorithm is applied to the mixed disturbance detection in power system for the first time. The typical power quality mixed disturbance signal include harmonics and voltage flicker signal, harmonics and voltage swell signal, harmonics and voltage sag signal, harmonics and voltage interruption signal, as well as the actual mixed disturbance signals occurred in smart substation, are selected and analyzed by LMD algorithm. Disturbance signal is adaptively decomposed into a number of Product Function (PF for short) by the algorithm, and the PF is made of the envelope signal and pure Frequency Modulation signal. We can get the original signal of frequency and amplitude distribution curves. Simulation results show that LMD algorithm is better than HHT algorithm in the parameter fluctuation of transient characteristic parameter detection, the detection accuracy, the end effect and running time. Detection results of Smart Substation shows that, the amplitude, frequency, start and end time of disturbance signal can be accurately detected by LMD algorithm, proving the correctness of the LMD algorithm. [PUBLICATION ABSTRACT]
AbstractList In order to realize the accurate identification of mixed disturbance signal in power system, the local mean decomposition (LMD) algorithm is applied to the mixed disturbance detection in power system for the first time. The typical power quality mixed disturbance signal include harmonics and voltage flicker signal, harmonics and voltage swell signal, harmonics and voltage sag signal, harmonics and voltage interruption signal, as well as the actual mixed disturbance signals occurred in smart substation, are selected and analyzed by LMD algorithm. Disturbance signal is adaptively decomposed into a number of Product Function (PF for short) by the algorithm, and the PF is made of the envelope signal and pure Frequency Modulation signal. We can get the original signal of frequency and amplitude distribution curves. Simulation results show that LMD algorithm is better than HHT algorithm in the parameter fluctuation of transient characteristic parameter detection, the detection accuracy, the end effect and running time. Detection results of Smart Substation shows that, the amplitude, frequency, start and end time of disturbance signal can be accurately detected by LMD algorithm, proving the correctness of the LMD algorithm. [PUBLICATION ABSTRACT]
In order to realize the accurate identification of mixed disturbance signal in power system, the local mean decomposition (LMD) algorithm is applied to the mixed disturbance detection in power system for the first time. The typical power quality mixed disturbance signal include harmonics and voltage flicker signal, harmonics and voltage swell signal, harmonics and voltage sag signal, harmonics and voltage interruption signal, as well as the actual mixed disturbance signals occurred in smart substation, are selected and analyzed by LMD algorithm. Disturbance signal is adaptively decomposed into a number of Product Function (PF for short) by the algorithm, and the PF is made of the envelope signal and pure Frequency Modulation signal. We can get the original signal of frequency and amplitude distribution curves. Simulation results show that LMD algorithm is better than HHT algorithm in the parameter fluctuation of transient characteristic parameter detection, the detection accuracy, the end effect and running time. Detection results of Smart Substation shows that, the amplitude, frequency, start and end time of disturbance signal can be accurately detected by LMD algorithm, proving the correctness of the LMD algorithm.
Author Yan, Xu
Wensi, Cao
Author_xml – sequence: 1
  givenname: Cao
  surname: Wensi
  fullname: Wensi, Cao
– sequence: 2
  givenname: Xu
  surname: Yan
  fullname: Yan, Xu
BookMark eNpdzk1LwzAcBvAgE5xz3yHgxUshL03SHMfmG3Q41J1H2v6zdrTJTFLUb29BT56e5_Dj4blGM-cdXKA5VUxmIld6huaME5kVgoortIzxRAihRCnNyBztXiGCCXWLrQ84tYC33Rc0eNPFNIbKuBrwBhLUqfMOe4t3_hMCfvuOCQa8j5074nK7wav-6EOX2uEGXVrTR1j-5QLtH-7f109Z-fL4vF6V2ZlymjIwQPPcWACtdVURZiurKCsaaUTNmjqfOpHCCknyilBolGFSqUI3VWFMIfkC3f3unoP_GCGmw9DFGvreOPBjPFDBKeFEaz7R23_05MfgpneTIrrIpRSa_wDDN1vL
ContentType Journal Article
Copyright Copyright International Frequency Sensor Association Dec 2013
Copyright_xml – notice: Copyright International Frequency Sensor Association Dec 2013
DBID 3V.
4T-
4U-
7SP
7XB
88I
88K
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BFMQW
BGLVJ
CCPQU
CLZPN
DWQXO
F28
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
M0N
M2P
M2T
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DatabaseName ProQuest Central (Corporate)
Docstoc
University Readers
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Telecommunications (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Continental Europe Database (NC LIVE)
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Latin America & Iberia Database (NC LIVE)
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computing Database
Science Database (via ProQuest SciTech Premium Collection)
Telecommunications Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle Publicly Available Content Database
University Readers
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Telecommunications
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest Telecommunications (Alumni Edition)
Continental Europe Database
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Latin America & Iberian Database
ProQuest One Academic UKI Edition
Docstoc
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Technology Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1726-5479
EndPage 352
ExternalDocumentID 3255626271
Genre Feature
GroupedDBID .DC
3V.
4T-
4U-
7SP
7XB
88I
88K
8AL
8FD
8FE
8FG
8FK
8R4
8R5
ABJCF
ABUWG
ACGOD
ACIWK
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CLZPN
DWQXO
EBS
EJD
F28
FR3
GNUQQ
HCIFZ
IPNFZ
JQ2
K6V
K7-
L6V
L7M
M0N
M2P
M2T
M7S
M~E
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
Q2X
Q9U
RIG
S0W
PUEGO
ID FETCH-LOGICAL-p131t-eae144afee999bb02fbf7128d6a5c2dc4128065f5604b01ed7a267789db8aa863
IEDL.DBID BENPR
ISSN 2306-8515
1726-5479
IngestDate Thu Sep 04 16:11:29 EDT 2025
Fri Jul 25 19:06:27 EDT 2025
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p131t-eae144afee999bb02fbf7128d6a5c2dc4128065f5604b01ed7a267789db8aa863
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://www.proquest.com/docview/1509846659?pq-origsite=%requestingapplication%&accountid=15518
PQID 1509846659
PQPubID 52938
PageCount 1
ParticipantIDs proquest_miscellaneous_1531030993
proquest_journals_1509846659
PublicationCentury 2000
PublicationDate 20131201
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 20131201
  day: 01
PublicationDecade 2010
PublicationPlace Toronto
PublicationPlace_xml – name: Toronto
PublicationTitle Sensors & transducers
PublicationYear 2013
Publisher IFSA Publishing, S.L
Publisher_xml – name: IFSA Publishing, S.L
SSID ssj0001077920
Score 1.8825533
Snippet In order to realize the accurate identification of mixed disturbance signal in power system, the local mean decomposition (LMD) algorithm is applied to the...
SourceID proquest
SourceType Aggregation Database
StartPage 352
SubjectTerms Accuracy
Algorithms
Amplitudes
Decomposition
Disturbances
Electric potential
Fault diagnosis
Fourier transforms
Frequency distribution
Harmonics
Mathematical models
Methods
Substations
Voltage
Title Research for the Mixed Disturbance Detection of Power System Using LMD Algorithm
URI https://www.proquest.com/docview/1509846659
https://www.proquest.com/docview/1531030993
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1726-5479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077920
  issn: 2306-8515
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1726-5479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077920
  issn: 2306-8515
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Continental Europe Database (NC LIVE)
  customDbUrl:
  eissn: 1726-5479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001077920
  issn: 2306-8515
  databaseCode: BFMQW
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1726-5479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077920
  issn: 2306-8515
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3LS8NAEMaHPi56EJ9YrWUFr4tNNs-DSLWtRWwpYqG3stvdqKBJrSn45zuzTawgeE4IZCeZ-e3u7PcBXDjCIBZ4AiNgEu5JKbiKSV47kY6Qwo20Q2eHh6NgMPHup_60AqPyLAy1VZY50SZqnc1pjfwSwSXGWhn48fXig5NrFO2ulhYasrBW0FdWYqwKdZeUsWpQv-mNxo-bVZd2GMZWq5HQmyNu-H-SsK0s_V3YKZCQddYx3IOKSfdh-5dQ4AGMywY5hozJkNnY8PXLaNbFIK2WiiLHuia3bVUpyxI2JvMztpYjZ7YtgD0Mu6zz9ozvlL-8H8Kk33u6HfDCC4EvHOHk3EiDUx-ZGINEp1TbTVQSYm3RgfTnrp57jt0iTRBgPNV2jA6lS9pwsVaRlFEgjqCWZqk5BuYFCjMczdQEwQcCovLxNyThPCWQ5hrQLAdkVnzQn7PN8Dfg_Ocyfoq0vyBTk63oHmtahsRz8v8jTmHLJVcJ2xXShFq-XJkzrO25akE16t-1irB9A7vNpZA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1NT8JAEIYnCAf1YPyMKOqa6LGRdvtBD8SghYBQQgwk3HCXbtVEW4QS9c_525xdWjEx8ca5zR52Zmef2Z19B-BCpwKxwKRoARFqJmNU466U1w6ZThk1KoEu3w77Xbs5MO-G1jAHX9lbGFlWmcVEFaiDeCzPyK8QXFzcK23LvZ68abJrlLxdzVposLS1QlBVEmPpw462-HzHFG5WbXlo70vDaNT7t00t7TKgTXSqJ5pgApMKFgqBrMR52Qh56GDUDmxmjY1gbOrq8jFENDB5WReBwwypuuYGvMJYxaY47hoUTGq6mPwVburd3v3ylKfsOK7ShpSoryHeWH-CvtrJGtuwlSIoqS18ZgdyItqFzV_ChHvQywryCDItQUYk_vOHCIiHTjGfcukpxBOJKuOKSBySnmy2Rhby50SVIZCO75HayyPOYfL0ug-DlczKAeSjOBKHQEybY0SVmSGVsINAyi1c9lKoj1OkxyKUsgkZpQtoNlqauwjnP5_R9eV9BotEPJf_qCZpSFhH_w9xBuvNvt8ZdVrd9jFsGLKjhapIKUE-mc7FCXJFwk9T4xF4WLW_fAPO2uI-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1LT8JAEMcniInRg_EZUdQ10WMD7fZBD8YQK4I8wkESbrhLt2qiLUKJ-tX8dM4sVExMvHFus4eZ2dnf7s7-B-Dc5AqxwOboARUZthDckD7Ja0fC5IJbldCkt8Ptjlvv2Xd9p5-Dr-wtDJVVZjlRJ-owGdIZeQnBxce10nX8UjQvi-gGtavRm0EdpOimNWunMQuRpvp8x-3b5LIRoK8vLKt2c39dN-YdBoyRyc3UUELhhkJESiEnSVm2Ihl5mLFDVzhDKxzapr54jBALbFk2VegJixTX_FBWhKi4HMddgVWPVNzplXrtdnG-U_Y8X6tCEuQbCDbOn3Sv17DaFmzO4ZNVZ9GyDTkV78DGL0nCXehmpXgMaZYhHbL284cKWYDhMB1LihEWqFQXcMUsiViX2qyxmfA50wUIrNUOWPXlES2WPr3uQW8pNtmHfJzE6gCY7UrMpbQn5IQ5iKLSwQlPEn2SIzcWoJgZZDCfOpPBwtEFOPv5jEFPNxkiVsmU_tHt0ZCtDv8f4hTWMEoGrUaneQTrFrWy0KUoRcin46k6RqBI5Yn2HIOHZYfKN6q439g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+for+the+Mixed+Disturbance+Detection+of+Power+System+Using+LMD+Algorithm&rft.jtitle=Sensors+%26+transducers&rft.au=Wensi%2C+Cao&rft.au=Yan%2C+Xu&rft.date=2013-12-01&rft.pub=IFSA+Publishing%2C+S.L&rft.issn=2306-8515&rft.eissn=1726-5479&rft.volume=161&rft.issue=12&rft.spage=352&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3255626271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-8515&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-8515&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-8515&client=summon