Research for the Mixed Disturbance Detection of Power System Using LMD Algorithm
In order to realize the accurate identification of mixed disturbance signal in power system, the local mean decomposition (LMD) algorithm is applied to the mixed disturbance detection in power system for the first time. The typical power quality mixed disturbance signal include harmonics and voltage...
Saved in:
| Published in | Sensors & transducers Vol. 161; no. 12; p. 352 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Toronto
IFSA Publishing, S.L
01.12.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2306-8515 1726-5479 1726-5479 |
Cover
| Abstract | In order to realize the accurate identification of mixed disturbance signal in power system, the local mean decomposition (LMD) algorithm is applied to the mixed disturbance detection in power system for the first time. The typical power quality mixed disturbance signal include harmonics and voltage flicker signal, harmonics and voltage swell signal, harmonics and voltage sag signal, harmonics and voltage interruption signal, as well as the actual mixed disturbance signals occurred in smart substation, are selected and analyzed by LMD algorithm. Disturbance signal is adaptively decomposed into a number of Product Function (PF for short) by the algorithm, and the PF is made of the envelope signal and pure Frequency Modulation signal. We can get the original signal of frequency and amplitude distribution curves. Simulation results show that LMD algorithm is better than HHT algorithm in the parameter fluctuation of transient characteristic parameter detection, the detection accuracy, the end effect and running time. Detection results of Smart Substation shows that, the amplitude, frequency, start and end time of disturbance signal can be accurately detected by LMD algorithm, proving the correctness of the LMD algorithm. [PUBLICATION ABSTRACT] |
|---|---|
| AbstractList | In order to realize the accurate identification of mixed disturbance signal in power system, the local mean decomposition (LMD) algorithm is applied to the mixed disturbance detection in power system for the first time. The typical power quality mixed disturbance signal include harmonics and voltage flicker signal, harmonics and voltage swell signal, harmonics and voltage sag signal, harmonics and voltage interruption signal, as well as the actual mixed disturbance signals occurred in smart substation, are selected and analyzed by LMD algorithm. Disturbance signal is adaptively decomposed into a number of Product Function (PF for short) by the algorithm, and the PF is made of the envelope signal and pure Frequency Modulation signal. We can get the original signal of frequency and amplitude distribution curves. Simulation results show that LMD algorithm is better than HHT algorithm in the parameter fluctuation of transient characteristic parameter detection, the detection accuracy, the end effect and running time. Detection results of Smart Substation shows that, the amplitude, frequency, start and end time of disturbance signal can be accurately detected by LMD algorithm, proving the correctness of the LMD algorithm. [PUBLICATION ABSTRACT] In order to realize the accurate identification of mixed disturbance signal in power system, the local mean decomposition (LMD) algorithm is applied to the mixed disturbance detection in power system for the first time. The typical power quality mixed disturbance signal include harmonics and voltage flicker signal, harmonics and voltage swell signal, harmonics and voltage sag signal, harmonics and voltage interruption signal, as well as the actual mixed disturbance signals occurred in smart substation, are selected and analyzed by LMD algorithm. Disturbance signal is adaptively decomposed into a number of Product Function (PF for short) by the algorithm, and the PF is made of the envelope signal and pure Frequency Modulation signal. We can get the original signal of frequency and amplitude distribution curves. Simulation results show that LMD algorithm is better than HHT algorithm in the parameter fluctuation of transient characteristic parameter detection, the detection accuracy, the end effect and running time. Detection results of Smart Substation shows that, the amplitude, frequency, start and end time of disturbance signal can be accurately detected by LMD algorithm, proving the correctness of the LMD algorithm. |
| Author | Yan, Xu Wensi, Cao |
| Author_xml | – sequence: 1 givenname: Cao surname: Wensi fullname: Wensi, Cao – sequence: 2 givenname: Xu surname: Yan fullname: Yan, Xu |
| BookMark | eNpdzk1LwzAcBvAgE5xz3yHgxUshL03SHMfmG3Q41J1H2v6zdrTJTFLUb29BT56e5_Dj4blGM-cdXKA5VUxmIld6huaME5kVgoortIzxRAihRCnNyBztXiGCCXWLrQ84tYC33Rc0eNPFNIbKuBrwBhLUqfMOe4t3_hMCfvuOCQa8j5074nK7wav-6EOX2uEGXVrTR1j-5QLtH-7f109Z-fL4vF6V2ZlymjIwQPPcWACtdVURZiurKCsaaUTNmjqfOpHCCknyilBolGFSqUI3VWFMIfkC3f3unoP_GCGmw9DFGvreOPBjPFDBKeFEaz7R23_05MfgpneTIrrIpRSa_wDDN1vL |
| ContentType | Journal Article |
| Copyright | Copyright International Frequency Sensor Association Dec 2013 |
| Copyright_xml | – notice: Copyright International Frequency Sensor Association Dec 2013 |
| DBID | 3V. 4T- 4U- 7SP 7XB 88I 88K 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BFMQW BGLVJ CCPQU CLZPN DWQXO F28 FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M M0N M2P M2T M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
| DatabaseName | ProQuest Central (Corporate) Docstoc University Readers Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Telecommunications (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Continental Europe Database (NC LIVE) Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Latin America & Iberia Database (NC LIVE) ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computing Database Science Database (via ProQuest SciTech Premium Collection) Telecommunications Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
| DatabaseTitle | Publicly Available Content Database University Readers Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Telecommunications ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest Telecommunications (Alumni Edition) Continental Europe Database ProQuest SciTech Collection Advanced Technologies & Aerospace Database Latin America & Iberian Database ProQuest One Academic UKI Edition Docstoc ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1726-5479 |
| EndPage | 352 |
| ExternalDocumentID | 3255626271 |
| Genre | Feature |
| GroupedDBID | .DC 3V. 4T- 4U- 7SP 7XB 88I 88K 8AL 8FD 8FE 8FG 8FK 8R4 8R5 ABJCF ABUWG ACGOD ACIWK ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BFMQW BGLVJ BPHCQ CCPQU CLZPN DWQXO EBS EJD F28 FR3 GNUQQ HCIFZ IPNFZ JQ2 K6V K7- L6V L7M M0N M2P M2T M7S M~E OK1 P2P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PTHSS Q2X Q9U RIG S0W PUEGO |
| ID | FETCH-LOGICAL-p131t-eae144afee999bb02fbf7128d6a5c2dc4128065f5604b01ed7a267789db8aa863 |
| IEDL.DBID | BENPR |
| ISSN | 2306-8515 1726-5479 |
| IngestDate | Thu Sep 04 16:11:29 EDT 2025 Fri Jul 25 19:06:27 EDT 2025 |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p131t-eae144afee999bb02fbf7128d6a5c2dc4128065f5604b01ed7a267789db8aa863 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/1509846659?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 1509846659 |
| PQPubID | 52938 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_1531030993 proquest_journals_1509846659 |
| PublicationCentury | 2000 |
| PublicationDate | 20131201 |
| PublicationDateYYYYMMDD | 2013-12-01 |
| PublicationDate_xml | – month: 12 year: 2013 text: 20131201 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Toronto |
| PublicationPlace_xml | – name: Toronto |
| PublicationTitle | Sensors & transducers |
| PublicationYear | 2013 |
| Publisher | IFSA Publishing, S.L |
| Publisher_xml | – name: IFSA Publishing, S.L |
| SSID | ssj0001077920 |
| Score | 1.8825533 |
| Snippet | In order to realize the accurate identification of mixed disturbance signal in power system, the local mean decomposition (LMD) algorithm is applied to the... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 352 |
| SubjectTerms | Accuracy Algorithms Amplitudes Decomposition Disturbances Electric potential Fault diagnosis Fourier transforms Frequency distribution Harmonics Mathematical models Methods Substations Voltage |
| Title | Research for the Mixed Disturbance Detection of Power System Using LMD Algorithm |
| URI | https://www.proquest.com/docview/1509846659 https://www.proquest.com/docview/1531030993 |
| Volume | 161 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1726-5479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077920 issn: 2306-8515 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1726-5479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077920 issn: 2306-8515 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Continental Europe Database (NC LIVE) customDbUrl: eissn: 1726-5479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077920 issn: 2306-8515 databaseCode: BFMQW dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1726-5479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077920 issn: 2306-8515 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3LS8NAEMaHPi56EJ9YrWUFr4tNNs-DSLWtRWwpYqG3stvdqKBJrSn45zuzTawgeE4IZCeZ-e3u7PcBXDjCIBZ4AiNgEu5JKbiKSV47kY6Qwo20Q2eHh6NgMPHup_60AqPyLAy1VZY50SZqnc1pjfwSwSXGWhn48fXig5NrFO2ulhYasrBW0FdWYqwKdZeUsWpQv-mNxo-bVZd2GMZWq5HQmyNu-H-SsK0s_V3YKZCQddYx3IOKSfdh-5dQ4AGMywY5hozJkNnY8PXLaNbFIK2WiiLHuia3bVUpyxI2JvMztpYjZ7YtgD0Mu6zz9ozvlL-8H8Kk33u6HfDCC4EvHOHk3EiDUx-ZGINEp1TbTVQSYm3RgfTnrp57jt0iTRBgPNV2jA6lS9pwsVaRlFEgjqCWZqk5BuYFCjMczdQEwQcCovLxNyThPCWQ5hrQLAdkVnzQn7PN8Dfg_Ocyfoq0vyBTk63oHmtahsRz8v8jTmHLJVcJ2xXShFq-XJkzrO25akE16t-1irB9A7vNpZA |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1NT8JAEIYnCAf1YPyMKOqa6LGRdvtBD8SghYBQQgwk3HCXbtVEW4QS9c_525xdWjEx8ca5zR52Zmef2Z19B-BCpwKxwKRoARFqJmNU466U1w6ZThk1KoEu3w77Xbs5MO-G1jAHX9lbGFlWmcVEFaiDeCzPyK8QXFzcK23LvZ68abJrlLxdzVposLS1QlBVEmPpw462-HzHFG5WbXlo70vDaNT7t00t7TKgTXSqJ5pgApMKFgqBrMR52Qh56GDUDmxmjY1gbOrq8jFENDB5WReBwwypuuYGvMJYxaY47hoUTGq6mPwVburd3v3ylKfsOK7ShpSoryHeWH-CvtrJGtuwlSIoqS18ZgdyItqFzV_ChHvQywryCDItQUYk_vOHCIiHTjGfcukpxBOJKuOKSBySnmy2Rhby50SVIZCO75HayyPOYfL0ug-DlczKAeSjOBKHQEybY0SVmSGVsINAyi1c9lKoj1OkxyKUsgkZpQtoNlqauwjnP5_R9eV9BotEPJf_qCZpSFhH_w9xBuvNvt8ZdVrd9jFsGLKjhapIKUE-mc7FCXJFwk9T4xF4WLW_fAPO2uI- |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1LT8JAEMcniInRg_EZUdQ10WMD7fZBD8YQK4I8wkESbrhLt2qiLUKJ-tX8dM4sVExMvHFus4eZ2dnf7s7-B-Dc5AqxwOboARUZthDckD7Ja0fC5IJbldCkt8Ptjlvv2Xd9p5-Dr-wtDJVVZjlRJ-owGdIZeQnBxce10nX8UjQvi-gGtavRm0EdpOimNWunMQuRpvp8x-3b5LIRoK8vLKt2c39dN-YdBoyRyc3UUELhhkJESiEnSVm2Ihl5mLFDVzhDKxzapr54jBALbFk2VegJixTX_FBWhKi4HMddgVWPVNzplXrtdnG-U_Y8X6tCEuQbCDbOn3Sv17DaFmzO4ZNVZ9GyDTkV78DGL0nCXehmpXgMaZYhHbL284cKWYDhMB1LihEWqFQXcMUsiViX2qyxmfA50wUIrNUOWPXlES2WPr3uQW8pNtmHfJzE6gCY7UrMpbQn5IQ5iKLSwQlPEn2SIzcWoJgZZDCfOpPBwtEFOPv5jEFPNxkiVsmU_tHt0ZCtDv8f4hTWMEoGrUaneQTrFrWy0KUoRcin46k6RqBI5Yn2HIOHZYfKN6q439g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+for+the+Mixed+Disturbance+Detection+of+Power+System+Using+LMD+Algorithm&rft.jtitle=Sensors+%26+transducers&rft.au=Wensi%2C+Cao&rft.au=Yan%2C+Xu&rft.date=2013-12-01&rft.pub=IFSA+Publishing%2C+S.L&rft.issn=2306-8515&rft.eissn=1726-5479&rft.volume=161&rft.issue=12&rft.spage=352&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3255626271 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-8515&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-8515&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-8515&client=summon |