A SELF-ADAPTIVE GENERIC IMM DATA FUSION ALGORITHM

For the problem of hybrid estimation, this paper proposes the self-adaptive generic interacting multiple-model (IMM) data fusion algorithm for solving the model selection problem of IMM. To find the optimal solution of the hybrid estimation problem, the history information of all the models was cons...

Full description

Saved in:
Bibliographic Details
Published inNatsional'nyi Hirnychyi Universytet. Naukovyi Visnyk no. 1; p. 122
Main Authors Yi, Yingmin, Chen, Weiduo
Format Journal Article
LanguageEnglish
Published Dnipropetrosk State Higher Educational Institution "National Mining University" 01.01.2016
Subjects
Online AccessGet full text
ISSN2071-2227
2223-2362

Cover

Abstract For the problem of hybrid estimation, this paper proposes the self-adaptive generic interacting multiple-model (IMM) data fusion algorithm for solving the model selection problem of IMM. To find the optimal solution of the hybrid estimation problem, the history information of all the models was considered. According to the prior knowledge, the parameter space describing the model is mapped to the model set. According to the similarity of the parameter variations, the parameter space is divided into several sub-spaces. The center model of every sub-space was calculated out self adaptively. The center models were organized as the model set of the IMM algorithm. The final output of the algorithm is the data fusion of the model set estimations using IMM algorithm. At last, the simulation experiments showed that the proposed algorithm is superior to the traditional IMM algorithms under the condition of equivalent computation quantity.
AbstractList For the problem of hybrid estimation, this paper proposes the self-adaptive generic interacting multiple-model (IMM) data fusion algorithm for solving the model selection problem of IMM. To find the optimal solution of the hybrid estimation problem, the history information of all the models was considered. According to the prior knowledge, the parameter space describing the model is mapped to the model set. According to the similarity of the parameter variations, the parameter space is divided into several sub-spaces. The center model of every sub-space was calculated out self adaptively. The center models were organized as the model set of the IMM algorithm. The final output of the algorithm is the data fusion of the model set estimations using IMM algorithm. At last, the simulation experiments showed that the proposed algorithm is superior to the traditional IMM algorithms under the condition of equivalent computation quantity.
Author Chen, Weiduo
Yi, Yingmin
Author_xml – sequence: 1
  givenname: Yingmin
  surname: Yi
  fullname: Yi, Yingmin
– sequence: 2
  givenname: Weiduo
  surname: Chen
  fullname: Chen, Weiduo
BookMark eNpdjlFrgzAUhcPoYF3X_yDsZS_CvUlM4mOwagNaR2v3KjEqrDjtav3_E7anPZ2Pw8fhPJPVMA7tA1lTSplPmaCrhUGivxTyiWyn6QIANBScS7EmqL1TnCW-3un30nzEXhof4qOJPJPn3k6X2kvOJ1McPJ2lxdGU-_yFPHa2n9rtX27IOYnLaO9nRWoinflXZHj30QaCu1rUkoFkVgXonAAXSBuECqiqG4tQY4eidrKplRPMNTYMVMcbB8jZhrz97l5v4_fcTvfq63Nybd_boR3nqUIFCiQVUi7q6z_1Ms63YXlXoVTIGEoO7AdXm0tY
ContentType Journal Article
Copyright Copyright State Higher Educational Institution "National Mining University" 2016
Copyright_xml – notice: Copyright State Higher Educational Institution "National Mining University" 2016
DBID 7TB
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
BYOGL
CCPQU
D1I
DWQXO
FR3
GNUQQ
HCIFZ
JG9
KB.
KR7
L6V
M7S
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DatabaseName Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
East Europe, Central Europe Database (Proquest)
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
DatabaseTitle Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
East Europe, Central Europe Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Materials Research Database
Materials Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2223-2362
EndPage 122
ExternalDocumentID 4024444801
Genre Feature
GroupedDBID 7TB
7XC
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
ACIWK
AEUYN
AFKRA
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
BPHCQ
BYOGL
CCPQU
D1I
DWQXO
FR3
GNUQQ
HCIFZ
JG9
KB.
KR7
L6V
LK5
M7R
M7S
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
PYCSY
PUEGO
ID FETCH-LOGICAL-p131t-1a564cb6b73073a851cc60c57a598028bda10b1f16bc7db8c63cda958f4dc0143
IEDL.DBID BENPR
ISSN 2071-2227
IngestDate Thu Oct 02 07:12:16 EDT 2025
Sun Jul 13 04:40:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p131t-1a564cb6b73073a851cc60c57a598028bda10b1f16bc7db8c63cda958f4dc0143
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1781331740
PQPubID 1886336
PageCount 1
ParticipantIDs proquest_miscellaneous_1808072677
proquest_journals_1781331740
PublicationCentury 2000
PublicationDate 20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 20160101
  day: 01
PublicationDecade 2010
PublicationPlace Dnipropetrosk
PublicationPlace_xml – name: Dnipropetrosk
PublicationTitle Natsional'nyi Hirnychyi Universytet. Naukovyi Visnyk
PublicationYear 2016
Publisher State Higher Educational Institution "National Mining University"
Publisher_xml – name: State Higher Educational Institution "National Mining University"
SSID ssj0002964476
Score 1.9502124
Snippet For the problem of hybrid estimation, this paper proposes the self-adaptive generic interacting multiple-model (IMM) data fusion algorithm for solving the...
SourceID proquest
SourceType Aggregation Database
StartPage 122
SubjectTerms Algorithms
Computer simulation
Data fusion
Data integration
Equivalence
Mathematical models
Optimization
Similarity
Title A SELF-ADAPTIVE GENERIC IMM DATA FUSION ALGORITHM
URI https://www.proquest.com/docview/1781331740
https://www.proquest.com/docview/1808072677
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: East Europe, Central Europe Database (Proquest)
  customDbUrl:
  eissn: 2223-2362
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002964476
  issn: 2071-2227
  databaseCode: BYOGL
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eastcentraleurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2223-2362
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002964476
  issn: 2071-2227
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2223-2362
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002964476
  issn: 2071-2227
  databaseCode: 8FG
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ7wuHgxGjWiSGridWOXdh8cjKlAoYYiwWK4kX1xLKjw_90tLR5MPO9mk33NfDuz830AD4EKKacuwxqEvn2gBAb1DMUIBxorX2guCyamdErHi_B1SZY1mFa1MO5bZWUTC0OtN8rFyB8x4_Y5ZfGz_7z9RE41ymVXKwkNUUor6KeCYqwOza5jxmpA82U4nc2PUReXZAwPinPWtyJXCPrHCBeeJT6D0xISetFhD8-hZvILwJH3PpzEKBpEsyz5GHrFH7Ok7yVp6g2iLPLihbODXjQZvc2TbJxewiIeZv0xKuUN0BYHeIewIDRUkkrm7pmw0Ecp6ivCBOlx6_alFtiXeI2pVExLrmigtOgRvg61crR8V9DIN7m5Bo9xIxz0IDJgISVKSuNTE4REaupz4begXc1xVZ7R79Xvirbg_thsT5dLGYjcbPa2j6OdZF3K2M3_Q9zCiYUSZXCiDY3d197cWXe9kx2o83jUKXfiBxCqkWo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEG4QDnoxGjWiqDXR48Yt7bbLgZiVh6zsIsHFcMO-OAIKxPjn_G22yy4eTLxxbtOkmenMNzOd-QC4wZJQn9oKKyauCVCwdmqaIgdhhaTLlS_SSUxxj3aG5GnkjQrgO--Fsd8qc5uYGmo1kzZHfoeYb8Ipg5_d-_m7Y1mjbHU1p9DgGbWCqqcjxrLGjq7--jQh3KIeNo28b6vVditpdJyMZcCZI4yWDuIeJVJQway6c4NApKSu9Bj3ar7xvkJx5Ao0QVRIpoQvKZaK1zx_QpS00_HMuTugRDCpmeCv9NDq9QebLI8tapI1w53x5Y5tPP1j9FNP1j4A-xkEhcFaZw5BQU-PAArgSytqO0Ez6Cfhawumf9rCBgzjGDaDJIDtobW7MIgenwdh0omPwXArFz0Bxelsqk8BZL7mFup4AjNCPSmEdqnGxBOKuj53y6CS33GcvYnF-FeCZXC9WTbabEsUfKpnK7PHjrlkVcrY2f9HXIHdThJH4yjsdc_BnoExWWKkAorLj5W-MFBhKS4zeUDwtm0V-AH9gM2C
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+SELF-ADAPTIVE+GENERIC+IMM+DATA+FUSION+ALGORITHM&rft.jtitle=Natsional%27nyi+Hirnychyi+Universytet.+Naukovyi+Visnyk&rft.au=Yi%2C+Yingmin&rft.au=Chen%2C+Weiduo&rft.date=2016-01-01&rft.issn=2071-2227&rft.issue=1&rft.spage=122&rft.epage=122&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-2227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-2227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-2227&client=summon