A SELF-ADAPTIVE GENERIC IMM DATA FUSION ALGORITHM
For the problem of hybrid estimation, this paper proposes the self-adaptive generic interacting multiple-model (IMM) data fusion algorithm for solving the model selection problem of IMM. To find the optimal solution of the hybrid estimation problem, the history information of all the models was cons...
        Saved in:
      
    
          | Published in | Natsional'nyi Hirnychyi Universytet. Naukovyi Visnyk no. 1; p. 122 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Dnipropetrosk
          State Higher Educational Institution "National Mining University"
    
        01.01.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2071-2227 2223-2362  | 
Cover
| Abstract | For the problem of hybrid estimation, this paper proposes the self-adaptive generic interacting multiple-model (IMM) data fusion algorithm for solving the model selection problem of IMM. To find the optimal solution of the hybrid estimation problem, the history information of all the models was considered. According to the prior knowledge, the parameter space describing the model is mapped to the model set. According to the similarity of the parameter variations, the parameter space is divided into several sub-spaces. The center model of every sub-space was calculated out self adaptively. The center models were organized as the model set of the IMM algorithm. The final output of the algorithm is the data fusion of the model set estimations using IMM algorithm. At last, the simulation experiments showed that the proposed algorithm is superior to the traditional IMM algorithms under the condition of equivalent computation quantity. | 
    
|---|---|
| AbstractList | For the problem of hybrid estimation, this paper proposes the self-adaptive generic interacting multiple-model (IMM) data fusion algorithm for solving the model selection problem of IMM. To find the optimal solution of the hybrid estimation problem, the history information of all the models was considered. According to the prior knowledge, the parameter space describing the model is mapped to the model set. According to the similarity of the parameter variations, the parameter space is divided into several sub-spaces. The center model of every sub-space was calculated out self adaptively. The center models were organized as the model set of the IMM algorithm. The final output of the algorithm is the data fusion of the model set estimations using IMM algorithm. At last, the simulation experiments showed that the proposed algorithm is superior to the traditional IMM algorithms under the condition of equivalent computation quantity. | 
    
| Author | Chen, Weiduo Yi, Yingmin  | 
    
| Author_xml | – sequence: 1 givenname: Yingmin surname: Yi fullname: Yi, Yingmin – sequence: 2 givenname: Weiduo surname: Chen fullname: Chen, Weiduo  | 
    
| BookMark | eNpdjlFrgzAUhcPoYF3X_yDsZS_CvUlM4mOwagNaR2v3KjEqrDjtav3_E7anPZ2Pw8fhPJPVMA7tA1lTSplPmaCrhUGivxTyiWyn6QIANBScS7EmqL1TnCW-3un30nzEXhof4qOJPJPn3k6X2kvOJ1McPJ2lxdGU-_yFPHa2n9rtX27IOYnLaO9nRWoinflXZHj30QaCu1rUkoFkVgXonAAXSBuECqiqG4tQY4eidrKplRPMNTYMVMcbB8jZhrz97l5v4_fcTvfq63Nybd_boR3nqUIFCiQVUi7q6z_1Ms63YXlXoVTIGEoO7AdXm0tY | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright State Higher Educational Institution "National Mining University" 2016 | 
    
| Copyright_xml | – notice: Copyright State Higher Educational Institution "National Mining University" 2016 | 
    
| DBID | 7TB 8BQ 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR BYOGL CCPQU D1I DWQXO FR3 GNUQQ HCIFZ JG9 KB. KR7 L6V M7S PATMY PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY  | 
    
| DatabaseName | Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection East Europe, Central Europe Database (Proquest) ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database Environmental Science Database ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE) Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection  | 
    
| DatabaseTitle | Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition East Europe, Central Europe Database Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection METADEX Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Materials Research Database Materials Research Database  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2223-2362 | 
    
| EndPage | 122 | 
    
| ExternalDocumentID | 4024444801 | 
    
| Genre | Feature | 
    
| GroupedDBID | 7TB 7XC 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG ACIWK AEUYN AFKRA AFRAH ALMA_UNASSIGNED_HOLDINGS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR BPHCQ BYOGL CCPQU D1I DWQXO FR3 GNUQQ HCIFZ JG9 KB. KR7 L6V LK5 M7R M7S PATMY PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PTHSS PYCSY PUEGO  | 
    
| ID | FETCH-LOGICAL-p131t-1a564cb6b73073a851cc60c57a598028bda10b1f16bc7db8c63cda958f4dc0143 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2071-2227 | 
    
| IngestDate | Thu Oct 02 07:12:16 EDT 2025 Sun Jul 13 04:40:13 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-p131t-1a564cb6b73073a851cc60c57a598028bda10b1f16bc7db8c63cda958f4dc0143 | 
    
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 1781331740 | 
    
| PQPubID | 1886336 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | proquest_miscellaneous_1808072677 proquest_journals_1781331740  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20160101 | 
    
| PublicationDateYYYYMMDD | 2016-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2016 text: 20160101 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Dnipropetrosk | 
    
| PublicationPlace_xml | – name: Dnipropetrosk | 
    
| PublicationTitle | Natsional'nyi Hirnychyi Universytet. Naukovyi Visnyk | 
    
| PublicationYear | 2016 | 
    
| Publisher | State Higher Educational Institution "National Mining University" | 
    
| Publisher_xml | – name: State Higher Educational Institution "National Mining University" | 
    
| SSID | ssj0002964476 | 
    
| Score | 1.9502124 | 
    
| Snippet | For the problem of hybrid estimation, this paper proposes the self-adaptive generic interacting multiple-model (IMM) data fusion algorithm for solving the... | 
    
| SourceID | proquest | 
    
| SourceType | Aggregation Database | 
    
| StartPage | 122 | 
    
| SubjectTerms | Algorithms Computer simulation Data fusion Data integration Equivalence Mathematical models Optimization Similarity  | 
    
| Title | A SELF-ADAPTIVE GENERIC IMM DATA FUSION ALGORITHM | 
    
| URI | https://www.proquest.com/docview/1781331740 https://www.proquest.com/docview/1808072677  | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: East Europe, Central Europe Database (Proquest) customDbUrl: eissn: 2223-2362 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002964476 issn: 2071-2227 databaseCode: BYOGL dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/eastcentraleurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2223-2362 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002964476 issn: 2071-2227 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2223-2362 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002964476 issn: 2071-2227 databaseCode: 8FG dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ7wuHgxGjWiSGridWOXdh8cjKlAoYYiwWK4kX1xLKjw_90tLR5MPO9mk33NfDuz830AD4EKKacuwxqEvn2gBAb1DMUIBxorX2guCyamdErHi_B1SZY1mFa1MO5bZWUTC0OtN8rFyB8x4_Y5ZfGz_7z9RE41ymVXKwkNUUor6KeCYqwOza5jxmpA82U4nc2PUReXZAwPinPWtyJXCPrHCBeeJT6D0xISetFhD8-hZvILwJH3PpzEKBpEsyz5GHrFH7Ok7yVp6g2iLPLihbODXjQZvc2TbJxewiIeZv0xKuUN0BYHeIewIDRUkkrm7pmw0Ecp6ivCBOlx6_alFtiXeI2pVExLrmigtOgRvg61crR8V9DIN7m5Bo9xIxz0IDJgISVKSuNTE4REaupz4begXc1xVZ7R79Xvirbg_thsT5dLGYjcbPa2j6OdZF3K2M3_Q9zCiYUSZXCiDY3d197cWXe9kx2o83jUKXfiBxCqkWo | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEG4QDnoxGjWiqDXR48Yt7bbLgZiVh6zsIsHFcMO-OAIKxPjn_G22yy4eTLxxbtOkmenMNzOd-QC4wZJQn9oKKyauCVCwdmqaIgdhhaTLlS_SSUxxj3aG5GnkjQrgO--Fsd8qc5uYGmo1kzZHfoeYb8Ipg5_d-_m7Y1mjbHU1p9DgGbWCqqcjxrLGjq7--jQh3KIeNo28b6vVditpdJyMZcCZI4yWDuIeJVJQway6c4NApKSu9Bj3ar7xvkJx5Ao0QVRIpoQvKZaK1zx_QpS00_HMuTugRDCpmeCv9NDq9QebLI8tapI1w53x5Y5tPP1j9FNP1j4A-xkEhcFaZw5BQU-PAArgSytqO0Ez6Cfhawumf9rCBgzjGDaDJIDtobW7MIgenwdh0omPwXArFz0Bxelsqk8BZL7mFup4AjNCPSmEdqnGxBOKuj53y6CS33GcvYnF-FeCZXC9WTbabEsUfKpnK7PHjrlkVcrY2f9HXIHdThJH4yjsdc_BnoExWWKkAorLj5W-MFBhKS4zeUDwtm0V-AH9gM2C | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+SELF-ADAPTIVE+GENERIC+IMM+DATA+FUSION+ALGORITHM&rft.jtitle=Natsional%27nyi+Hirnychyi+Universytet.+Naukovyi+Visnyk&rft.au=Yi%2C+Yingmin&rft.au=Chen%2C+Weiduo&rft.date=2016-01-01&rft.issn=2071-2227&rft.issue=1&rft.spage=122&rft.epage=122&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-2227&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-2227&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-2227&client=summon |