河南省冬小麦种植面积遥感监测及其时空特征研究

【目的】准确实现河南省冬小麦种植面积的遥感提取,并探索河南省冬小麦种植面积的变化过程。【方法】将遥感监测与统计数据结合,以多时相MODIS遥感影像作为数据源,分析制定了冬小麦信息的提取规则,利用统计数据辅助确定规则中的阈值选取,以减少阈值选取的主观性,提取出河南省2004—2013年冬小麦种植面积,并分析了河南省2004—2013年冬小麦种植面积的时空变化。【结果】遥感监测结果与各地市统计值具有较高的相关性(R2=0.938 5),在平原地区具有较高的精度,监测精度为89.5%,而在受到地形等因素影响的地区,冬小麦种植面积的分布相对破碎,监测精度具有较大误差,个别地区甚至不足50%。从空间上看...

Full description

Saved in:
Bibliographic Details
Published inGuanʻgai paishui xuebao Vol. 38; no. 9; pp. 49 - 54
Main Authors DENG Rongxin, WANG, wenjuan, Yichang, WEI, ZHANG, Fu, LI Chunjing, LIU, Wenyu
Format Journal Article
LanguageChinese
Published Xinxiang City Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage 01.09.2019
华北水利水电大学测绘与地理信息学院,郑州,450046%河南财经政法大学资源与环境学院,郑州,450046
Subjects
Online AccessGet full text
ISSN1672-3317
DOI10.13522/j.cnki.ggps.2019030

Cover

Abstract 【目的】准确实现河南省冬小麦种植面积的遥感提取,并探索河南省冬小麦种植面积的变化过程。【方法】将遥感监测与统计数据结合,以多时相MODIS遥感影像作为数据源,分析制定了冬小麦信息的提取规则,利用统计数据辅助确定规则中的阈值选取,以减少阈值选取的主观性,提取出河南省2004—2013年冬小麦种植面积,并分析了河南省2004—2013年冬小麦种植面积的时空变化。【结果】遥感监测结果与各地市统计值具有较高的相关性(R2=0.938 5),在平原地区具有较高的精度,监测精度为89.5%,而在受到地形等因素影响的地区,冬小麦种植面积的分布相对破碎,监测精度具有较大误差,个别地区甚至不足50%。从空间上看,河南省冬小麦种植面积的空间分布总体较为集中,主要分布在河南中东部的黄河平原和淮河平原地区和豫西南的南阳盆地地区。从时间上看,河南省冬小麦种植区域总体变化较小,种植年份较为稳定的区域主要分布于豫东平原地区,累积种植年数显著增加地区主要分布于南阳盆地地区,累积种植年数显著减少地区的分布较为分散,无明显的分布趋势。【结论】基于遥感和统计数据相结合的方法可准确监测平原区冬小麦种植面积,河南省冬小麦种植面积的时空变化均较为稳定,为保障我国粮食安全发挥着重要作用。
AbstractList 【目的】准确实现河南省冬小麦种植面积的遥感提取,并探索河南省冬小麦种植面积的变化过程。【方法】将遥感监测与统计数据结合,以多时相MODIS遥感影像作为数据源,分析制定了冬小麦信息的提取规则,利用统计数据辅助确定规则中的阈值选取,以减少阈值选取的主观性,提取出河南省2004—2013年冬小麦种植面积,并分析了河南省2004—2013年冬小麦种植面积的时空变化。【结果】遥感监测结果与各地市统计值具有较高的相关性(R2=0.938 5),在平原地区具有较高的精度,监测精度为89.5%,而在受到地形等因素影响的地区,冬小麦种植面积的分布相对破碎,监测精度具有较大误差,个别地区甚至不足50%。从空间上看,河南省冬小麦种植面积的空间分布总体较为集中,主要分布在河南中东部的黄河平原和淮河平原地区和豫西南的南阳盆地地区。从时间上看,河南省冬小麦种植区域总体变化较小,种植年份较为稳定的区域主要分布于豫东平原地区,累积种植年数显著增加地区主要分布于南阳盆地地区,累积种植年数显著减少地区的分布较为分散,无明显的分布趋势。【结论】基于遥感和统计数据相结合的方法可准确监测平原区冬小麦种植面积,河南省冬小麦种植面积的时空变化均较为稳定,为保障我国粮食安全发挥着重要作用。
S512.1; [目的]准确实现河南省冬小麦种植面积的遥感提取,并探索河南省冬小麦种植面积的变化过程.[方法]将遥感监测与统计数据结合,以多时相MODIS遥感影像作为数据源,分析制定了冬小麦信息的提取规则,利用统计数据辅助确定规则中的阈值选取,以减少阈值选取的主观性,提取出河南省2004—2013年冬小麦种植面积,并分析了河南省2004—2013年冬小麦种植面积的时空变化.[结果]遥感监测结果与各地市统计值具有较高的相关性(R2=0.9385),在平原地区具有较高的精度,监测精度为89.5%,而在受到地形等因素影响的地区,冬小麦种植面积的分布相对破碎,监测精度具有较大误差,个别地区甚至不足50%.从空间上看,河南省冬小麦种植面积的空间分布总体较为集中,主要分布在河南中东部的黄河平原和淮河平原地区和豫西南的南阳盆地地区.从时间上看,河南省冬小麦种植区域总体变化较小,种植年份较为稳定的区域主要分布于豫东平原地区,累积种植年数显著增加地区主要分布于南阳盆地地区,累积种植年数显著减少地区的分布较为分散,无明显的分布趋势.[结论]基于遥感和统计数据相结合的方法可准确监测平原区冬小麦种植面积,河南省冬小麦种植面积的时空变化均较为稳定,为保障我国粮食安全发挥着重要作用.
Author Yichang, WEI
ZHANG, Fu
LI Chunjing
LIU, Wenyu
DENG Rongxin
WANG, wenjuan
AuthorAffiliation 华北水利水电大学测绘与地理信息学院,郑州,450046%河南财经政法大学资源与环境学院,郑州,450046
AuthorAffiliation_xml – name: 华北水利水电大学测绘与地理信息学院,郑州,450046%河南财经政法大学资源与环境学院,郑州,450046
Author_FL WEI Yichang
LI Chunjing
LIU Wenyu
ZHANG Fu
WANG wenjuan
DENG Rongxin
Author_FL_xml – sequence: 1
  fullname: DENG Rongxin
– sequence: 2
  fullname: WANG wenjuan
– sequence: 3
  fullname: WEI Yichang
– sequence: 4
  fullname: ZHANG Fu
– sequence: 5
  fullname: LI Chunjing
– sequence: 6
  fullname: LIU Wenyu
Author_xml – sequence: 1
  fullname: DENG Rongxin
– sequence: 2
  givenname: wenjuan
  surname: WANG
  fullname: WANG, wenjuan
– sequence: 3
  givenname: WEI
  surname: Yichang
  fullname: Yichang, WEI
– sequence: 4
  givenname: Fu
  surname: ZHANG
  fullname: ZHANG, Fu
– sequence: 5
  fullname: LI Chunjing
– sequence: 6
  givenname: Wenyu
  surname: LIU
  fullname: LIU, Wenyu
BookMark eNpFj01LAlEUhu_CIDP_QbtoOdO55zhz7yxL-gKhTa1lnLkjWozmJK2FCjJEgsBFRRGVCEFRJOSifzNz8V9UGrR6Nw_vwzPHUmEtVIwtcDA5WYjLVdML9ypmuVyPTATuAEGKpbkt0CDiYpZlo6hSAkC0cyQhzVaTt_e409PXrfj0OX7tjkdPut9JHjrjm3vdfxm3HpPjW311kXycx912fDJMekM9GOmzz_irpe8u9WA4z2YCdz9S2b_NsN31tZ38plHY3tjKrxSMOkcpDQWcB9LL-QI8bnHhWb4SAdmcC-kGLldKgXR9hVgisNCxle2QkjKQvnAIJGXY0vT3yA0DNywXq7VmI_wxFn9zJ7UOTLjFKVdv1A6aKjr8BwkciSQJkb4B2BdxkA
ClassificationCodes S512.1
ContentType Journal Article
Copyright Copyright Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage 2019
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage 2019
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 3V.
7X2
7XB
8FE
8FH
8FK
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M0K
M2O
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13522/j.cnki.ggps.2019030
DatabaseName ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Agricultural Science Database
Research Library
Research Library (Corporate)
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle Agricultural Science Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Agricultural Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Agricultural Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
DocumentTitle_FL Remote Estimation of Winter Wheat Area and Its Spatio-temporal Characteristics in Henan Province
EndPage 54
ExternalDocumentID ggps201909008
GrantInformation_xml – fundername: 河南省科技攻关计划项目
  funderid: (192102110122)
GroupedDBID 3V.
5XA
5XE
7X2
7XB
8FE
8FH
8FK
92G
92I
ABJNI
ACGFS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
CW9
DWQXO
GNUQQ
GUQSH
HCIFZ
M0K
M2O
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
TGD
U1G
U5N
2B.
4A8
93N
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-p1288-e011f8c4d70c1517c5de7f361178afa1eee08ade22b305296e693e88f8d793083
IEDL.DBID BENPR
ISSN 1672-3317
IngestDate Thu May 29 04:05:16 EDT 2025
Thu Sep 18 00:24:23 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords 信息提取
遥感
冬小麦面积
时空分布
Language Chinese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p1288-e011f8c4d70c1517c5de7f361178afa1eee08ade22b305296e693e88f8d793083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3098238322
PQPubID 6843760
PageCount 6
ParticipantIDs wanfang_journals_ggps201909008
proquest_journals_3098238322
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Xinxiang City
PublicationPlace_xml – name: Xinxiang City
PublicationTitle Guanʻgai paishui xuebao
PublicationTitle_FL Journal of Irrigation and Drainage
PublicationYear 2019
Publisher Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage
华北水利水电大学测绘与地理信息学院,郑州,450046%河南财经政法大学资源与环境学院,郑州,450046
Publisher_xml – name: Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage
– name: 华北水利水电大学测绘与地理信息学院,郑州,450046%河南财经政法大学资源与环境学院,郑州,450046
SSID ssib002264380
ssib001101356
ssib051374040
ssib046786310
ssj0002507593
ssib006567438
Score 2.2278435
Snippet 【目的】准确实现河南省冬小麦种植面积的遥感提取,并探索河南省冬小麦种植面积的变化过程。【方法】将遥感监测与统计数据结合,以多时相MODIS遥感影像作为数据源,分析制定了...
S512.1; [目的]准确实现河南省冬小麦种植面积的遥感提取,并探索河南省冬小麦种植面积的变化过程.[方法]将遥感监测与统计数据结合,以多时相MODIS遥感影像作为数据源,分析制...
SourceID wanfang
proquest
SourceType Aggregation Database
StartPage 49
SubjectTerms Food availability
Food security
Remote sensing
Rivers
Spatial distribution
Spatiotemporal data
Statistics
Temporal distribution
Temporal variations
Triticum aestivum
Wheat
Winter wheat
Title 河南省冬小麦种植面积遥感监测及其时空特征研究
URI https://www.proquest.com/docview/3098238322
https://d.wanfangdata.com.cn/periodical/ggps201909008
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  issn: 1672-3317
  databaseCode: BENPR
  dateStart: 20170101
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: true
  ssIdentifier: ssj0002507593
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3PSxtBFMcHjRS8SGtb1GrIwevo7s7s7ORQSlMSQsEgouBNNvMjtsIafyF4C7SFtoQgFHJoxSJqCBQqlgbqof_N7pL_om-STaMXz7t7efPmvc_svPd9CM3bNpx8HC4wZ5xhKrWPs5ZQmLqCMotIR0jT4LxUYsU1-nrdXR9BpUEvjCmrHMTEXqCW28L8I18kVpZDegH_e1HdwWZqlLldHYzQ8JPRCvJ5T2JsFI05RhkrhcZy-dLyyhAQwAPJHYEwZiTXhx7omqL8_x4JUYSzWwDk2sSjVqKOYmI9AITXV_a1medgAtk46c8zYLP4dkEEW28WKpWqUQaH3EusOyT74NAPtB9UbqW0wkM0kbBo5mXfeR6hkaPNSTRu8LOv3vwY5aLrX2G9GX-rhR9-hFeN7s1l3KpH5_XuyVnc-tmtXUTvTuOvx9Hvz2HjU_i-EzU7cfsm_vgn_FuLv3-J250naK2QX31VxMnUBVyFXMWxAiNpLqj0LAE44AlXKk8TBqvKfe3bSimL-1I5TpmYa0KmWJYozjWXsNeB6J6iVLAdqCmU0Y6iVGkipKcp0cI36noCoIN6llO22TSaHdhiI9k6exvDhZ5G6cQ-w6fGlD1LZgFeZu7__hkaN6_2K8JmUWp_90DNAULsl9OJX_wD43XSWw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NaxQxGA61Reyl-InVWvegx7QzSSaTORSx2rK17SLSQm_rbD7WD5iutqW0twUVVJYiCD2oKKKWgqAoLthD_83MsP_CN7vZbnvx1vOQgbzz5H2eTPI-L0LXfB92PkRILLjgmCkT48iTGrNAMu5RRaSyBc7zJV5cZHeWgqU-tN-thbHXKrs5sZ2o1bK0_8jHqRcJoBfA343aE2y7RtnT1W4Ljdi1VlATbYsxV9gxqzfWYQu3MjFzG773dUKmpxZuFbHrMoBrkJsF1oBwIyRToSeB_kIZKB0aymEWIjaxr7X2RKw0IRVqj8W45hHVQhihANugYOC9J9AAoyyCzd_A5FTp7r2eIAHE0yOGZNxavPcQH9gigIMVAFlL8EOCK_BpyDznxmK5BQRL2HES9nlIMAX2d_WAVkiNPxqTyeOHY9VqzTqRA9dT74hyPrkeJyZOqocodPo0GnLat3CzA9YzqG_zwVk0aOVuxy36HJrMfv1OG9v5-3r64nv6c6u19y3faWRfGq0Pn_OdH6361-zZx_zdm-zP63TrVfq8mW038929_OXfdL-ef3qb7zbPo8Vjif8F1J8sJ_oiKhiiGdOGShUaRo2MrZufBJHDQo9UfD6MRrqxKLululLuAWsYjbr49J7aULYjGYFYuvT_8VfRqeLC_Fx5bqY0exkN2mGd22gjqH_16Zq-AvJltTLqMFJA948blv8AcFEOgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%B2%B3%E5%8D%97%E7%9C%81%E5%86%AC%E5%B0%8F%E9%BA%A6%E7%A7%8D%E6%A4%8D%E9%9D%A2%E7%A7%AF%E9%81%A5%E6%84%9F%E7%9B%91%E6%B5%8B%E5%8F%8A%E5%85%B6%E6%97%B6%E7%A9%BA%E7%89%B9%E5%BE%81%E7%A0%94%E7%A9%B6&rft.jtitle=%E7%81%8C%E6%BA%89%E6%8E%92%E6%B0%B4%E5%AD%A6%E6%8A%A5&rft.au=%E9%82%93%E8%8D%A3%E9%91%AB&rft.au=%E7%8E%8B%E6%96%87%E5%A8%9F&rft.au=%E9%AD%8F%E4%B9%89%E9%95%BF&rft.au=%E5%BC%A0%E5%AF%8C&rft.date=2019-09-01&rft.pub=%E5%8D%8E%E5%8C%97%E6%B0%B4%E5%88%A9%E6%B0%B4%E7%94%B5%E5%A4%A7%E5%AD%A6%E6%B5%8B%E7%BB%98%E4%B8%8E%E5%9C%B0%E7%90%86%E4%BF%A1%E6%81%AF%E5%AD%A6%E9%99%A2%2C%E9%83%91%E5%B7%9E%2C450046%25%E6%B2%B3%E5%8D%97%E8%B4%A2%E7%BB%8F%E6%94%BF%E6%B3%95%E5%A4%A7%E5%AD%A6%E8%B5%84%E6%BA%90%E4%B8%8E%E7%8E%AF%E5%A2%83%E5%AD%A6%E9%99%A2%2C%E9%83%91%E5%B7%9E%2C450046&rft.issn=1672-3317&rft.volume=38&rft.issue=9&rft.spage=49&rft.epage=54&rft_id=info:doi/10.13522%2Fj.cnki.ggps.2019030&rft.externalDocID=ggps201909008
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fggps%2Fggps.jpg