基于PPR和NSGA-Ⅱ的泵前微压过滤器 水力与过滤性能研究
【目的】探究泵前微压过滤器的性能。【方法】开展5组流量(2~8 m3/h)、5组含沙量(0.5~2.0 g/L)、3组滤网过滤面积(1 105、1 582、2 060 cm2)和4组分水器型式(不加、1型、2型、3型)的物理模型试验,采用投影寻踪回归分析法(PPR)、多目标遗传算法(NSGA-Ⅱ),建立水头损失、截沙质量和总过滤效率的预测模型,探究各指标的影响因素排序,确定泵前微压过滤器的最佳运行工况。【结果】影响泵前微压过滤器水头损失的因素排序为进水流量?含沙量?滤网过滤面积;影响截沙质量的因素排序为含沙量?滤网过滤面积?进水流量;影响总过滤效率的因素排序为滤网过滤面积?含沙量?进水流量;以...
Saved in:
Published in | Guanʻgai paishui xuebao Vol. 43; no. 5; pp. 30 - 78 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
Xinxiang City
Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage
01.05.2024
新疆水利工程安全与水灾害防治重点实验室,乌鲁木齐 830052%新疆水利水电科学研究院,乌鲁木齐 830049 新疆农业大学 水利与土木工程学院,乌鲁木齐 830052 |
Subjects | |
Online Access | Get full text |
ISSN | 1672-3317 |
DOI | 10.13522/j.cnki.ggps.2023480 |
Cover
Abstract | 【目的】探究泵前微压过滤器的性能。【方法】开展5组流量(2~8 m3/h)、5组含沙量(0.5~2.0 g/L)、3组滤网过滤面积(1 105、1 582、2 060 cm2)和4组分水器型式(不加、1型、2型、3型)的物理模型试验,采用投影寻踪回归分析法(PPR)、多目标遗传算法(NSGA-Ⅱ),建立水头损失、截沙质量和总过滤效率的预测模型,探究各指标的影响因素排序,确定泵前微压过滤器的最佳运行工况。【结果】影响泵前微压过滤器水头损失的因素排序为进水流量?含沙量?滤网过滤面积;影响截沙质量的因素排序为含沙量?滤网过滤面积?进水流量;影响总过滤效率的因素排序为滤网过滤面积?含沙量?进水流量;以相对误差≤10%作为判定标准,建立的截沙质量和总过滤效率PPR预测模型合格率为100%,模型精度较高,但水头损失PPR预测模型合格率仅为70%,模型不可靠。本试验范围下泵前微压过滤器的最佳运行工况为:含沙量2 g/L、进水流量7 m3/h、滤网过滤面积2 060 cm2。【结论】PPR预测模型对截沙质量和总过滤效率的预测精度较高,对水头损失的预测误差较大,在后期可用量纲分析与多元回归相结合预测水头损失、截沙质量和总过滤效率。 |
---|---|
AbstractList | S275.6; [目的]探究泵前微压过滤器的性能.[方法]开展 5组流量(2~8 m3/h)、5组含沙量(0.5~2.0 g/L)、3组滤网过滤面积(1 105、1 582、2 060 cm2)和 4组分水器型式(不加、1型、2型、3型)的物理模型试验,采用投影寻踪回归分析法(PPR)、多目标遗传算法(NSGA-Ⅱ),建立水头损失、截沙质量和总过滤效率的预测模型,探究各指标的影响因素排序,确定泵前微压过滤器的最佳运行工况.[结果]影响泵前微压过滤器水头损失的因素排序为进水流量?含沙量?滤网过滤面积;影响截沙质量的因素排序为含沙量?滤网过滤面积?进水流量;影响总过滤效率的因素排序为滤网过滤面积?含沙量?进水流量;以相对误差≤10%作为判定标准,建立的截沙质量和总过滤效率PPR预测模型合格率为 100%,模型精度较高,但水头损失PPR预测模型合格率仅为 70%,模型不可靠.本试验范围下泵前微压过滤器的最佳运行工况为:含沙量 2 g/L、进水流量 7 m3/h、滤网过滤面积 2 060 cm2.[结论]PPR预测模型对截沙质量和总过滤效率的预测精度较高,对水头损失的预测误差较大,在后期可用量纲分析与多元回归相结合预测水头损失、截沙质量和总过滤效率. 【目的】探究泵前微压过滤器的性能。【方法】开展5组流量(2~8 m3/h)、5组含沙量(0.5~2.0 g/L)、3组滤网过滤面积(1 105、1 582、2 060 cm2)和4组分水器型式(不加、1型、2型、3型)的物理模型试验,采用投影寻踪回归分析法(PPR)、多目标遗传算法(NSGA-Ⅱ),建立水头损失、截沙质量和总过滤效率的预测模型,探究各指标的影响因素排序,确定泵前微压过滤器的最佳运行工况。【结果】影响泵前微压过滤器水头损失的因素排序为进水流量?含沙量?滤网过滤面积;影响截沙质量的因素排序为含沙量?滤网过滤面积?进水流量;影响总过滤效率的因素排序为滤网过滤面积?含沙量?进水流量;以相对误差≤10%作为判定标准,建立的截沙质量和总过滤效率PPR预测模型合格率为100%,模型精度较高,但水头损失PPR预测模型合格率仅为70%,模型不可靠。本试验范围下泵前微压过滤器的最佳运行工况为:含沙量2 g/L、进水流量7 m3/h、滤网过滤面积2 060 cm2。【结论】PPR预测模型对截沙质量和总过滤效率的预测精度较高,对水头损失的预测误差较大,在后期可用量纲分析与多元回归相结合预测水头损失、截沙质量和总过滤效率。 |
Abstract_FL | [Objective]Pump often has a filter installed in the front of it to filter sediments and debris.This paper studied its efficiency and performance.[Method]The study was based on physical model,with flow rate being 2-8 m3/h,sediment content being 0.5-2.0 g/L.The area of the filter varied from 1 105 to 2 060 cm2,and water separator type was Type 1,Type 2,Type 3.Without a separator was the control.A prediction model was used to evaluate sediment interception and total filtration efficiency.Based on these measurements,we determined the optimal operating conditions for the pump.[Result]The factors that influenced water head loss across the filter were ranked in the order of inlet flow>sediment content>filter area;the factors that affected the quality of sediment interception were ranked in the order of sediment content>filter area>inlet flow;the factors impacting the total filtration efficiency were ranked in the order of filter area>sediment content>inlet flow.The accuracy of the PPR model for predicting sediment interception quality and total filtration efficiency was 100%,with a relative error less than 10%,while its accuracy for predicting water head loss across the filter was 70%,which needs further improvement.The optimal operating conditions for the filter were sand content 2 g/L,inlet water flow rate 7 m3/h,and filter area 2 060 cm2.[Conclusion]The PPR prediction model was accurate for sediment interception and total filtration efficiency,but it resulted in errors for calculating water head loss across the filter.Dimensional analysis and multiple regression can be used as an alternative to predict the water head loss. |
Author | LI, Qi ZHOU, Yang TAO Hongfei LI, Qiao Mahemujiang·Aihemaiti JIANG Youwei |
AuthorAffiliation | 新疆农业大学 水利与土木工程学院,乌鲁木齐 830052;新疆水利工程安全与水灾害防治重点实验室,乌鲁木齐 830052%新疆水利水电科学研究院,乌鲁木齐 830049 |
AuthorAffiliation_xml | – name: 新疆农业大学 水利与土木工程学院,乌鲁木齐 830052;新疆水利工程安全与水灾害防治重点实验室,乌鲁木齐 830052%新疆水利水电科学研究院,乌鲁木齐 830049 |
Author_FL | TAO Hongfei Mahemujiang·Aihemaiti LI Qi JIANG Youwei ZHOU Yang LI Qiao |
Author_FL_xml | – sequence: 1 fullname: TAO Hongfei – sequence: 2 fullname: LI Qi – sequence: 3 fullname: ZHOU Yang – sequence: 4 fullname: Mahemujiang·Aihemaiti – sequence: 5 fullname: LI Qiao – sequence: 6 fullname: JIANG Youwei |
Author_xml | – sequence: 1 fullname: TAO Hongfei – sequence: 2 givenname: Qi surname: LI fullname: LI, Qi – sequence: 3 givenname: Yang surname: ZHOU fullname: ZHOU, Yang – sequence: 4 fullname: Mahemujiang·Aihemaiti – sequence: 5 givenname: Qiao surname: LI fullname: LI, Qiao – sequence: 6 fullname: JIANG Youwei |
BookMark | eNpFj01LAkEcxudgkJnfoEMQHXeb-c_OzuxRpDSQkl7OMrPNiharuUnXoCJ68xBdqkMFQXWJoBfCqL5LOKsfI8Og0wMPP56H3whKhLVQIzRGsE0oA5iq2n64WrHL5XpkAwbqCJxASeJysCglfBilo6iiMAZwHSpwEuXNZbvTbhWLC-bkaG4xl7G-d6-75zvx04vZPzafD6Z12Pvai99vzNndePz4bA4uOm-tQRVv3fa2P7pXp93711E0FMi1SKf_MoWWZ6aXsnmrMJ-bzWYKVp2AcC3pK9C-kJy7egWICDQlmivhCeJ5TPlScd-VkipFsGCeCjRIzDyfORAoxjBNocnB7qYMAxmWS9VasxH2H0u_0n1nBzOM3T43MeDqjdp6U0cb_yDFngDCgBP6A1ozcvw |
ClassificationCodes | S275.6 |
ContentType | Journal Article |
Copyright | 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 3V. 7X2 7XB 8FE 8FH 8FK AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH HCIFZ M0K M2O MBDVC PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.13522/j.cnki.ggps.2023480 |
DatabaseName | ProQuest Central (Corporate) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central UK/Ireland Agricultural & Environmental Science Database ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Agriculture Science Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | Agricultural Science Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition Agricultural Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest SciTech Collection ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Efficiency and hydraulic performance of the micro-pressure filter in front of the pump studied using PPR and NSGA-II |
EndPage | 78 |
ExternalDocumentID | ggps202405006 |
GrantInformation_xml | – fundername: 国家自然科学基金 funderid: (52369013) |
GroupedDBID | 3V. 5XA 5XE 7X2 7XB 8FE 8FH 8FK ABJNI ACGFS AFKRA ALMA_UNASSIGNED_HOLDINGS ATCPS AZQEC BENPR BHPHI CCPQU CW9 DWQXO GNUQQ GROUPED_DOAJ GUQSH HCIFZ M0K M2O MBDVC PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U TGD U1G U5N 2B. 4A8 92G 92I 93N PSX TCJ |
ID | FETCH-LOGICAL-p1286-acb2ec8a776ed218fe31e7b8981995bcab7c6aa3bb10859bfe2a059c542fb5503 |
IEDL.DBID | BENPR |
ISSN | 1672-3317 |
IngestDate | Thu May 29 03:56:07 EDT 2025 Thu Sep 18 00:24:29 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Keywords | filter 过滤器 过滤性能 模型 filtration performance 水头损失 head loss hydraulic performance model 水力性能 |
Language | Chinese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p1286-acb2ec8a776ed218fe31e7b8981995bcab7c6aa3bb10859bfe2a059c542fb5503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3098215271 |
PQPubID | 6843760 |
PageCount | 49 |
ParticipantIDs | wanfang_journals_ggps202405006 proquest_journals_3098215271 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Xinxiang City |
PublicationPlace_xml | – name: Xinxiang City |
PublicationTitle | Guanʻgai paishui xuebao |
PublicationTitle_FL | Journal of Irrigation and Drainage |
PublicationYear | 2024 |
Publisher | Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage 新疆水利工程安全与水灾害防治重点实验室,乌鲁木齐 830052%新疆水利水电科学研究院,乌鲁木齐 830049 新疆农业大学 水利与土木工程学院,乌鲁木齐 830052 |
Publisher_xml | – name: Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage – name: 新疆水利工程安全与水灾害防治重点实验室,乌鲁木齐 830052%新疆水利水电科学研究院,乌鲁木齐 830049 – name: 新疆农业大学 水利与土木工程学院,乌鲁木齐 830052 |
SSID | ssib002264380 ssib001101356 ssib051374040 ssib046786310 ssj0002507593 ssib006567438 |
Score | 2.392384 |
Snippet | 【目的】探究泵前微压过滤器的性能。【方法】开展5组流量(2~8 m3/h)、5组含沙量(0.5~2.0 g/L)、3组滤网过滤面积(1 105、1 582、2 060 cm2)和4组分水器型式(不加、1型、2型、3... S275.6; [目的]探究泵前微压过滤器的性能.[方法]开展 5组流量(2~8 m3/h)、5组含沙量(0.5~2.0 g/L)、3组滤网过滤面积(1 105、1 582、2 060 cm2)和 4组分水器型式(不加、1型、2... |
SourceID | wanfang proquest |
SourceType | Aggregation Database |
StartPage | 30 |
SubjectTerms | Dimensional analysis Efficiency Filtration Flow rates Flow velocity Head (fluid mechanics) Inlet flow Interception Prediction models Predictions Pressure filters Pressure loss Regression models Sediments Separators Water flow Water purification |
Title | 基于PPR和NSGA-Ⅱ的泵前微压过滤器 水力与过滤性能研究 |
URI | https://www.proquest.com/docview/3098215271 https://d.wanfangdata.com.cn/periodical/ggps202405006 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1672-3317 databaseCode: DOA dateStart: 20220101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0002507593 providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central issn: 1672-3317 databaseCode: BENPR dateStart: 20170101 customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.proquest.com/central omitProxy: true ssIdentifier: ssj0002507593 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQMTcwTTU0SkrWNU1JBY1WmZjoJhoaJOqCjoYzNE0zM00BL6Lx9TPzCDXxijCNYGLwg-2FAS2rhJWJ4II6JT8ZNEaub2xgaQG-g9XQvqBQF3RrFGh2FXaFRiL0aoUUW_ARY8wMrEagW5VZGFidXP0CghANBGAKNEY5IMwMdOQ6IgWaghblw1MksBSxMENqAJkaGpubGEBPRwGV9cAGhDnkZF9DM3MjXWNgbQzdnwdq2Ohn6SXnZWfqpacXgE4GNzI2sTBAacmylyfmpSXmpSNVaW6CDPzQtqiCIyTxCDEwVWWIMHg8nb_rya6-gICgp5N6_ILdHXUftS58Pqvl2eatTzt7n-5b97Sv-8X-9me7lzyduULh2YYtT7tmP9nRBxF61rD8RfPe5wumPF-5TZQh1M01xNlDF3rdgm4BsJIy001MTjJKTbZINDc3S00B1vxpqcaGqeZJFpYWoG3cScmJSebJZomJxklJoB0LlklpqUaJwMZZsqmJUVoSsKNjLMbAkpeflyrBoGCUaJhimJRiYZIE6t-YpVoaJFmmgc_qNwa2CNOMJBlkYIEQD80zxfGIGJZkkIMGDEIWFIZGoAPZTIGxJIVfvzQDF0gpZF2iDANLSVFpqiyw7VCSJAdNEHLgvjcAGmrPbA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQMTcwTTU0SkrWNU1JBY1WmZjoJhoaJOqCjoYzNE0zM00BL6Lx9TPzCDXxijCNYGLYB9sLA1pWCSsTwQV1Sn4yaIxc39jA0gJ8B6uhfUGhLujWKNDsKuwKjUTo1QoptuAjxqAbO7xTK8uBXbhiW08XYHyrGhm5uYY4e-hCbxnQLQCWzWa6iclJRqnJFonm5mapKcAKLy3V2DDVPMnC0gK0ezkpOTHJPNksMdE4KQm0UN8yKS3VKBHYJkk2NTFKSwK2742B5jIzsAKbHcbAXMXq5OoXEIRokABTvDHKgWRmoCPeESneFLQJAJ4DgKWWhRlSg8vU0NjcxAB6GguobgE2WMwhJwkbmpkb6RoDa3_ofkBQQ0o_Sy85LztTLz29AHQSuZGxiYUBSsuZvTwxLy0xLx2pCnUTZOCHtn0VHCGJVYiBqSpDhMHj6fxdT3b1BQQEPZ3U4xfs7qj7qHXh81ktzzZvfdrZ-3Tfuqd93S_2tz_bveTpzBUKzzZsedo1-8mOPojQs4blL5r3Pl8w5fnKbaIMoTQJeDEGlrz8vFQJBgWjRMMUw6QUC5MkUH_KLNXSIMkyDXw3gDGwBZpmJMkgAwuEeGgeLY5HpChJBjlowCBkQWFoBDoAzhQYS1L49cszcHqE-PrE-3j6eUszcIG0QdZEyjCwlBSVpsoC2y0lSXLQxKHAkEDr9AgAd8MMUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EPPR%E5%92%8CNSGA-%E2%85%A1%E7%9A%84%E6%B3%B5%E5%89%8D%E5%BE%AE%E5%8E%8B%E8%BF%87%E6%BB%A4%E5%99%A8%E6%B0%B4%E5%8A%9B%E4%B8%8E%E8%BF%87%E6%BB%A4%E6%80%A7%E8%83%BD%E7%A0%94%E7%A9%B6&rft.jtitle=%E7%81%8C%E6%BA%89%E6%8E%92%E6%B0%B4%E5%AD%A6%E6%8A%A5&rft.au=%E9%99%B6%E6%B4%AA%E9%A3%9E&rft.au=%E6%9D%8E%E7%90%A6&rft.au=%E5%91%A8%E6%B4%8B&rft.au=%E9%A9%AC%E5%90%88%E6%9C%A8%E6%B1%9F%C2%B7%E8%89%BE%E5%90%88%E4%B9%B0%E6%8F%90&rft.date=2024-05-01&rft.pub=%E6%96%B0%E7%96%86%E6%B0%B4%E5%88%A9%E5%B7%A5%E7%A8%8B%E5%AE%89%E5%85%A8%E4%B8%8E%E6%B0%B4%E7%81%BE%E5%AE%B3%E9%98%B2%E6%B2%BB%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E4%B9%8C%E9%B2%81%E6%9C%A8%E9%BD%90+830052%25%E6%96%B0%E7%96%86%E6%B0%B4%E5%88%A9%E6%B0%B4%E7%94%B5%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E4%B9%8C%E9%B2%81%E6%9C%A8%E9%BD%90+830049&rft.issn=1672-3317&rft.volume=43&rft.issue=5&rft.spage=30&rft.epage=78&rft_id=info:doi/10.13522%2Fj.cnki.ggps.2023480&rft.externalDocID=ggps202405006 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fggps%2Fggps.jpg |