基于PPR和NSGA-Ⅱ的泵前微压过滤器 水力与过滤性能研究

【目的】探究泵前微压过滤器的性能。【方法】开展5组流量(2~8 m3/h)、5组含沙量(0.5~2.0 g/L)、3组滤网过滤面积(1 105、1 582、2 060 cm2)和4组分水器型式(不加、1型、2型、3型)的物理模型试验,采用投影寻踪回归分析法(PPR)、多目标遗传算法(NSGA-Ⅱ),建立水头损失、截沙质量和总过滤效率的预测模型,探究各指标的影响因素排序,确定泵前微压过滤器的最佳运行工况。【结果】影响泵前微压过滤器水头损失的因素排序为进水流量?含沙量?滤网过滤面积;影响截沙质量的因素排序为含沙量?滤网过滤面积?进水流量;影响总过滤效率的因素排序为滤网过滤面积?含沙量?进水流量;以...

Full description

Saved in:
Bibliographic Details
Published inGuanʻgai paishui xuebao Vol. 43; no. 5; pp. 30 - 78
Main Authors TAO Hongfei, LI, Qi, ZHOU, Yang, Mahemujiang·Aihemaiti, LI, Qiao, JIANG Youwei
Format Journal Article
LanguageChinese
Published Xinxiang City Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage 01.05.2024
新疆水利工程安全与水灾害防治重点实验室,乌鲁木齐 830052%新疆水利水电科学研究院,乌鲁木齐 830049
新疆农业大学 水利与土木工程学院,乌鲁木齐 830052
Subjects
Online AccessGet full text
ISSN1672-3317
DOI10.13522/j.cnki.ggps.2023480

Cover

Abstract 【目的】探究泵前微压过滤器的性能。【方法】开展5组流量(2~8 m3/h)、5组含沙量(0.5~2.0 g/L)、3组滤网过滤面积(1 105、1 582、2 060 cm2)和4组分水器型式(不加、1型、2型、3型)的物理模型试验,采用投影寻踪回归分析法(PPR)、多目标遗传算法(NSGA-Ⅱ),建立水头损失、截沙质量和总过滤效率的预测模型,探究各指标的影响因素排序,确定泵前微压过滤器的最佳运行工况。【结果】影响泵前微压过滤器水头损失的因素排序为进水流量?含沙量?滤网过滤面积;影响截沙质量的因素排序为含沙量?滤网过滤面积?进水流量;影响总过滤效率的因素排序为滤网过滤面积?含沙量?进水流量;以相对误差≤10%作为判定标准,建立的截沙质量和总过滤效率PPR预测模型合格率为100%,模型精度较高,但水头损失PPR预测模型合格率仅为70%,模型不可靠。本试验范围下泵前微压过滤器的最佳运行工况为:含沙量2 g/L、进水流量7 m3/h、滤网过滤面积2 060 cm2。【结论】PPR预测模型对截沙质量和总过滤效率的预测精度较高,对水头损失的预测误差较大,在后期可用量纲分析与多元回归相结合预测水头损失、截沙质量和总过滤效率。
AbstractList S275.6; [目的]探究泵前微压过滤器的性能.[方法]开展 5组流量(2~8 m3/h)、5组含沙量(0.5~2.0 g/L)、3组滤网过滤面积(1 105、1 582、2 060 cm2)和 4组分水器型式(不加、1型、2型、3型)的物理模型试验,采用投影寻踪回归分析法(PPR)、多目标遗传算法(NSGA-Ⅱ),建立水头损失、截沙质量和总过滤效率的预测模型,探究各指标的影响因素排序,确定泵前微压过滤器的最佳运行工况.[结果]影响泵前微压过滤器水头损失的因素排序为进水流量?含沙量?滤网过滤面积;影响截沙质量的因素排序为含沙量?滤网过滤面积?进水流量;影响总过滤效率的因素排序为滤网过滤面积?含沙量?进水流量;以相对误差≤10%作为判定标准,建立的截沙质量和总过滤效率PPR预测模型合格率为 100%,模型精度较高,但水头损失PPR预测模型合格率仅为 70%,模型不可靠.本试验范围下泵前微压过滤器的最佳运行工况为:含沙量 2 g/L、进水流量 7 m3/h、滤网过滤面积 2 060 cm2.[结论]PPR预测模型对截沙质量和总过滤效率的预测精度较高,对水头损失的预测误差较大,在后期可用量纲分析与多元回归相结合预测水头损失、截沙质量和总过滤效率.
【目的】探究泵前微压过滤器的性能。【方法】开展5组流量(2~8 m3/h)、5组含沙量(0.5~2.0 g/L)、3组滤网过滤面积(1 105、1 582、2 060 cm2)和4组分水器型式(不加、1型、2型、3型)的物理模型试验,采用投影寻踪回归分析法(PPR)、多目标遗传算法(NSGA-Ⅱ),建立水头损失、截沙质量和总过滤效率的预测模型,探究各指标的影响因素排序,确定泵前微压过滤器的最佳运行工况。【结果】影响泵前微压过滤器水头损失的因素排序为进水流量?含沙量?滤网过滤面积;影响截沙质量的因素排序为含沙量?滤网过滤面积?进水流量;影响总过滤效率的因素排序为滤网过滤面积?含沙量?进水流量;以相对误差≤10%作为判定标准,建立的截沙质量和总过滤效率PPR预测模型合格率为100%,模型精度较高,但水头损失PPR预测模型合格率仅为70%,模型不可靠。本试验范围下泵前微压过滤器的最佳运行工况为:含沙量2 g/L、进水流量7 m3/h、滤网过滤面积2 060 cm2。【结论】PPR预测模型对截沙质量和总过滤效率的预测精度较高,对水头损失的预测误差较大,在后期可用量纲分析与多元回归相结合预测水头损失、截沙质量和总过滤效率。
Abstract_FL [Objective]Pump often has a filter installed in the front of it to filter sediments and debris.This paper studied its efficiency and performance.[Method]The study was based on physical model,with flow rate being 2-8 m3/h,sediment content being 0.5-2.0 g/L.The area of the filter varied from 1 105 to 2 060 cm2,and water separator type was Type 1,Type 2,Type 3.Without a separator was the control.A prediction model was used to evaluate sediment interception and total filtration efficiency.Based on these measurements,we determined the optimal operating conditions for the pump.[Result]The factors that influenced water head loss across the filter were ranked in the order of inlet flow>sediment content>filter area;the factors that affected the quality of sediment interception were ranked in the order of sediment content>filter area>inlet flow;the factors impacting the total filtration efficiency were ranked in the order of filter area>sediment content>inlet flow.The accuracy of the PPR model for predicting sediment interception quality and total filtration efficiency was 100%,with a relative error less than 10%,while its accuracy for predicting water head loss across the filter was 70%,which needs further improvement.The optimal operating conditions for the filter were sand content 2 g/L,inlet water flow rate 7 m3/h,and filter area 2 060 cm2.[Conclusion]The PPR prediction model was accurate for sediment interception and total filtration efficiency,but it resulted in errors for calculating water head loss across the filter.Dimensional analysis and multiple regression can be used as an alternative to predict the water head loss.
Author LI, Qi
ZHOU, Yang
TAO Hongfei
LI, Qiao
Mahemujiang·Aihemaiti
JIANG Youwei
AuthorAffiliation 新疆农业大学 水利与土木工程学院,乌鲁木齐 830052;新疆水利工程安全与水灾害防治重点实验室,乌鲁木齐 830052%新疆水利水电科学研究院,乌鲁木齐 830049
AuthorAffiliation_xml – name: 新疆农业大学 水利与土木工程学院,乌鲁木齐 830052;新疆水利工程安全与水灾害防治重点实验室,乌鲁木齐 830052%新疆水利水电科学研究院,乌鲁木齐 830049
Author_FL TAO Hongfei
Mahemujiang·Aihemaiti
LI Qi
JIANG Youwei
ZHOU Yang
LI Qiao
Author_FL_xml – sequence: 1
  fullname: TAO Hongfei
– sequence: 2
  fullname: LI Qi
– sequence: 3
  fullname: ZHOU Yang
– sequence: 4
  fullname: Mahemujiang·Aihemaiti
– sequence: 5
  fullname: LI Qiao
– sequence: 6
  fullname: JIANG Youwei
Author_xml – sequence: 1
  fullname: TAO Hongfei
– sequence: 2
  givenname: Qi
  surname: LI
  fullname: LI, Qi
– sequence: 3
  givenname: Yang
  surname: ZHOU
  fullname: ZHOU, Yang
– sequence: 4
  fullname: Mahemujiang·Aihemaiti
– sequence: 5
  givenname: Qiao
  surname: LI
  fullname: LI, Qiao
– sequence: 6
  fullname: JIANG Youwei
BookMark eNpFj01LAkEcxudgkJnfoEMQHXeb-c_OzuxRpDSQkl7OMrPNiharuUnXoCJ68xBdqkMFQXWJoBfCqL5LOKsfI8Og0wMPP56H3whKhLVQIzRGsE0oA5iq2n64WrHL5XpkAwbqCJxASeJysCglfBilo6iiMAZwHSpwEuXNZbvTbhWLC-bkaG4xl7G-d6-75zvx04vZPzafD6Z12Pvai99vzNndePz4bA4uOm-tQRVv3fa2P7pXp93711E0FMi1SKf_MoWWZ6aXsnmrMJ-bzWYKVp2AcC3pK9C-kJy7egWICDQlmivhCeJ5TPlScd-VkipFsGCeCjRIzDyfORAoxjBNocnB7qYMAxmWS9VasxH2H0u_0n1nBzOM3T43MeDqjdp6U0cb_yDFngDCgBP6A1ozcvw
ClassificationCodes S275.6
ContentType Journal Article
Copyright 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 3V.
7X2
7XB
8FE
8FH
8FK
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M0K
M2O
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13522/j.cnki.ggps.2023480
DatabaseName ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Database
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Agriculture Science Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle Agricultural Science Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Agricultural Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Efficiency and hydraulic performance of the micro-pressure filter in front of the pump studied using PPR and NSGA-II
EndPage 78
ExternalDocumentID ggps202405006
GrantInformation_xml – fundername: 国家自然科学基金
  funderid: (52369013)
GroupedDBID 3V.
5XA
5XE
7X2
7XB
8FE
8FH
8FK
ABJNI
ACGFS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
CW9
DWQXO
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
M0K
M2O
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
TGD
U1G
U5N
2B.
4A8
92G
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-p1286-acb2ec8a776ed218fe31e7b8981995bcab7c6aa3bb10859bfe2a059c542fb5503
IEDL.DBID BENPR
ISSN 1672-3317
IngestDate Thu May 29 03:56:07 EDT 2025
Thu Sep 18 00:24:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords filter
过滤器
过滤性能
模型
filtration performance
水头损失
head loss
hydraulic performance
model
水力性能
Language Chinese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p1286-acb2ec8a776ed218fe31e7b8981995bcab7c6aa3bb10859bfe2a059c542fb5503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3098215271
PQPubID 6843760
PageCount 49
ParticipantIDs wanfang_journals_ggps202405006
proquest_journals_3098215271
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Xinxiang City
PublicationPlace_xml – name: Xinxiang City
PublicationTitle Guanʻgai paishui xuebao
PublicationTitle_FL Journal of Irrigation and Drainage
PublicationYear 2024
Publisher Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage
新疆水利工程安全与水灾害防治重点实验室,乌鲁木齐 830052%新疆水利水电科学研究院,乌鲁木齐 830049
新疆农业大学 水利与土木工程学院,乌鲁木齐 830052
Publisher_xml – name: Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage
– name: 新疆水利工程安全与水灾害防治重点实验室,乌鲁木齐 830052%新疆水利水电科学研究院,乌鲁木齐 830049
– name: 新疆农业大学 水利与土木工程学院,乌鲁木齐 830052
SSID ssib002264380
ssib001101356
ssib051374040
ssib046786310
ssj0002507593
ssib006567438
Score 2.392384
Snippet 【目的】探究泵前微压过滤器的性能。【方法】开展5组流量(2~8 m3/h)、5组含沙量(0.5~2.0 g/L)、3组滤网过滤面积(1 105、1 582、2 060 cm2)和4组分水器型式(不加、1型、2型、3...
S275.6; [目的]探究泵前微压过滤器的性能.[方法]开展 5组流量(2~8 m3/h)、5组含沙量(0.5~2.0 g/L)、3组滤网过滤面积(1 105、1 582、2 060 cm2)和 4组分水器型式(不加、1型、2...
SourceID wanfang
proquest
SourceType Aggregation Database
StartPage 30
SubjectTerms Dimensional analysis
Efficiency
Filtration
Flow rates
Flow velocity
Head (fluid mechanics)
Inlet flow
Interception
Prediction models
Predictions
Pressure filters
Pressure loss
Regression models
Sediments
Separators
Water flow
Water purification
Title 基于PPR和NSGA-Ⅱ的泵前微压过滤器 水力与过滤性能研究
URI https://www.proquest.com/docview/3098215271
https://d.wanfangdata.com.cn/periodical/ggps202405006
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1672-3317
  databaseCode: DOA
  dateStart: 20220101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002507593
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  issn: 1672-3317
  databaseCode: BENPR
  dateStart: 20170101
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: true
  ssIdentifier: ssj0002507593
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQMTcwTTU0SkrWNU1JBY1WmZjoJhoaJOqCjoYzNE0zM00BL6Lx9TPzCDXxijCNYGLwg-2FAS2rhJWJ4II6JT8ZNEaub2xgaQG-g9XQvqBQF3RrFGh2FXaFRiL0aoUUW_ARY8wMrEagW5VZGFidXP0CghANBGAKNEY5IMwMdOQ6IgWaghblw1MksBSxMENqAJkaGpubGEBPRwGV9cAGhDnkZF9DM3MjXWNgbQzdnwdq2Ohn6SXnZWfqpacXgE4GNzI2sTBAacmylyfmpSXmpSNVaW6CDPzQtqiCIyTxCDEwVWWIMHg8nb_rya6-gICgp5N6_ILdHXUftS58Pqvl2eatTzt7n-5b97Sv-8X-9me7lzyduULh2YYtT7tmP9nRBxF61rD8RfPe5wumPF-5TZQh1M01xNlDF3rdgm4BsJIy001MTjJKTbZINDc3S00B1vxpqcaGqeZJFpYWoG3cScmJSebJZomJxklJoB0LlklpqUaJwMZZsqmJUVoSsKNjLMbAkpeflyrBoGCUaJhimJRiYZIE6t-YpVoaJFmmgc_qNwa2CNOMJBlkYIEQD80zxfGIGJZkkIMGDEIWFIZGoAPZTIGxJIVfvzQDF0gpZF2iDANLSVFpqiyw7VCSJAdNEHLgvjcAGmrPbA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQMTcwTTU0SkrWNU1JBY1WmZjoJhoaJOqCjoYzNE0zM00BL6Lx9TPzCDXxijCNYGLYB9sLA1pWCSsTwQV1Sn4yaIxc39jA0gJ8B6uhfUGhLujWKNDsKuwKjUTo1QoptuAjxqAbO7xTK8uBXbhiW08XYHyrGhm5uYY4e-hCbxnQLQCWzWa6iclJRqnJFonm5mapKcAKLy3V2DDVPMnC0gK0ezkpOTHJPNksMdE4KQm0UN8yKS3VKBHYJkk2NTFKSwK2742B5jIzsAKbHcbAXMXq5OoXEIRokABTvDHKgWRmoCPeESneFLQJAJ4DgKWWhRlSg8vU0NjcxAB6GguobgE2WMwhJwkbmpkb6RoDa3_ofkBQQ0o_Sy85LztTLz29AHQSuZGxiYUBSsuZvTwxLy0xLx2pCnUTZOCHtn0VHCGJVYiBqSpDhMHj6fxdT3b1BQQEPZ3U4xfs7qj7qHXh81ktzzZvfdrZ-3Tfuqd93S_2tz_bveTpzBUKzzZsedo1-8mOPojQs4blL5r3Pl8w5fnKbaIMoTQJeDEGlrz8vFQJBgWjRMMUw6QUC5MkUH_KLNXSIMkyDXw3gDGwBZpmJMkgAwuEeGgeLY5HpChJBjlowCBkQWFoBDoAzhQYS1L49cszcHqE-PrE-3j6eUszcIG0QdZEyjCwlBSVpsoC2y0lSXLQxKHAkEDr9AgAd8MMUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EPPR%E5%92%8CNSGA-%E2%85%A1%E7%9A%84%E6%B3%B5%E5%89%8D%E5%BE%AE%E5%8E%8B%E8%BF%87%E6%BB%A4%E5%99%A8%E6%B0%B4%E5%8A%9B%E4%B8%8E%E8%BF%87%E6%BB%A4%E6%80%A7%E8%83%BD%E7%A0%94%E7%A9%B6&rft.jtitle=%E7%81%8C%E6%BA%89%E6%8E%92%E6%B0%B4%E5%AD%A6%E6%8A%A5&rft.au=%E9%99%B6%E6%B4%AA%E9%A3%9E&rft.au=%E6%9D%8E%E7%90%A6&rft.au=%E5%91%A8%E6%B4%8B&rft.au=%E9%A9%AC%E5%90%88%E6%9C%A8%E6%B1%9F%C2%B7%E8%89%BE%E5%90%88%E4%B9%B0%E6%8F%90&rft.date=2024-05-01&rft.pub=%E6%96%B0%E7%96%86%E6%B0%B4%E5%88%A9%E5%B7%A5%E7%A8%8B%E5%AE%89%E5%85%A8%E4%B8%8E%E6%B0%B4%E7%81%BE%E5%AE%B3%E9%98%B2%E6%B2%BB%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E4%B9%8C%E9%B2%81%E6%9C%A8%E9%BD%90+830052%25%E6%96%B0%E7%96%86%E6%B0%B4%E5%88%A9%E6%B0%B4%E7%94%B5%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E4%B9%8C%E9%B2%81%E6%9C%A8%E9%BD%90+830049&rft.issn=1672-3317&rft.volume=43&rft.issue=5&rft.spage=30&rft.epage=78&rft_id=info:doi/10.13522%2Fj.cnki.ggps.2023480&rft.externalDocID=ggps202405006
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fggps%2Fggps.jpg