融合目标检测与距离阈值模型的露天矿行车障碍预警
针对当前行车预警方法无法适应露天矿非结构化道路问题,本文提出一种融合目标检测和障碍距离阈值的预警方法。首先根据露天矿障碍特点改进原有的Mask R-CNN检测框架,在骨架网络中引入扩张卷积,在不缩小特征图的情况下扩大感受野范围保证较大目标的检测精度。然后,根据目标检测结果构建线性距离因子,表征障碍物在输入图像中的深度信息,并建立SVM预警模型。最后为了保证预警模型的泛化能力采用迁移学习的方法,在COCO数据集中对网络进行预训练,在文中实地采集的数据集中训练C5阶段和检测层。实验结果表明,本文方法在实地数据检测中精确率达到98.47%,召回率为97.56%,人工设计的线性距离因子对SVM预警模型...
Saved in:
Published in | Guang Dian Gong Cheng = Opto-Electronic Engineering Vol. 47; no. 1; pp. 190161 - 45 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese English |
Published |
Chengdu
Editorial Office of Opto-Electronic Advances
01.01.2020
西安建筑科技大学管理学院,陕西西安,710055 |
Subjects | |
Online Access | Get full text |
ISSN | 1003-501X |
DOI | 10.12086/oee.2020.190161 |
Cover
Summary: | 针对当前行车预警方法无法适应露天矿非结构化道路问题,本文提出一种融合目标检测和障碍距离阈值的预警方法。首先根据露天矿障碍特点改进原有的Mask R-CNN检测框架,在骨架网络中引入扩张卷积,在不缩小特征图的情况下扩大感受野范围保证较大目标的检测精度。然后,根据目标检测结果构建线性距离因子,表征障碍物在输入图像中的深度信息,并建立SVM预警模型。最后为了保证预警模型的泛化能力采用迁移学习的方法,在COCO数据集中对网络进行预训练,在文中实地采集的数据集中训练C5阶段和检测层。实验结果表明,本文方法在实地数据检测中精确率达到98.47%,召回率为97.56%,人工设计的线性距离因子对SVM预警模型有良好的适应性。 |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1003-501X |
DOI: | 10.12086/oee.2020.190161 |