Building Ensemble Models with Python
This chapter uses several available Python packages to build predictive models using the ensemble algorithms. The examples show these methods at work building models on a variety of different types of problems. The chapter also covers regression, binary classification, and multiclass classification...
        Saved in:
      
    
          | Published in | Machine Learning in Python pp. 255 - 317 | 
|---|---|
| Main Author | |
| Format | Book Chapter | 
| Language | English | 
| Published | 
        United States
          John Wiley & Sons, Incorporated
    
        2015
     John Wiley & Sons, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 1118961749 9781118961742  | 
| DOI | 10.1002/9781119183600.ch7 | 
Cover
| Abstract | This chapter uses several available Python packages to build predictive models using the ensemble algorithms. The examples show these methods at work building models on a variety of different types of problems. The chapter also covers regression, binary classification, and multiclass classification problems, and discusses variations on these themes such as the workings of coding categorical variables for input to Python ensemble methods, such as bagging, boosting and random forest. Ensemble methods are easy to use as they do not have many parameters to tune. The chapter then demonstrates the use of available Python packages. Seeing them exercised in the example code can help you get started using these packages. The comparisons given at the end of the chapter demonstrate how these algorithms compare. The ensemble methods frequently give the best performance. The penalized regression methods are blindingly much faster than ensemble methods and in some cases yield similar performance. | 
    
|---|---|
| AbstractList | This chapter uses several available Python packages to build predictive models using the ensemble algorithms. The examples show these methods at work building models on a variety of different types of problems. The chapter also covers regression, binary classification, and multiclass classification problems, and discusses variations on these themes such as the workings of coding categorical variables for input to Python ensemble methods, such as bagging, boosting and random forest. Ensemble methods are easy to use as they do not have many parameters to tune. The chapter then demonstrates the use of available Python packages. Seeing them exercised in the example code can help you get started using these packages. The comparisons given at the end of the chapter demonstrate how these algorithms compare. The ensemble methods frequently give the best performance. The penalized regression methods are blindingly much faster than ensemble methods and in some cases yield similar performance. | 
    
| Author | Bowles, Michael | 
    
| Author_xml | – sequence: 1 fullname: Bowles, Michael  | 
    
| BookMark | eNptj8tOwzAQRY14iLb0A9hlwTZlxk78WEJVHlIRLLq37NghgZCEOlVVvp6UwKISi5nRjM69ozsmJ3VTe0IuEWYIQK-VkIioUDIOMMsKcUSmw00qjiJVx2T8tyTqjIwUcK4UJOKcTEN4AwBMVKKYGpGr201ZubJ-jRZ18B-28tFT43wVom3ZFdHLriua-oKc5qYKfvo7J2R1t1jNH-Ll8_3j_GYZt0jTPE6osRZTwVzfjBM-9z5xOVqqBAOaGi5AWCpl5gAFILeQUWEkl-icRDYhONhuy8rvtLdN8x40gt6n1gepdZ96X70m_kdzyH6V7Q_furznk4Fv183nxodukGS-7tamygrTdn7dP5UqRYEaGWgqFfsG-cdplw | 
    
| ContentType | Book Chapter | 
    
| Copyright | 2015 John Wiley & Sons, Inc. | 
    
| Copyright_xml | – notice: 2015 John Wiley & Sons, Inc. | 
    
| DBID | FFUUA | 
    
| DEWEY | 006.31 | 
    
| DOI | 10.1002/9781119183600.ch7 | 
    
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISBN | 9781118961759 1118961757 9781119183600 111918360X  | 
    
| Editor | Bowles, Michael | 
    
| Editor_xml | – sequence: 1 givenname: Michael surname: Bowles fullname: Bowles, Michael  | 
    
| EndPage | 317 | 
    
| ExternalDocumentID | 10.1002/9781119183600.ch7 EBC1895171_130_289  | 
    
| Genre | chapter | 
    
| GroupedDBID | -0~ 20A 38. 3XM AABBV ABARN ABIAV ABIGN ABQPQ ABYOB ACLGV ACNAM ADVEM AERYV AFOJC AHWGJ AJFER AKHYG ALMA_UNASSIGNED_HOLDINGS AMYDA AWAER AZZ BBABE BPBUR CZZ ERSLE FAMPF FFUUA GEOUK IPJKO J-X JFSCD JJU LQKAK LWYJN LYPXV MEDSZ MPPRW MYL NK1 NK2 OHILO OODEK OTAXI PQQKQ W1A YPLAZ ZEEST 0 ABAEO IVK IWL PLCCB PQEST PQUKI  | 
    
| ID | FETCH-LOGICAL-p125f-42abb1573d157ad7efee4df1b2973025a6707b288cd017016b0c27a8681dd813 | 
    
| ISBN | 1118961749 9781118961742  | 
    
| IngestDate | Thu Jun 02 19:27:09 EDT 2022 Wed Nov 27 04:52:53 EST 2019 Sat Aug 30 21:49:28 EDT 2025  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| LCCallNum | TK5105.888 .B384 2015 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-p125f-42abb1573d157ad7efee4df1b2973025a6707b288cd017016b0c27a8681dd813 | 
    
| OCLC | 906699047 | 
    
| PQID | EBC1895171_130_289 | 
    
| PageCount | 63 | 
    
| ParticipantIDs | wiley_ebooks_10_1002_9781119183600_ch7_ch7 proquest_ebookcentralchapters_1895171_130_289  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015 2015-01-09  | 
    
| PublicationDateYYYYMMDD | 2015-01-01 2015-01-09  | 
    
| PublicationDate_xml | – year: 2015 text: 2015  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Hoboken, NJ, USA  | 
    
| PublicationSubtitle | Essential Techniques for Predictive Analysis | 
    
| PublicationTitle | Machine Learning in Python | 
    
| PublicationYear | 2015 | 
    
| Publisher | John Wiley & Sons, Incorporated John Wiley & Sons, Inc  | 
    
| Publisher_xml | – name: John Wiley & Sons, Incorporated – name: John Wiley & Sons, Inc  | 
    
| SSID | ssj0001494939 ssib025990841  | 
    
| Score | 1.4525294 | 
    
| Snippet | This chapter uses several available Python packages to build predictive models using the ensemble algorithms. The examples show these methods at work building... | 
    
| SourceID | wiley proquest  | 
    
| SourceType | Enrichment Source Publisher  | 
    
| StartPage | 255 | 
    
| SubjectTerms | bagging binary classification boosting multiclass classification penalized regression methods Python ensemble packages random forest random forest model  | 
    
| Title | Building Ensemble Models with Python | 
    
| URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=1895171&ppg=289&c=UERG https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119183600.ch7  | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66XsSDb1xf9LB4UKpN0zbJVVkRQfGwwt5K8ygqui7uenB_vZNH262KoIcNSzukTSZMZpr5vkGol_G4zAyfdpaULExEwkOmiA4JJ5Z-XWbKYIdvbrOr--R6mA6b4nUWXTIVp3L2I67kP1qFa6BXg5L9g2brTuEC_Af9QgsahvaL89v-zOorDJk0SF0xpFpkyt2HoQKYXwbnvuz1SX800S8GJmWqnz17UNucvI_8cWoj_8a-_JBa086fdDEiGDPGwU9xJFaVnXLcuH7LIw4--c2aOnZW1wfHBu4RncoH2mwddULfL9KLaJEysEBLsM_26y8pEHXxiHlX7MlFagkn3BZz8i_MPSVXPYDqVDqKz749phUhzMcZ1lEYrKEVAx4JDKoDXnwdLejRBlqtSmcE3pJuol6ll6DSS-D0Ehi9BE4vW2hw2R9cXIW-YEU4Bj-xDJO4EAKnlChoCkV1qXWiSixMgTAYcpHRiIqYMakMbRHORCRjWrAMggbFMNlGndHrSO-gQMaCCTDFtJBxUggOPoRgKdOYK0UKSboorEab21N1n8or3fAmOUxZiik2p5U5xNRddGynxAnDbUtWHeetacxhGs2vi45awm2h2ePYCo5VufuXXvfQcrOI91Fn-vauD8Chm4pDvzY-AdiEO9g | 
    
| linkProvider | ProQuest Ebooks | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+in+Python&rft.atitle=Building+Ensemble+Models+with+Python&rft.date=2015-01-09&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.isbn=9781118961742&rft.spage=255&rft.epage=317&rft_id=info:doi/10.1002%2F9781119183600.ch7&rft.externalDocID=10.1002%2F9781119183600.ch7 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F1895171-l.jpg |