Building Ensemble Models with Python

This chapter uses several available Python packages to build predictive models using the ensemble algorithms. The examples show these methods at work building models on a variety of different types of problems. The chapter also covers regression, binary classification, and multiclass classification...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning in Python pp. 255 - 317
Main Author Bowles, Michael
Format Book Chapter
LanguageEnglish
Published United States John Wiley & Sons, Incorporated 2015
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISBN1118961749
9781118961742
DOI10.1002/9781119183600.ch7

Cover

Abstract This chapter uses several available Python packages to build predictive models using the ensemble algorithms. The examples show these methods at work building models on a variety of different types of problems. The chapter also covers regression, binary classification, and multiclass classification problems, and discusses variations on these themes such as the workings of coding categorical variables for input to Python ensemble methods, such as bagging, boosting and random forest. Ensemble methods are easy to use as they do not have many parameters to tune. The chapter then demonstrates the use of available Python packages. Seeing them exercised in the example code can help you get started using these packages. The comparisons given at the end of the chapter demonstrate how these algorithms compare. The ensemble methods frequently give the best performance. The penalized regression methods are blindingly much faster than ensemble methods and in some cases yield similar performance.
AbstractList This chapter uses several available Python packages to build predictive models using the ensemble algorithms. The examples show these methods at work building models on a variety of different types of problems. The chapter also covers regression, binary classification, and multiclass classification problems, and discusses variations on these themes such as the workings of coding categorical variables for input to Python ensemble methods, such as bagging, boosting and random forest. Ensemble methods are easy to use as they do not have many parameters to tune. The chapter then demonstrates the use of available Python packages. Seeing them exercised in the example code can help you get started using these packages. The comparisons given at the end of the chapter demonstrate how these algorithms compare. The ensemble methods frequently give the best performance. The penalized regression methods are blindingly much faster than ensemble methods and in some cases yield similar performance.
Author Bowles, Michael
Author_xml – sequence: 1
  fullname: Bowles, Michael
BookMark eNptj8tOwzAQRY14iLb0A9hlwTZlxk78WEJVHlIRLLq37NghgZCEOlVVvp6UwKISi5nRjM69ozsmJ3VTe0IuEWYIQK-VkIioUDIOMMsKcUSmw00qjiJVx2T8tyTqjIwUcK4UJOKcTEN4AwBMVKKYGpGr201ZubJ-jRZ18B-28tFT43wVom3ZFdHLriua-oKc5qYKfvo7J2R1t1jNH-Ll8_3j_GYZt0jTPE6osRZTwVzfjBM-9z5xOVqqBAOaGi5AWCpl5gAFILeQUWEkl-icRDYhONhuy8rvtLdN8x40gt6n1gepdZ96X70m_kdzyH6V7Q_furznk4Fv183nxodukGS-7tamygrTdn7dP5UqRYEaGWgqFfsG-cdplw
ContentType Book Chapter
Copyright 2015 John Wiley & Sons, Inc.
Copyright_xml – notice: 2015 John Wiley & Sons, Inc.
DBID FFUUA
DEWEY 006.31
DOI 10.1002/9781119183600.ch7
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781118961759
1118961757
9781119183600
111918360X
Editor Bowles, Michael
Editor_xml – sequence: 1
  givenname: Michael
  surname: Bowles
  fullname: Bowles, Michael
EndPage 317
ExternalDocumentID 10.1002/9781119183600.ch7
EBC1895171_130_289
Genre chapter
GroupedDBID -0~
20A
38.
3XM
AABBV
ABARN
ABIAV
ABIGN
ABQPQ
ABYOB
ACLGV
ACNAM
ADVEM
AERYV
AFOJC
AHWGJ
AJFER
AKHYG
ALMA_UNASSIGNED_HOLDINGS
AMYDA
AWAER
AZZ
BBABE
BPBUR
CZZ
ERSLE
FAMPF
FFUUA
GEOUK
IPJKO
J-X
JFSCD
JJU
LQKAK
LWYJN
LYPXV
MEDSZ
MPPRW
MYL
NK1
NK2
OHILO
OODEK
OTAXI
PQQKQ
W1A
YPLAZ
ZEEST
0
ABAEO
IVK
IWL
PLCCB
PQEST
PQUKI
ID FETCH-LOGICAL-p125f-42abb1573d157ad7efee4df1b2973025a6707b288cd017016b0c27a8681dd813
ISBN 1118961749
9781118961742
IngestDate Thu Jun 02 19:27:09 EDT 2022
Wed Nov 27 04:52:53 EST 2019
Sat Aug 30 21:49:28 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum TK5105.888 .B384 2015
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p125f-42abb1573d157ad7efee4df1b2973025a6707b288cd017016b0c27a8681dd813
OCLC 906699047
PQID EBC1895171_130_289
PageCount 63
ParticipantIDs wiley_ebooks_10_1002_9781119183600_ch7_ch7
proquest_ebookcentralchapters_1895171_130_289
PublicationCentury 2000
PublicationDate 2015
2015-01-09
PublicationDateYYYYMMDD 2015-01-01
2015-01-09
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken, NJ, USA
PublicationSubtitle Essential Techniques for Predictive Analysis
PublicationTitle Machine Learning in Python
PublicationYear 2015
Publisher John Wiley & Sons, Incorporated
John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Incorporated
– name: John Wiley & Sons, Inc
SSID ssj0001494939
ssib025990841
Score 1.4525294
Snippet This chapter uses several available Python packages to build predictive models using the ensemble algorithms. The examples show these methods at work building...
SourceID wiley
proquest
SourceType Enrichment Source
Publisher
StartPage 255
SubjectTerms bagging
binary classification
boosting
multiclass classification
penalized regression methods
Python ensemble packages
random forest
random forest model
Title Building Ensemble Models with Python
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=1895171&ppg=289&c=UERG
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119183600.ch7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66XsSDb1xf9LB4UKpN0zbJVVkRQfGwwt5K8ygqui7uenB_vZNH262KoIcNSzukTSZMZpr5vkGol_G4zAyfdpaULExEwkOmiA4JJ5Z-XWbKYIdvbrOr--R6mA6b4nUWXTIVp3L2I67kP1qFa6BXg5L9g2brTuEC_Af9QgsahvaL89v-zOorDJk0SF0xpFpkyt2HoQKYXwbnvuz1SX800S8GJmWqnz17UNucvI_8cWoj_8a-_JBa086fdDEiGDPGwU9xJFaVnXLcuH7LIw4--c2aOnZW1wfHBu4RncoH2mwddULfL9KLaJEysEBLsM_26y8pEHXxiHlX7MlFagkn3BZz8i_MPSVXPYDqVDqKz749phUhzMcZ1lEYrKEVAx4JDKoDXnwdLejRBlqtSmcE3pJuol6ll6DSS-D0Ehi9BE4vW2hw2R9cXIW-YEU4Bj-xDJO4EAKnlChoCkV1qXWiSixMgTAYcpHRiIqYMakMbRHORCRjWrAMggbFMNlGndHrSO-gQMaCCTDFtJBxUggOPoRgKdOYK0UKSboorEab21N1n8or3fAmOUxZiik2p5U5xNRddGynxAnDbUtWHeetacxhGs2vi45awm2h2ePYCo5VufuXXvfQcrOI91Fn-vauD8Chm4pDvzY-AdiEO9g
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+in+Python&rft.atitle=Building+Ensemble+Models+with+Python&rft.date=2015-01-09&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.isbn=9781118961742&rft.spage=255&rft.epage=317&rft_id=info:doi/10.1002%2F9781119183600.ch7&rft.externalDocID=10.1002%2F9781119183600.ch7
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F1895171-l.jpg