Ensemble Methods

Ensemble methods stem from the observation that multiple models give better performance than a single model if the models are somewhat independent of one another. The key with ensemble methods is to develop an algorithm approach to generate numerous somewhat independent models that will then be comb...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning in Python pp. 211 - 253
Main Author Bowles, Michael
Format Book Chapter
LanguageEnglish
Published United States John Wiley & Sons, Incorporated 2015
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISBN1118961749
9781118961742
DOI10.1002/9781119183600.ch6

Cover

Abstract Ensemble methods stem from the observation that multiple models give better performance than a single model if the models are somewhat independent of one another. The key with ensemble methods is to develop an algorithm approach to generate numerous somewhat independent models that will then be combined into an ensemble. This chapter shows the reader how the most popular methods accomplish this. It teaches the mechanics of the most popular ensemble methods, and outlines the basic structure of the algorithms and demonstrates the algorithms in Python code to give a firm understanding of their workings. The chapter primarily uses binary decision trees as base learners. Some widely used upper‐level algorithms are known as bagging, gradient boosting, and random forests are coded in this chapter to provide a better understand the options, input variables, nominal starting values, and so on for the Python packages for these algorithms.
AbstractList Ensemble methods stem from the observation that multiple models give better performance than a single model if the models are somewhat independent of one another. The key with ensemble methods is to develop an algorithm approach to generate numerous somewhat independent models that will then be combined into an ensemble. This chapter shows the reader how the most popular methods accomplish this. It teaches the mechanics of the most popular ensemble methods, and outlines the basic structure of the algorithms and demonstrates the algorithms in Python code to give a firm understanding of their workings. The chapter primarily uses binary decision trees as base learners. Some widely used upper‐level algorithms are known as bagging, gradient boosting, and random forests are coded in this chapter to provide a better understand the options, input variables, nominal starting values, and so on for the Python packages for these algorithms.
Author Bowles, Michael
Author_xml – sequence: 1
  fullname: Bowles, Michael
BookMark eNptj01PwzAMhoP4ENuYxJUbf6DDTpM0PqJpA6QhLnCOutRRB6UtSxGCX09H4TCJg2XZel5bz1gc1U3NQlwgzBBAXlFmEZHQpgZg5ktzIKbDzpLBTNOhGP8Nik7EiMAYIlDZqZjG-AwAqEhRSiNxvqgjv64rvrznrmyKeCaOQ15Fnv72iXhaLh7nt8nq4eZufr1KWpQqJJRj7oEkglYZ-BQ1m4AMBmUeCru2GimTigNbpbRH6zmAlBAoWFQB0onA4e7HpuJPx-umeYkOwe0U3Z6i6xV31WeSfzL77Nem_eHbIvR8OvDttnl759gNEc91t80rX-Ztx9v-qSWNGToiJ5VOvwEOdWID
ContentType Book Chapter
Copyright 2015 John Wiley & Sons, Inc.
Copyright_xml – notice: 2015 John Wiley & Sons, Inc.
DBID FFUUA
DEWEY 006.31
DOI 10.1002/9781119183600.ch6
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781118961759
1118961757
9781119183600
111918360X
Editor Bowles, Michael
Editor_xml – sequence: 1
  givenname: Michael
  surname: Bowles
  fullname: Bowles, Michael
EndPage 253
ExternalDocumentID 10.1002/9781119183600.ch6
EBC1895171_99_245
Genre chapter
GroupedDBID -0~
20A
38.
3XM
AABBV
ABARN
ABIAV
ABIGN
ABQPQ
ABYOB
ACLGV
ACNAM
ADVEM
AERYV
AFOJC
AHWGJ
AJFER
AKHYG
ALMA_UNASSIGNED_HOLDINGS
AMYDA
AWAER
AZZ
BBABE
BPBUR
CZZ
ERSLE
FAMPF
FFUUA
GEOUK
IPJKO
J-X
JFSCD
JJU
LQKAK
LWYJN
LYPXV
MEDSZ
MPPRW
MYL
NK1
NK2
OHILO
OODEK
OTAXI
PQQKQ
W1A
YPLAZ
ZEEST
0
ABAEO
IVK
IWL
PLCCB
PQEST
PQUKI
ID FETCH-LOGICAL-p124f-9a1ac092105470c315e6f1e0612afd8b8519724efe8445c18cef0220f9f814f03
ISBN 1118961749
9781118961742
IngestDate Thu Jun 02 19:27:09 EDT 2022
Wed Nov 27 04:55:53 EST 2019
Sat Aug 30 21:49:28 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum TK5105.888 .B384 2015
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p124f-9a1ac092105470c315e6f1e0612afd8b8519724efe8445c18cef0220f9f814f03
OCLC 906699047
PQID EBC1895171_99_245
PageCount 43
ParticipantIDs wiley_ebooks_10_1002_9781119183600_ch6_ch6
proquest_ebookcentralchapters_1895171_99_245
PublicationCentury 2000
PublicationDate 2015
2015-01-09
PublicationDateYYYYMMDD 2015-01-01
2015-01-09
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken, NJ, USA
PublicationSubtitle Essential Techniques for Predictive Analysis
PublicationTitle Machine Learning in Python
PublicationYear 2015
Publisher John Wiley & Sons, Incorporated
John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Incorporated
– name: John Wiley & Sons, Inc
SSID ssj0001494939
ssib025990841
Score 1.4526323
Snippet Ensemble methods stem from the observation that multiple models give better performance than a single model if the models are somewhat independent of one...
SourceID wiley
proquest
SourceType Enrichment Source
Publisher
StartPage 211
SubjectTerms bagging algorithm
base learners
binary decision trees
bootstrap aggregation
ensemble methods
gradient boosting algorithm
multivariable tree
Python code
random forests
Title Ensemble Methods
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=1895171&ppg=245&c=UERG
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119183600.ch6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLIihPEV5KQNiQKTEjpPYMyqqkIoYWqlblPghQKJUtAz013N2nLRpy1CGRFF6cnM-6_J9jr8zQteZzHEkKfdVmBGfxjLwuZ1tCmMZE0WSIDF6595z3B3Qp2E0nJdKtOqSad4Ws7W6kv9EFe5BXI1KdoPIVo3CDbiG-MIZIgznJfBbn2Z1OwyZZZCqrJBqlSkvP6YUwOIw6Iwm6sOoo3p2q-gay8eRZfnzXLJmGU19rWTBByFxMQ6YpChYVeUkvPB6I0Vt3pXMWVRiLdrg2Eg7grZ4XapS7WjDn9bbaDthkG124J3aqWZNgGHxgDnY9V6wMspDbjducg_MXfmtyoHyC3RA7lf-psYGFjmFBQX9fbRnhCKeUXDAgx-gLTU6RM1ymwzPZc0j1Cxj4LkYHKPBY6f_0PXdRhT-GOCP9nmGMxFwYMcRTQIR4kjFGiuDDjMtWc6M-pdQpRWjNBKYCaWNgllzzTDVQXiCGqPPkTpFHgekIBS4JTWmCgvApwowqBZAy6WIWQvdla6l9nO5W6MrCl8mKfRPhBOccp4SGrXQrXW_sIVfbRFqkta6LIUuM0cL3dSM60azt7E1HEt9tkmr52h3PmAvUGP69a0uAahN8ys3Dn4BalMskg
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+in+Python&rft.atitle=Ensemble+Methods&rft.date=2015-01-09&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.isbn=9781118961742&rft.spage=211&rft.epage=253&rft_id=info:doi/10.1002%2F9781119183600.ch6&rft.externalDocID=10.1002%2F9781119183600.ch6
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F1895171-l.jpg