Estimation of chlorophyll-a concentration using an artificial neural network (ANN) - based algorithm with OCEANSAT-1 OCM data

An artificial neural network (ANN) based chlorophyll-a algorithm was developed to estimate chlorophyll-a concentration using OCEANSAT-1 Ocean Colour Monitor (OCM) satellite-data. A multi-layer perception (MLP) type neural network was trained using simulated reflectances ( similar to 60,000 spectra)...

Full description

Saved in:
Bibliographic Details
Published inPhotonirvachak (Dehra Dun) Vol. 35; no. 3; pp. 201 - 207
Main Authors Nagamani, P V, Chauhan, P, Dwivedi, R M
Format Journal Article
LanguageEnglish
Published 01.09.2007
Subjects
Online AccessGet full text
ISSN0255-660X

Cover

Abstract An artificial neural network (ANN) based chlorophyll-a algorithm was developed to estimate chlorophyll-a concentration using OCEANSAT-1 Ocean Colour Monitor (OCM) satellite-data. A multi-layer perception (MLP) type neural network was trained using simulated reflectances ( similar to 60,000 spectra) with known chlorophyoll-a concentration, corresponding to the first five spectral bands of OCM. The correlation coefficient (r super(2)) and RMSE for the log transformed training data was found to be 0.99 and 0.07, respectively. The performance of the developed ANN-based algorithm was tested with the global SeaWiFS Bio-optical Algorithm Mini Workshop (SeaBAM) data ( similar to 919 spectra), 0.86 and 0.13 were observed as r super(2) and RMSE for the test data set. The algorithm was further validated with the in-situ bio-optical data collected in the northeastern Arabian Sea ( similar to 215 spectra), the r super(2) and RMSE were observed as 0.87 and 0.12 for this regional data set. Chlorophyll-a images were generated by applying the weight and bias matrices obtained during the training, on the normalized water leaving radiances (nL sub(w)) obtained from the OCM data after atmospheric correction. The chlorophyll-a image generated using ANN based algorithm and global Ocean Chlorophyll-4 (OC4) algorithm was compared. Chlorophyll-a estimated using both the algorithms showed a good correlation for the open ocean regions. However, in the coastal waters the ANN algorithm estimated relatively smaller concentrations, when compared to OC4 estimated chlorophyll-a.
AbstractList An artificial neural network (ANN) based chlorophyll-a algorithm was developed to estimate chlorophyll-a concentration using OCEANSAT-1 Ocean Colour Monitor (OCM) satellite-data. A multi-layer perception (MLP) type neural network was trained using simulated reflectances ( similar to 60,000 spectra) with known chlorophyoll-a concentration, corresponding to the first five spectral bands of OCM. The correlation coefficient (r super(2)) and RMSE for the log transformed training data was found to be 0.99 and 0.07, respectively. The performance of the developed ANN-based algorithm was tested with the global SeaWiFS Bio-optical Algorithm Mini Workshop (SeaBAM) data ( similar to 919 spectra), 0.86 and 0.13 were observed as r super(2) and RMSE for the test data set. The algorithm was further validated with the in-situ bio-optical data collected in the northeastern Arabian Sea ( similar to 215 spectra), the r super(2) and RMSE were observed as 0.87 and 0.12 for this regional data set. Chlorophyll-a images were generated by applying the weight and bias matrices obtained during the training, on the normalized water leaving radiances (nL sub(w)) obtained from the OCM data after atmospheric correction. The chlorophyll-a image generated using ANN based algorithm and global Ocean Chlorophyll-4 (OC4) algorithm was compared. Chlorophyll-a estimated using both the algorithms showed a good correlation for the open ocean regions. However, in the coastal waters the ANN algorithm estimated relatively smaller concentrations, when compared to OC4 estimated chlorophyll-a.
Author Nagamani, P V
Dwivedi, R M
Chauhan, P
Author_xml – sequence: 1
  givenname: P
  surname: Nagamani
  middlename: V
  fullname: Nagamani, P V
– sequence: 2
  givenname: P
  surname: Chauhan
  fullname: Chauhan, P
– sequence: 3
  givenname: R
  surname: Dwivedi
  middlename: M
  fullname: Dwivedi, R M
BookMark eNotjMtOAjEYRrvARFDf4V8ZXTTphZbOckLwkiAsxMQdKZ0WqqXFthPiwneXiJtzTvIl3wgNYop2gIaECYGlJO-XaFTKByFyLCgbop9ZqX6vq08RkgOzCymnw-47BKzBpGhsrPk898XHLegIOlfvvPE6QLR9_lM9pvwJd-1icQ8YNrrYDnTYpuzrbg_HE2E5nbWL13aF6SlfoNNVX6MLp0OxN_--Qm8Ps9X0Cc-Xj8_Tdo4PlMqKaTO2hspOcNcYPhETKR0bc0GcYKxrJCGq6RRVvONSKbVRjkvjBJFaKmsayq_Q7fn3kNNXb0td730xNgQdberLmhGuKJ8w_gsk4lsn
ContentType Journal Article
DBID F1W
H95
H96
L.G
DatabaseName ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EndPage 207
GeographicLocations ISW, Arabian Sea
GeographicLocations_xml – name: ISW, Arabian Sea
GroupedDBID -Y2
.VR
06D
0R~
0VY
1N0
203
29O
2J2
2JN
2JY
2KG
2KM
2LR
30V
4.4
406
408
40D
40E
5GY
5VS
67M
67Z
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AAYIU
AAYQN
AAYZH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGWIL
AGWZB
AGYKE
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYQR
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
B-.
BA0
BDATZ
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F1W
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGRSB
GJIRD
GNWQR
H95
H96
HF~
HG6
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
L.G
LLZTM
MA-
N2Q
NF0
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
P19
P2P
PF0
PT4
PT5
QOK
QOS
R9I
RHV
ROL
RSV
S16
S27
S3B
SAP
SCK
SDH
SEV
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~02
~A9
ID FETCH-LOGICAL-p116t-194ec16d53f9c375766f24350f522d960089d8183d36888b8f36cf506a68ec913
ISSN 0255-660X
IngestDate Thu Oct 02 06:22:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p116t-194ec16d53f9c375766f24350f522d960089d8183d36888b8f36cf506a68ec913
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 20381372
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_20381372
PublicationCentury 2000
PublicationDate 2007-09-01
PublicationDateYYYYMMDD 2007-09-01
PublicationDate_xml – month: 09
  year: 2007
  text: 2007-09-01
  day: 01
PublicationDecade 2000
PublicationTitle Photonirvachak (Dehra Dun)
PublicationYear 2007
SSID ssj0064512
Score 1.6917608
Snippet An artificial neural network (ANN) based chlorophyll-a algorithm was developed to estimate chlorophyll-a concentration using OCEANSAT-1 Ocean Colour Monitor...
SourceID proquest
SourceType Aggregation Database
StartPage 201
SubjectTerms Marine
Title Estimation of chlorophyll-a concentration using an artificial neural network (ANN) - based algorithm with OCEANSAT-1 OCM data
URI https://www.proquest.com/docview/20381372
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  issn: 0255-660X
  databaseCode: AFBBN
  dateStart: 19970301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064512
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  issn: 0255-660X
  databaseCode: AGYKE
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://link.springer.com
  omitProxy: false
  ssIdentifier: ssj0064512
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  issn: 0255-660X
  databaseCode: U2A
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://www.springerlink.com/journals/
  omitProxy: true
  ssIdentifier: ssj0064512
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bb9MwFIetbk_wgLgKxgA_IASKjOI4cZLHqOs00JpNkKK-VW7sLJXaZGsTkJD43zl2bp1A4vKSuG5qRflS-3eOj30Qeg0qgAUyS4m0FSOu7yoiKOckDZdS-Y6gzOQGnMb8bOZ-nHvz0ejDXtRSXS3fp99_u67kf6hCHXDVq2T_gWzfKFRAGfjCEQjD8a8YT-D_uek1X5qD7V3CY1uvidDh5E3gpfm63jWLEfWeRqt20wi9laU5mUBwLTWjONZeAmLpsU1aYn1VbldVvmm8tRfjSRR_jhJCoTi12lVtvbS9zEvQkavtV5HmwjR3ovKtsEAi77kbYnElNk0eKetyiLAd56LOG19sv-Ds5Bv0xNJc-al12nbuCb-Pv-p6MbBZCOf2fL_LbXYoaV8ttt9_tj9V7Sd_GKa6qfn4YnE6Oz9fJJN58ub6hugEYnqivc2mcoAOGNWpLGZO1A3J3PXMtHd_L78MvEZNJPfRvdYMwFHD9AEaqeIhuvtltaub2t0j9GOgi8sM36KLb9HFhi4WBR7o4oYubunit8D2HSbYkMU9WazJ4oEsFKdYk32MZqeTZHxG2mQZ5JpSXhEauiqlXHosC1PmgxnJMwe0sJ2BwpZgp9pBKEGdMcl4EATLIGM8zTybCx6oNKTsCTosykI9RVh5LrVlkBlzW9ki4MqRFJrNmCtALz9Dr7qnt4DOSM8wiUKV9W7h6Hln5jtHf7ziObozvC3H6LDa1uoFyLtq-dKg-wm2FlYO
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+chlorophyll-a+concentration+using+an+artificial+neural+network+%28ANN%29+-+based+algorithm+with+OCEANSAT-1+OCM+data&rft.jtitle=Photonirvachak+%28Dehra+Dun%29&rft.au=Nagamani%2C+P+V&rft.au=Chauhan%2C+P&rft.au=Dwivedi%2C+R+M&rft.date=2007-09-01&rft.issn=0255-660X&rft.volume=35&rft.issue=3&rft.spage=201&rft.epage=207&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0255-660X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0255-660X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0255-660X&client=summon