Estimation of chlorophyll-a concentration using an artificial neural network (ANN) - based algorithm with OCEANSAT-1 OCM data
An artificial neural network (ANN) based chlorophyll-a algorithm was developed to estimate chlorophyll-a concentration using OCEANSAT-1 Ocean Colour Monitor (OCM) satellite-data. A multi-layer perception (MLP) type neural network was trained using simulated reflectances ( similar to 60,000 spectra)...
Saved in:
| Published in | Photonirvachak (Dehra Dun) Vol. 35; no. 3; pp. 201 - 207 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
01.09.2007
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0255-660X |
Cover
| Abstract | An artificial neural network (ANN) based chlorophyll-a algorithm was developed to estimate chlorophyll-a concentration using OCEANSAT-1 Ocean Colour Monitor (OCM) satellite-data. A multi-layer perception (MLP) type neural network was trained using simulated reflectances ( similar to 60,000 spectra) with known chlorophyoll-a concentration, corresponding to the first five spectral bands of OCM. The correlation coefficient (r super(2)) and RMSE for the log transformed training data was found to be 0.99 and 0.07, respectively. The performance of the developed ANN-based algorithm was tested with the global SeaWiFS Bio-optical Algorithm Mini Workshop (SeaBAM) data ( similar to 919 spectra), 0.86 and 0.13 were observed as r super(2) and RMSE for the test data set. The algorithm was further validated with the in-situ bio-optical data collected in the northeastern Arabian Sea ( similar to 215 spectra), the r super(2) and RMSE were observed as 0.87 and 0.12 for this regional data set. Chlorophyll-a images were generated by applying the weight and bias matrices obtained during the training, on the normalized water leaving radiances (nL sub(w)) obtained from the OCM data after atmospheric correction. The chlorophyll-a image generated using ANN based algorithm and global Ocean Chlorophyll-4 (OC4) algorithm was compared. Chlorophyll-a estimated using both the algorithms showed a good correlation for the open ocean regions. However, in the coastal waters the ANN algorithm estimated relatively smaller concentrations, when compared to OC4 estimated chlorophyll-a. |
|---|---|
| AbstractList | An artificial neural network (ANN) based chlorophyll-a algorithm was developed to estimate chlorophyll-a concentration using OCEANSAT-1 Ocean Colour Monitor (OCM) satellite-data. A multi-layer perception (MLP) type neural network was trained using simulated reflectances ( similar to 60,000 spectra) with known chlorophyoll-a concentration, corresponding to the first five spectral bands of OCM. The correlation coefficient (r super(2)) and RMSE for the log transformed training data was found to be 0.99 and 0.07, respectively. The performance of the developed ANN-based algorithm was tested with the global SeaWiFS Bio-optical Algorithm Mini Workshop (SeaBAM) data ( similar to 919 spectra), 0.86 and 0.13 were observed as r super(2) and RMSE for the test data set. The algorithm was further validated with the in-situ bio-optical data collected in the northeastern Arabian Sea ( similar to 215 spectra), the r super(2) and RMSE were observed as 0.87 and 0.12 for this regional data set. Chlorophyll-a images were generated by applying the weight and bias matrices obtained during the training, on the normalized water leaving radiances (nL sub(w)) obtained from the OCM data after atmospheric correction. The chlorophyll-a image generated using ANN based algorithm and global Ocean Chlorophyll-4 (OC4) algorithm was compared. Chlorophyll-a estimated using both the algorithms showed a good correlation for the open ocean regions. However, in the coastal waters the ANN algorithm estimated relatively smaller concentrations, when compared to OC4 estimated chlorophyll-a. |
| Author | Nagamani, P V Dwivedi, R M Chauhan, P |
| Author_xml | – sequence: 1 givenname: P surname: Nagamani middlename: V fullname: Nagamani, P V – sequence: 2 givenname: P surname: Chauhan fullname: Chauhan, P – sequence: 3 givenname: R surname: Dwivedi middlename: M fullname: Dwivedi, R M |
| BookMark | eNotjMtOAjEYRrvARFDf4V8ZXTTphZbOckLwkiAsxMQdKZ0WqqXFthPiwneXiJtzTvIl3wgNYop2gIaECYGlJO-XaFTKByFyLCgbop9ZqX6vq08RkgOzCymnw-47BKzBpGhsrPk898XHLegIOlfvvPE6QLR9_lM9pvwJd-1icQ8YNrrYDnTYpuzrbg_HE2E5nbWL13aF6SlfoNNVX6MLp0OxN_--Qm8Ps9X0Cc-Xj8_Tdo4PlMqKaTO2hspOcNcYPhETKR0bc0GcYKxrJCGq6RRVvONSKbVRjkvjBJFaKmsayq_Q7fn3kNNXb0td730xNgQdberLmhGuKJ8w_gsk4lsn |
| ContentType | Journal Article |
| DBID | F1W H95 H96 L.G |
| DatabaseName | ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Visual Arts |
| EndPage | 207 |
| GeographicLocations | ISW, Arabian Sea |
| GeographicLocations_xml | – name: ISW, Arabian Sea |
| GroupedDBID | -Y2 .VR 06D 0R~ 0VY 1N0 203 29O 2J2 2JN 2JY 2KG 2KM 2LR 30V 4.4 406 408 40D 40E 5GY 5VS 67M 67Z 6NX 95- 95. 95~ 96X AAAVM AABHQ AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AAYIU AAYQN AAYZH ABDBE ABDZT ABECU ABFSG ABFTV ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFWTZ AFZKB AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGWIL AGWZB AGYKE AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYQR AOCGG ARMRJ ATHPR AXYYD AYFIA AYJHY B-. BA0 BDATZ CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F1W FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGRSB GJIRD GNWQR H95 H96 HF~ HG6 HMJXF HRMNR HZ~ IKXTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV L.G LLZTM MA- N2Q NF0 NPVJJ NQJWS O9- O93 O9G O9I O9J P19 P2P PF0 PT4 PT5 QOK QOS R9I RHV ROL RSV S16 S27 S3B SAP SCK SDH SEV SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~02 ~A9 |
| ID | FETCH-LOGICAL-p116t-194ec16d53f9c375766f24350f522d960089d8183d36888b8f36cf506a68ec913 |
| ISSN | 0255-660X |
| IngestDate | Thu Oct 02 06:22:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-p116t-194ec16d53f9c375766f24350f522d960089d8183d36888b8f36cf506a68ec913 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 20381372 |
| PQPubID | 23462 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_20381372 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-09-01 |
| PublicationDateYYYYMMDD | 2007-09-01 |
| PublicationDate_xml | – month: 09 year: 2007 text: 2007-09-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | Photonirvachak (Dehra Dun) |
| PublicationYear | 2007 |
| SSID | ssj0064512 |
| Score | 1.6917608 |
| Snippet | An artificial neural network (ANN) based chlorophyll-a algorithm was developed to estimate chlorophyll-a concentration using OCEANSAT-1 Ocean Colour Monitor... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 201 |
| SubjectTerms | Marine |
| Title | Estimation of chlorophyll-a concentration using an artificial neural network (ANN) - based algorithm with OCEANSAT-1 OCM data |
| URI | https://www.proquest.com/docview/20381372 |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals issn: 0255-660X databaseCode: AFBBN dateStart: 19970301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064512 providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium issn: 0255-660X databaseCode: AGYKE dateStart: 19970101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://link.springer.com omitProxy: false ssIdentifier: ssj0064512 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) issn: 0255-660X databaseCode: U2A dateStart: 19970101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://www.springerlink.com/journals/ omitProxy: true ssIdentifier: ssj0064512 providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bb9MwFIetbk_wgLgKxgA_IASKjOI4cZLHqOs00JpNkKK-VW7sLJXaZGsTkJD43zl2bp1A4vKSuG5qRflS-3eOj30Qeg0qgAUyS4m0FSOu7yoiKOckDZdS-Y6gzOQGnMb8bOZ-nHvz0ejDXtRSXS3fp99_u67kf6hCHXDVq2T_gWzfKFRAGfjCEQjD8a8YT-D_uek1X5qD7V3CY1uvidDh5E3gpfm63jWLEfWeRqt20wi9laU5mUBwLTWjONZeAmLpsU1aYn1VbldVvmm8tRfjSRR_jhJCoTi12lVtvbS9zEvQkavtV5HmwjR3ovKtsEAi77kbYnElNk0eKetyiLAd56LOG19sv-Ds5Bv0xNJc-al12nbuCb-Pv-p6MbBZCOf2fL_LbXYoaV8ttt9_tj9V7Sd_GKa6qfn4YnE6Oz9fJJN58ub6hugEYnqivc2mcoAOGNWpLGZO1A3J3PXMtHd_L78MvEZNJPfRvdYMwFHD9AEaqeIhuvtltaub2t0j9GOgi8sM36KLb9HFhi4WBR7o4oYubunit8D2HSbYkMU9WazJ4oEsFKdYk32MZqeTZHxG2mQZ5JpSXhEauiqlXHosC1PmgxnJMwe0sJ2BwpZgp9pBKEGdMcl4EATLIGM8zTybCx6oNKTsCTosykI9RVh5LrVlkBlzW9ki4MqRFJrNmCtALz9Dr7qnt4DOSM8wiUKV9W7h6Hln5jtHf7ziObozvC3H6LDa1uoFyLtq-dKg-wm2FlYO |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+chlorophyll-a+concentration+using+an+artificial+neural+network+%28ANN%29+-+based+algorithm+with+OCEANSAT-1+OCM+data&rft.jtitle=Photonirvachak+%28Dehra+Dun%29&rft.au=Nagamani%2C+P+V&rft.au=Chauhan%2C+P&rft.au=Dwivedi%2C+R+M&rft.date=2007-09-01&rft.issn=0255-660X&rft.volume=35&rft.issue=3&rft.spage=201&rft.epage=207&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0255-660X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0255-660X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0255-660X&client=summon |