New neural network demonstrates enhanced symmetry awareness

In the past 10 years, more and more researchers are harnessing data science techniques for materials discovery and design. Data science is an interdisciplinary field that uses scientific methods, processes, algorithms, and systems to extract knowledge and insight from noisy, structured, and unstruct...

Full description

Saved in:
Bibliographic Details
Published inAmerican Ceramic Society. American Ceramic Society Bulletin Vol. 100; no. 9; p. 13
Format Trade Publication Article
LanguageEnglish
Published Columbus American Ceramic Society 01.12.2021
Subjects
Online AccessGet full text
ISSN0002-7812
1945-2705
DOI10.1038/s41524-021-00637-y

Cover

Abstract In the past 10 years, more and more researchers are harnessing data science techniques for materials discovery and design. Data science is an interdisciplinary field that uses scientific methods, processes, algorithms, and systems to extract knowledge and insight from noisy, structured, and unstructured data. Instead of slowly identifying new materials through trial-and-error, researchers who adopt a data science framework use advanced computer techniques such as machine learning to quickly identify new materials worth further exploration. A challenge of using machine learning for materials design, however, is the need for a test data set on which to train the algorithm. Traditionally, research teams do not share their data with others, which makes accessing large amounts of data for training difficult. Yet even when data is available, it is rarely stored in a manner that can be used to train an algorithm.
AbstractList In the past 10 years, more and more researchers are harnessing data science techniques for materials discovery and design. Data science is an interdisciplinary field that uses scientific methods, processes, algorithms, and systems to extract knowledge and insight from noisy, structured, and unstructured data. Instead of slowly identifying new materials through trial-and-error, researchers who adopt a data science framework use advanced computer techniques such as machine learning to quickly identify new materials worth further exploration. A challenge of using machine learning for materials design, however, is the need for a test data set on which to train the algorithm. Traditionally, research teams do not share their data with others, which makes accessing large amounts of data for training difficult. Yet even when data is available, it is rarely stored in a manner that can be used to train an algorithm.
BookMark eNotj8FKAzEURYNUcFr9AVeD--h7SSZJcSVFq1B0o-uSmbwg2smMSUqZv3dAV4e7uefeJVvEIRJj1wi3CNLeZYWNUBwEcgAtDZ_OWIVr1XBhoFmwCgAENxbFBVvm_DVHRGEqdv9KpzrSMbnDjHIa0nftqR9iLskVyjXFTxc78nWe-p5Kmmp3coki5XzJzoM7ZLr654p9PD2-b5757m37snnY8XF2FE7reYcP1uu2k6ha9BKsJicCKOds5wLpoC0ZCDZg51pvtTONsKHxaD3IFbv56x3T8HOkXPaJxiGVvBca5x_KgpS_Q5lNIQ
ContentType Trade Publication Article
Copyright Copyright American Ceramic Society Dec 2021
Copyright_xml – notice: Copyright American Ceramic Society Dec 2021
DBID 7QQ
7SR
8FD
JG9
DOI 10.1038/s41524-021-00637-y
DatabaseName Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
DatabaseTitleList Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
EISSN 1945-2705
Genre Feature
GroupedDBID -~X
.4S
.DC
15B
23M
5GY
6J9
7QQ
7SR
8FD
ABDBF
ABEFU
ACBEA
ACGOD
ACIWK
ACNCT
ACUHS
ADMHG
AEGXH
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
B0M
EAP
EBO
EBS
EDO
EJD
EMK
EPL
ESX
I-F
IRD
ITF
ITG
ITH
JG9
PQQKQ
QM1
QN7
RAX
RXW
SRE
TAE
TH9
TN5
TUS
U5U
UPT
WH7
X6Y
ZE2
~02
~8M
~IF
ID FETCH-LOGICAL-p112t-e9945df8d6bc314b1d3086ea2f04aa8cafe6f68e70f8f1cabd86a7528f5d18d03
ISSN 0002-7812
IngestDate Wed Aug 13 12:10:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p112t-e9945df8d6bc314b1d3086ea2f04aa8cafe6f68e70f8f1cabd86a7528f5d18d03
PQID 2610114803
PQPubID 41755
ParticipantIDs proquest_reports_2610114803
PublicationCentury 2000
PublicationDate 20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211201
  day: 01
PublicationDecade 2020
PublicationPlace Columbus
PublicationPlace_xml – name: Columbus
PublicationTitle American Ceramic Society. American Ceramic Society Bulletin
PublicationYear 2021
Publisher American Ceramic Society
Publisher_xml – name: American Ceramic Society
SSID ssj0001127
Score 1.20948
Snippet In the past 10 years, more and more researchers are harnessing data science techniques for materials discovery and design. Data science is an interdisciplinary...
SourceID proquest
SourceType Aggregation Database
StartPage 13
SubjectTerms Algorithms
Artificial intelligence
Computer techniques
Data science
Machine learning
Neural networks
Unstructured data
Title New neural network demonstrates enhanced symmetry awareness
URI https://www.proquest.com/docview/2610114803
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLegXMZpMBBfQz5Mu1SGfDiJo534qtDEukuLeqvs-EVDooE1Qaj89Tw3dknbdWK7WEmcD9s_571nvy9CvqTIRjXyWcZlEjGe-TGTwFMmc5WqMFBpPA0p9KMbX_f590E0cDnbrXdJpU6ylz_6lfwPqngNcTVesv-A7OyleAGPEV8sEWEs34WxMU40ASlxmIvanLutYWQkPhMAomxD8atW8JeT0Qiq8aQtn43zl7O6cNFnndbmAsYmPb0z5Txpr6qZj9ptNw0Cf9EAY8XTC5QyEdbEGWrimPKp_1o0Rz09rzFN0gYtrH1Ml0h0HZC9NIIDZ6ZpRkpK2OSNITklfPfnsNO_uRn2rga9r4-_mUkVZlTqNm_KOlnHBrbIxtn55Xlnxn5RgEzcmsd0wHpK4WdPlz-6xIGnYkXvI9lHUUEDbeyd0rMa5i2yBsU22WzEi8Sz27vySd6be8pP5BvCT2v4qYWfNuGnDn7q4Kcz-HdIv3PVu7hmNhcGe8QOVQxSHHydCx2rLPS58nWIi1GQQe5xKUUmc4jzWEDi5SL3M6m0iPHvC0QeaV9oL9wlreKhgD1CsyiUKhFK-lnAIYikjgCCTHCIQak02ieHbkyGVnE1xHX2dOXshQd_rT0kH96m2xFpVeMn-IxSW6WOLU6vUc9H0w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+neural+network+demonstrates+enhanced+symmetry+awareness&rft.jtitle=American+Ceramic+Society.+American+Ceramic+Society+Bulletin&rft.date=2021-12-01&rft.pub=American+Ceramic+Society&rft.issn=0002-7812&rft.eissn=1945-2705&rft.volume=100&rft.issue=9&rft.spage=13&rft_id=info:doi/10.1038%2Fs41524-021-00637-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7812&client=summon