mSPD-NN: A Geometrically Aware Neural Framework for Biomarker Discovery from Functional Connectomics Manifolds

Connectomics has emerged as a powerful tool in neuroimaging and has spurred recent advancements in statistical and machine learning methods for connectivity data. Despite connectomes inhabiting a matrix manifold, most analytical frameworks ignore the underlying data geometry. This is largely because...

Full description

Saved in:
Bibliographic Details
Published inInformation processing in medical imaging : proceedings of the ... conference Vol. 2023; p. 53
Main Authors D'Souza, Niharika S, Venkataraman, Archana
Format Journal Article
LanguageEnglish
Published Germany 01.06.2023
Subjects
Online AccessGet more information
ISSN1011-2499

Cover

Abstract Connectomics has emerged as a powerful tool in neuroimaging and has spurred recent advancements in statistical and machine learning methods for connectivity data. Despite connectomes inhabiting a matrix manifold, most analytical frameworks ignore the underlying data geometry. This is largely because simple operations, such as mean estimation, do not have easily computable closed-form solutions. We propose a geometrically aware neural framework for connectomes, i.e., the mSPD-NN, designed to estimate the geodesic mean of a collections of symmetric positive definite (SPD) matrices. The mSPD-NN is comprised of bilinear fully connected layers with tied weights and utilizes a novel loss function to optimize the matrix-normal equation arising from Fréchet mean estimation. Via experiments on synthetic data, we demonstrate the efficacy of our mSPD-NN against common alternatives for SPD mean estimation, providing competitive performance in terms of scalability and robustness to noise. We illustrate the real-world flexibility of the mSPD-NN in multiple experiments on rs-fMRI data and demonstrate that it uncovers stable biomarkers associated with subtle network differences among patients with ADHD-ASD comorbidities and healthy controls.
AbstractList Connectomics has emerged as a powerful tool in neuroimaging and has spurred recent advancements in statistical and machine learning methods for connectivity data. Despite connectomes inhabiting a matrix manifold, most analytical frameworks ignore the underlying data geometry. This is largely because simple operations, such as mean estimation, do not have easily computable closed-form solutions. We propose a geometrically aware neural framework for connectomes, i.e., the mSPD-NN, designed to estimate the geodesic mean of a collections of symmetric positive definite (SPD) matrices. The mSPD-NN is comprised of bilinear fully connected layers with tied weights and utilizes a novel loss function to optimize the matrix-normal equation arising from Fréchet mean estimation. Via experiments on synthetic data, we demonstrate the efficacy of our mSPD-NN against common alternatives for SPD mean estimation, providing competitive performance in terms of scalability and robustness to noise. We illustrate the real-world flexibility of the mSPD-NN in multiple experiments on rs-fMRI data and demonstrate that it uncovers stable biomarkers associated with subtle network differences among patients with ADHD-ASD comorbidities and healthy controls.
Author Venkataraman, Archana
D'Souza, Niharika S
Author_xml – sequence: 1
  givenname: Niharika S
  surname: D'Souza
  fullname: D'Souza, Niharika S
  organization: IBM Research, Almaden, San Jose, USA
– sequence: 2
  givenname: Archana
  surname: Venkataraman
  fullname: Venkataraman, Archana
  organization: Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39469414$$D View this record in MEDLINE/PubMed
BookMark eNo1j99KwzAYxXMxcXPuFSQvUOiXpn_iXe3sFGYV1OuRpl8hrElK2jr69lbUq8M58Ducc0NW1llckQ2EAAHjQqzJbhh0HYacRVkG6TVZR4InggPfEGve3_ZBVd3TnB7QGRy9VrLrZppfpEda4eRlR0svDV6cP9PWefqgnZH-jJ7u9aDcF_qZtt4ZWk5WjdrZhSictahGZ7Qa6Iu0unVdM9ySq1Z2A-7-dEs-y8eP4ik4vh6ei_wY9AAsDWqIMBZKRlwsngGXPPvZzkJgKuFpxDIl4yaWgAqasE5r1oBIlrhZsKxmW3L329tPtcHm1Hu9LJ5P_8fZN1ojVfM
ContentType Journal Article
DBID NPM
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
ExternalDocumentID 39469414
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB029977
– fundername: NICHD NIH HHS
  grantid: R01 HD108790
GroupedDBID ---
F5P
NPM
ID FETCH-LOGICAL-p1127-b13e59ca349112214a4838812012c647328ca5d5a1ec1d0b7b2d196328d59c8b2
ISSN 1011-2499
IngestDate Thu Nov 28 21:31:56 EST 2024
IsPeerReviewed false
IsScholarly true
Keywords Geometry-Aware Neural Networks
Fréchet Mean Estimation
SPD Manifolds
Functional Connectomics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p1127-b13e59ca349112214a4838812012c647328ca5d5a1ec1d0b7b2d196328d59c8b2
PMID 39469414
ParticipantIDs pubmed_primary_39469414
PublicationCentury 2000
PublicationDate 2023-Jun
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-Jun
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Information processing in medical imaging : proceedings of the ... conference
PublicationTitleAlternate Inf Process Med Imaging
PublicationYear 2023
References 37033457 - ArXiv. 2023 Mar 27:arXiv:2303.14986v1.
References_xml – reference: 37033457 - ArXiv. 2023 Mar 27:arXiv:2303.14986v1.
SSID ssib004238817
ssib006573086
Score 2.2858624
Snippet Connectomics has emerged as a powerful tool in neuroimaging and has spurred recent advancements in statistical and machine learning methods for connectivity...
SourceID pubmed
SourceType Index Database
StartPage 53
Title mSPD-NN: A Geometrically Aware Neural Framework for Biomarker Discovery from Functional Connectomics Manifolds
URI https://www.ncbi.nlm.nih.gov/pubmed/39469414
Volume 2023
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELagSBWXqog-6AP5QE9VVonjJDa3bWGLkFhVAiRuyHYcdQVJVmWrCn49M7bzALXq4xKt4t0o8fetPTOZb4aQPSlkXhptothU4KCwNItUnOlICZsqJXLBChQnn8zzo3N-fJFdDFElpy5Z6Ym5-6Wu5H9QhXOAK6pk_wHZ_qJwAj4DvnAEhOH4VxjXp18Povncq8u_2LbG9lgw6de3H6c_MaULS28ABrMuA8slFX5atDUm5XzH0psGUzhvvcpkBntcCA26_BezQsnyDabILKr22kuCO0s26JgcfZZebRDkMXV497OofQckvL1hn7zpshImkwnmvAe9YW9Qf2DFafvjTnmafgNX_kqN-oLZ5kqtFDyPD9xi4VzlG4B3sQuWDjlWYbnFAC04gHK8HuMXR0uqryU8QnNZOzhTyVGEy_88-qigdje0TtaLArt9zEcBHmCrEA-kt7AEun6h_b1ukqfdJR75Is4mOXtOngVngk49M7bImm22SRNYsU-n9AEnqOME9ZygPSco4Eh7TtCeExQ5QQdO0DEnaM-JF-R8dnj2-SgKXTWiJdjWRaST1GbSqJTDPsdYwhUX-MxgCTKTcyzeZFRWZiqxJiljXWhW4jLNRAk_E5q9JE-atrGvCU2ZLCqZV7Hkhts80TwpSjCKrEylKGOxQ1756blc-tIpl93EvfntyFuyOTDlHdmo4L9q34Pht9K7Dqp7SgZarw
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=mSPD-NN%3A+A+Geometrically+Aware+Neural+Framework+for+Biomarker+Discovery+from+Functional+Connectomics+Manifolds&rft.jtitle=Information+processing+in+medical+imaging+%3A+proceedings+of+the+...+conference&rft.au=D%27Souza%2C+Niharika+S&rft.au=Venkataraman%2C+Archana&rft.date=2023-06-01&rft.issn=1011-2499&rft.volume=2023&rft.spage=53&rft_id=info%3Apmid%2F39469414&rft_id=info%3Apmid%2F39469414&rft.externalDocID=39469414
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-2499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-2499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-2499&client=summon