Angular momentum and vortex formation in Bose-Einstein-condensed cold dark matter haloes
Various extensions of the standard model of particle physics predict the existence of very light bosons, with masses ranging from about 10−5 eV for the QCD axion down to 10−33 eV for ultra-light particles. These particles could be responsible for all or part of the cold dark matter (CDM) in the Univ...
Saved in:
| Published in | Monthly notices of the Royal Astronomical Society Vol. 422; no. 1; pp. 135 - 161 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford, UK
Blackwell Publishing Ltd
01.05.2012
Oxford University Press |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0035-8711 1365-8711 1365-2966 1365-2966 |
| DOI | 10.1111/j.1365-2966.2012.20588.x |
Cover
| Abstract | Various extensions of the standard model of particle physics predict the existence of very light bosons, with masses ranging from about 10−5 eV for the QCD axion down to 10−33 eV for ultra-light particles. These particles could be responsible for all or part of the cold dark matter (CDM) in the Universe. For such particles to serve as CDM, their phase-space density must be high enough to form a Bose-Einstein condensate (BEC). The fluid-like nature of BEC-CDM dynamics differs from that of standard collisionless CDM, however, so different signature effects on galactic haloes may allow observations to distinguish them. Standard CDM has problems with galaxy observations on small scales; cuspy central density profiles of haloes and the overabundance of subhaloes seem to conflict with observations of dwarf galaxies. It has been suggested that BEC-CDM can overcome these shortcomings for a large range of particle mass m and self-interaction coupling strength g. For quantum coherence to influence structure on the scale of galactic haloes of radius R and mass M, either the de-Broglie wavelength λdeB≲R, which requires m≳m
H≅ 10−25(R/100 kpc)−1/2(M/1012 M⊙)−1/2 eV, or else λdeB≪R but gravity is balanced by self-interaction, which requires m≫m
H
and
g≫g
H≅ 2 × 10−64(R/100 kpc)(M/1012 M⊙)−1 eV cm3. Here we study the largely neglected effects of angular momentum on BEC haloes. Dimensionless spin parameters λ≃ 0.05 are expected from tidal-torquing by large-scale structure formation, just as for standard CDM. Since laboratory BECs develop quantum vortices if rotated rapidly enough, we ask whether this amount of angular momentum is sufficient to form vortices in BEC haloes, which would affect their structure with potentially observable consequences. The minimum angular momentum required for a halo to sustain a vortex, L
QM, corresponds to ℏ per particle, or ℏM/m. For λ= 0.05, this requires m≥ 9.5m
H, close enough to the particle mass required to influence structure on galactic scales that BEC haloes may be subject to vortex formation. While this is a necessary condition, it is not sufficient. To determine if and when quantum vortices will form in BEC haloes with a given λ-value, we study the equilibrium of self-gravitating, rotating, virialized BEC haloes which satisfy the Gross-Pitaevskii-Poisson equations, and calculate under what conditions vortices are energetically favoured, in two limits: either just enough angular momentum for one vortex or a significant excess of angular momentum. For λ= 0.05, vortex formation is energetically favoured for L/L
QM≥ 1 as long as both
m/m
H≥ 9.5 and
g/g
H≥ 68.0. Hence, vortices are expected for a wide range of BEC parameters. However, vortices cannot form for vanishing self-interaction (i.e. when λdeB≲R), and a range of particle parameters also remain even for BEC haloes supported by self-interaction, for which vortices will not form. Such BEC haloes can be modelled by compressible, (n= 1)-polytropic, irrotational Riemann-S ellipsoids. |
|---|---|
| AbstractList | Various extensions of the standard model of particle physics predict the existence of very light bosons, with masses ranging from about 10-5eV for the QCD axion down to 10-33eV for ultra-light particles. These particles could be responsible for all or part of the cold dark matter (CDM) in the Universe. For such particles to serve as CDM, their phase-space density must be high enough to form a Bose-Einstein condensate (BEC). The fluid-like nature of BEC-CDM dynamics differs from that of standard collisionless CDM, however, so different signature effects on galactic haloes may allow observations to distinguish them. Standard CDM has problems with galaxy observations on small scales; cuspy central density profiles of haloes and the overabundance of subhaloes seem to conflict with observations of dwarf galaxies. It has been suggested that BEC-CDM can overcome these shortcomings for a large range of particle mass m and self-interaction coupling strength g. For quantum coherence to influence structure on the scale of galactic haloes of radius R and mass M, either the de-Broglie wavelength λdeBR, which requires mmH 10-25(R/100kpc)-1/2(M/1012M)-1/2eV, or else λdeBR but gravity is balanced by self-interaction, which requires mmHandggH 2 × 10-64(R/100kpc)(M/1012M)-1 eV cm3. Here we study the largely neglected effects of angular momentum on BEC haloes. Dimensionless spin parameters λ 0.05 are expected from tidal-torquing by large-scale structure formation, just as for standard CDM. Since laboratory BECs develop quantum vortices if rotated rapidly enough, we ask whether this amount of angular momentum is sufficient to form vortices in BEC haloes, which would affect their structure with potentially observable consequences. The minimum angular momentum required for a halo to sustain a vortex, LQM, corresponds to per particle, or M/m. For λ= 0.05, this requires m≥ 9.5mH, close enough to the particle mass required to influence structure on galactic scales that BEC haloes may be subject to vortex formation. While this is a necessary condition, it is not sufficient. To determine if and when quantum vortices will form in BEC haloes with a given λ-value, we study the equilibrium of self-gravitating, rotating, virialized BEC haloes which satisfy the Gross-Pitaevskii-Poisson equations, and calculate under what conditions vortices are energetically favoured, in two limits: either just enough angular momentum for one vortex or a significant excess of angular momentum. For λ= 0.05, vortex formation is energetically favoured for L/LQM≥ 1 as long as bothm/mH≥ 9.5 andg/gH≥ 68.0. Hence, vortices are expected for a wide range of BEC parameters. However, vortices cannot form for vanishing self-interaction (i.e. when λdeBR), and a range of particle parameters also remain even for BEC haloes supported by self-interaction, for which vortices will not form. Such BEC haloes can be modelled by compressible, (n= 1)-polytropic, irrotational Riemann-S ellipsoids. [PUBLICATION ABSTRACT] Various extensions of the standard model of particle physics predict the existence of very light bosons, with masses ranging from about 10-5eV for the QCD axion down to 10-33eV for ultra-light particles. These particles could be responsible for all or part of the cold dark matter (CDM) in the Universe. For such particles to serve as CDM, their phase-space density must be high enough to form a Bose-Einstein condensate (BEC). The fluid-like nature of BEC-CDM dynamics differs from that of standard collisionless CDM, however, so different signature effects on galactic haloes may allow observations to distinguish them. Standard CDM has problems with galaxy observations on small scales; cuspy central density profiles of haloes and the overabundance of subhaloes seem to conflict with observations of dwarf galaxies. It has been suggested that BEC-CDM can overcome these shortcomings for a large range of particle mass m and self-interaction coupling strength g. For quantum coherence to influence structure on the scale of galactic haloes of radius R and mass M, either the de-Broglie wavelength lambda deB[lap]R, which requires m[gap]mH approximately equal to 10-25(R/100kpc)-1/2(M/1012M[odot])-1/2eV, or else lambda deB[Lt]R but gravity is balanced by self-interaction, which requires m>>mHandg>>gH approximately equal to 2 10-64(R/100kpc)(M/1012M[odot])-1 eV cm3. Here we study the largely neglected effects of angular momentum on BEC haloes. Dimensionless spin parameters lambda [sime] 0.05 are expected from tidal-torquing by large-scale structure formation, just as for standard CDM. Since laboratory BECs develop quantum vortices if rotated rapidly enough, we ask whether this amount of angular momentum is sufficient to form vortices in BEC haloes, which would affect their structure with potentially observable consequences. The minimum angular momentum required for a halo to sustain a vortex, LQM, corresponds to h per particle, or hM/m. For lambda = 0.05, this requires m greater than or equal to 9.5mH, close enough to the particle mass required to influence structure on galactic scales that BEC haloes may be subject to vortex formation. While this is a necessary condition, it is not sufficient. To determine if and when quantum vortices will form in BEC haloes with a given lambda -value, we study the equilibrium of self-gravitating, rotating, virialized BEC haloes which satisfy the Gross-Pitaevskii-Poisson equations, and calculate under what conditions vortices are energetically favoured, in two limits: either just enough angular momentum for one vortex or a significant excess of angular momentum. For lambda = 0.05, vortex formation is energetically favoured for L/LQM greater than or equal to 1 as long as bothm/mH greater than or equal to 9.5 andg/gH greater than or equal to 68.0. Hence, vortices are expected for a wide range of BEC parameters. However, vortices cannot form for vanishing self-interaction (i.e. when lambda deB[lap]R), and a range of particle parameters also remain even for BEC haloes supported by self-interaction, for which vortices will not form. Such BEC haloes can be modelled by compressible, (n= 1)-polytropic, irrotational Riemann-S ellipsoids. ABSTRACT Various extensions of the standard model of particle physics predict the existence of very light bosons, with masses ranging from about 10−5 eV for the QCD axion down to 10−33 eV for ultra‐light particles. These particles could be responsible for all or part of the cold dark matter (CDM) in the Universe. For such particles to serve as CDM, their phase‐space density must be high enough to form a Bose–Einstein condensate (BEC). The fluid‐like nature of BEC‐CDM dynamics differs from that of standard collisionless CDM, however, so different signature effects on galactic haloes may allow observations to distinguish them. Standard CDM has problems with galaxy observations on small scales; cuspy central density profiles of haloes and the overabundance of subhaloes seem to conflict with observations of dwarf galaxies. It has been suggested that BEC‐CDM can overcome these shortcomings for a large range of particle mass m and self‐interaction coupling strength g. For quantum coherence to influence structure on the scale of galactic haloes of radius R and mass M, either the de‐Broglie wavelength λdeB≲R, which requires m≳mH≅ 10−25(R/100 kpc)−1/2(M/1012 M⊙)−1/2 eV, or else λdeB≪R but gravity is balanced by self‐interaction, which requires m≫mHandg≫gH≅ 2 × 10−64(R/100 kpc)(M/1012 M⊙)−1 eV cm3. Here we study the largely neglected effects of angular momentum on BEC haloes. Dimensionless spin parameters λ≃ 0.05 are expected from tidal‐torquing by large‐scale structure formation, just as for standard CDM. Since laboratory BECs develop quantum vortices if rotated rapidly enough, we ask whether this amount of angular momentum is sufficient to form vortices in BEC haloes, which would affect their structure with potentially observable consequences. The minimum angular momentum required for a halo to sustain a vortex, LQM, corresponds to ℏ per particle, or ℏM/m. For λ= 0.05, this requires m≥ 9.5mH, close enough to the particle mass required to influence structure on galactic scales that BEC haloes may be subject to vortex formation. While this is a necessary condition, it is not sufficient. To determine if and when quantum vortices will form in BEC haloes with a given λ‐value, we study the equilibrium of self‐gravitating, rotating, virialized BEC haloes which satisfy the Gross–Pitaevskii–Poisson equations, and calculate under what conditions vortices are energetically favoured, in two limits: either just enough angular momentum for one vortex or a significant excess of angular momentum. For λ= 0.05, vortex formation is energetically favoured for L/LQM≥ 1 as long as bothm/mH≥ 9.5 andg/gH≥ 68.0. Hence, vortices are expected for a wide range of BEC parameters. However, vortices cannot form for vanishing self‐interaction (i.e. when λdeB≲R), and a range of particle parameters also remain even for BEC haloes supported by self‐interaction, for which vortices will not form. Such BEC haloes can be modelled by compressible, (n= 1)‐polytropic, irrotational Riemann‐S ellipsoids. Various extensions of the standard model of particle physics predict the existence of very light bosons, with masses ranging from about 10−5 eV for the QCD axion down to 10−33 eV for ultra-light particles. These particles could be responsible for all or part of the cold dark matter (CDM) in the Universe. For such particles to serve as CDM, their phase-space density must be high enough to form a Bose-Einstein condensate (BEC). The fluid-like nature of BEC-CDM dynamics differs from that of standard collisionless CDM, however, so different signature effects on galactic haloes may allow observations to distinguish them. Standard CDM has problems with galaxy observations on small scales; cuspy central density profiles of haloes and the overabundance of subhaloes seem to conflict with observations of dwarf galaxies. It has been suggested that BEC-CDM can overcome these shortcomings for a large range of particle mass m and self-interaction coupling strength g. For quantum coherence to influence structure on the scale of galactic haloes of radius R and mass M, either the de-Broglie wavelength λdeB≲R, which requires m≳m H≅ 10−25(R/100 kpc)−1/2(M/1012 M⊙)−1/2 eV, or else λdeB≪R but gravity is balanced by self-interaction, which requires m≫m H and g≫g H≅ 2 × 10−64(R/100 kpc)(M/1012 M⊙)−1 eV cm3. Here we study the largely neglected effects of angular momentum on BEC haloes. Dimensionless spin parameters λ≃ 0.05 are expected from tidal-torquing by large-scale structure formation, just as for standard CDM. Since laboratory BECs develop quantum vortices if rotated rapidly enough, we ask whether this amount of angular momentum is sufficient to form vortices in BEC haloes, which would affect their structure with potentially observable consequences. The minimum angular momentum required for a halo to sustain a vortex, L QM, corresponds to ℏ per particle, or ℏM/m. For λ= 0.05, this requires m≥ 9.5m H, close enough to the particle mass required to influence structure on galactic scales that BEC haloes may be subject to vortex formation. While this is a necessary condition, it is not sufficient. To determine if and when quantum vortices will form in BEC haloes with a given λ-value, we study the equilibrium of self-gravitating, rotating, virialized BEC haloes which satisfy the Gross-Pitaevskii-Poisson equations, and calculate under what conditions vortices are energetically favoured, in two limits: either just enough angular momentum for one vortex or a significant excess of angular momentum. For λ= 0.05, vortex formation is energetically favoured for L/L QM≥ 1 as long as both m/m H≥ 9.5 and g/g H≥ 68.0. Hence, vortices are expected for a wide range of BEC parameters. However, vortices cannot form for vanishing self-interaction (i.e. when λdeB≲R), and a range of particle parameters also remain even for BEC haloes supported by self-interaction, for which vortices will not form. Such BEC haloes can be modelled by compressible, (n= 1)-polytropic, irrotational Riemann-S ellipsoids. |
| Author | Shapiro, Paul R. Rindler-Daller, Tanja |
| Author_xml | – sequence: 1 givenname: Tanja surname: Rindler-Daller fullname: Rindler-Daller, Tanja organization: 1Department of Astronomy and Texas Cosmology Center, The University of Texas at Austin, Austin, TX 78712, USA – sequence: 2 givenname: Paul R. surname: Shapiro fullname: Shapiro, Paul R. email: shapiro@astro.as.utexas.edu organization: 1Department of Astronomy and Texas Cosmology Center, The University of Texas at Austin, Austin, TX 78712, USA |
| BookMark | eNqNkF9LwzAUxYNMcE6_Q8AXXzqTpumaF2GO-Qemgij4FrL2VjvTZCat27692So-KIJ5uAm5v3O49xyinrEGEMKUDGk4Z4shZSmPYpGmw5jQOBSeZcP1Hup_N3qoTwjjUTai9AAder8ghCQsTvvoeWxeWq0crm0NpmlrrEyBP6xrYI1L62rVVNbgyuAL6yGaVsY3UJkot6YA46HAudUFLpR7w4FtwOFXpS34I7RfKu3h-OseoKfL6ePkOprdX91MxrPIhumyiPKCzZlKuVAxUBEXCS0YpCMxyhNIYs7UvIRMcRDZfE5YOUrDb84zKnJIypywARKdb2uWarNSWsulq2rlNpISuY1ILuQ2CblNQm4jkruI5DpoTzvt0tn3Fnwj68rnoLUyYFsfDGhCKWEJD-jJD3RhW2fCZoEigckSIQJ13lGrSsPm34PI27uH3TMYsM7Atss_5NHvPT4BUcGYtw |
| ContentType | Journal Article |
| Copyright | 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS 2012 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS |
| Copyright_xml | – notice: 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS 2012 – notice: 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS |
| DBID | 8FD H8D L7M 7TG KL. ADTOC UNPAY |
| DOI | 10.1111/j.1365-2966.2012.20588.x |
| DatabaseName | Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
| DatabaseTitleList | Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Astronomy & Astrophysics |
| EISSN | 1365-2966 |
| EndPage | 161 |
| ExternalDocumentID | 10.1111/j.1365-2966.2012.20588.x 2635571861 MNR20588 |
| Genre | article Feature |
| GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABCQX ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAMMB AANHP ABAZT ABEJV ABGNP ABNGD ABVLG ACRPL ACUKT ACUXJ ACYXJ ADNMO AEFGJ AGQPQ AGXDD AHGBF AIDQK AIDYY ALXQX AMNDL ANAKG APJGH JXSIZ 8FD H8D L7M 7TG KL. ADTOC UNPAY |
| ID | FETCH-LOGICAL-o3658-15d3b3a659a2e192d41d3e6797c4e4253abfe8a5e98bb03f76e42c5819ce4fc03 |
| IEDL.DBID | UNPAY |
| ISSN | 0035-8711 1365-8711 1365-2966 |
| IngestDate | Sun Oct 26 03:45:31 EDT 2025 Fri Jul 11 16:11:46 EDT 2025 Sun Jul 13 05:14:59 EDT 2025 Wed Aug 20 07:24:45 EDT 2025 Wed Aug 28 03:26:35 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | methods: analytical galaxies: kinematics and dynamics dark matter galaxies: haloes cosmology: theory |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-o3658-15d3b3a659a2e192d41d3e6797c4e4253abfe8a5e98bb03f76e42c5819ce4fc03 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/mnras/article-pdf/422/1/135/18591284/mnras0422-0135.pdf |
| PQID | 1001038499 |
| PQPubID | 42411 |
| PageCount | 27 |
| ParticipantIDs | unpaywall_primary_10_1111_j_1365_2966_2012_20588_x proquest_miscellaneous_1014110345 proquest_journals_1001038499 wiley_primary_10_1111_j_1365_2966_2012_20588_x_MNR20588 oup_primary_10_1111_j_1365-2966_2012_20588_x |
| PublicationCentury | 2000 |
| PublicationDate | May 2012 |
| PublicationDateYYYYMMDD | 2012-05-01 |
| PublicationDate_xml | – month: 05 year: 2012 text: May 2012 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: London |
| PublicationTitle | Monthly notices of the Royal Astronomical Society |
| PublicationTitleAbbrev | Monthly Notices of the Royal Astronomical Society |
| PublicationYear | 2012 |
| Publisher | Blackwell Publishing Ltd Oxford University Press |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Oxford University Press |
| References | 1974; 16 2007; 664 2009; 01 2002; 19 2000; 47 2000; 5 2000; 534 2004; 69 2010; 104 2000; 85 2009; 671 2008; 78 1983; 51 1998; 81 1983; 50 1996; 460 1968; 172 2007; 75 2008; 387 1939 2008; 100 1955; 1 2006; 650 2001; 86 2010; 60 2010; 715 1993; 416 1997; 55 1987; 319 2007; 375 1999; 59 1997; 56 1987 1985; 215 2006; 369 2010; 7 2012; 537 1989; 39 2011; 413 2011; 415 2010; 407 2006; 12 2011 2010 1993; 88 2002; 34 1986; 57 2011; 84 1998 2003 2010; 81 2009; 697 1996; 53 2001; 63 2002a; 332 2001; 64 2010; 82 1969; 187 2007; 06 1990; 64 1983; 122 2005; 363 2002b; 332 2008; 06 2003; 68 2000; 84 1994; 50 1969 2009; 103 |
| References_xml | – volume: 84 start-page: 055013 year: 2011 publication-title: Phys. Rev. D – year: 2011 – volume: 416 start-page: L71 year: 1993 publication-title: ApJ – volume: 55 start-page: 6081 year: 1997 publication-title: Phys. Rev. D – volume: 1 start-page: 17 year: 1955 publication-title: Prog. Low Temp. Phys. – volume: 84 start-page: 043531 year: 2011 publication-title: Phys. Rev. D – volume: 319 start-page: 575 year: 1987 publication-title: ApJ – volume: 84 start-page: 5687 year: 2000 publication-title: Phys. Rev. Lett. – volume: 715 start-page: L35 year: 2010 publication-title: ApJ – volume: 63 start-page: 063506 year: 2001 publication-title: Phys. Rev. D – volume: 57 start-page: 2485 year: 1986 publication-title: Phys. Rev. Lett. – volume: 60 start-page: 405 year: 2010 publication-title: Ann. Rev. Nucl. Part. Sci. – volume: 51 start-page: 1415 year: 1983 publication-title: Phys. Rev. Lett. – volume: 64 start-page: 1084 year: 1990 publication-title: Phys. Rev. Lett. – volume: 104 start-page: 041301 year: 2010 publication-title: Phys. Rev. Lett. – volume: 85 start-page: 1158 year: 2000 publication-title: Phys. Rev. Lett. – volume: 81 start-page: 123530 year: 2010 publication-title: Phys. Rev. D – volume: 39 start-page: 4207 year: 1989 publication-title: Phys. Rev. A – volume: 88 start-page: 205 year: 1993 publication-title: ApJS – volume: 82 start-page: 103528 year: 2010 publication-title: Phys. Rev. D – volume: 68 start-page: 024023 year: 2003 publication-title: Phys. Rev. D – volume: 537 start-page: 127 year: 2012 publication-title: A&A – volume: 56 start-page: 6391 year: 1997 publication-title: Phys. Rev. D – volume: 407 start-page: 1338 year: 2010 publication-title: MNRAS – volume: 55 start-page: 2126 year: 1997 publication-title: Phys. Rev. A – volume: 64 start-page: 063603 year: 2001 publication-title: Phys. Rev. A – volume: 68 start-page: 023511 year: 2003 publication-title: Phys. Rev. D – volume: 59 start-page: 086004 year: 1999 publication-title: Phys. Rev. D – year: 1969 – volume: 172 start-page: 1331 year: 1968 publication-title: Phys. Rev. – volume: 415 start-page: 1125 year: 2011 publication-title: MNRAS – volume: 332 start-page: 325 year: 2002a publication-title: MNRAS – volume: 7 start-page: 01 year: 2010 publication-title: J. Cosmol. Astropart. Phys. – volume: 187 start-page: 1767 year: 1969 publication-title: Phys. Rev. – volume: 12 start-page: 012 year: 2006 publication-title: J. Cosmol. Astropart. Phys. – volume: 375 start-page: 163 year: 2007 publication-title: MNRAS – volume: 460 start-page: 506 year: 1996 publication-title: Nucl. Phys. B – volume: 413 start-page: 3095 year: 2011 publication-title: MNRAS – volume: 215 start-page: 575 year: 1985 publication-title: MNRAS – volume: 06 start-page: 025 year: 2007 publication-title: J. Cosmol. Astropart. Phys. – volume: 363 start-page: 1092 year: 2005 publication-title: MNRAS – volume: 84 start-page: 3760 year: 2000 publication-title: Phys. Rev. Lett. – volume: 16 start-page: 533 year: 1974 publication-title: J. Low Temp. Phys. – year: 1939 – volume: 86 start-page: 377 year: 2001 publication-title: Phys. Rev. Lett. – volume: 06 start-page: 033 year: 2008 publication-title: J. Cosmol. Astropart. Phys. – volume: 534 start-page: L127 year: 2000 publication-title: ApJ – volume: 697 start-page: 850 year: 2009 publication-title: ApJ – volume: 122 start-page: 221 year: 1983 publication-title: Phys. Lett. B – year: 1987 – volume: 19 start-page: L157 year: 2002 publication-title: Class. Quant. Grav. – year: 2003 – start-page: 244 year: 2010 – volume: 671 start-page: 174 year: 2009 publication-title: Phys. Lett. B – volume: 56 start-page: 762 year: 1997 publication-title: Phys. Rev. D – volume: 387 start-page: 1851 year: 2008 publication-title: Physica A – volume: 19 start-page: 5017 year: 2002 publication-title: Class. Quant. Grav. – volume: 01 start-page: 014 year: 2009 publication-title: J. Cosmol. Astropart. Phys. – volume: 69 start-page: 124033 year: 2004 publication-title: Phys. Rev. D – volume: 332 start-page: 339 year: 2002b publication-title: MNRAS – volume: 664 start-page: 117 year: 2007 publication-title: ApJ – volume: 81 start-page: 3067 year: 1998 publication-title: Phys. Rev. Lett. – volume: 650 start-page: 770 year: 2006 publication-title: ApJ – volume: 100 start-page: 080402 year: 2008 publication-title: Phys. Rev. Lett. – volume: 75 start-page: 043504 year: 2007 publication-title: Phys. Rev. D – volume: 50 start-page: 925 year: 1983 publication-title: Phys. Rev. Lett. – volume: 50 start-page: 3650 year: 1994 publication-title: Phys. Rev. D – volume: 5 start-page: 103 year: 2000 publication-title: New Astron. – volume: 34 start-page: 633 year: 2002 publication-title: Gen. Rel. Grav. – volume: 369 start-page: 485 year: 2006 publication-title: MNRAS – volume: 78 start-page: 063508 year: 2008 publication-title: Phys. Rev. D – volume: 53 start-page: 2236 year: 1996 publication-title: Phys. Rev. D – start-page: 403 year: 1998 – volume: 103 start-page: 111301 year: 2009 publication-title: Phys. Rev. Lett. – volume: 82 start-page: 064042 year: 2010 publication-title: Phys. Rev. D – volume: 47 start-page: 2715 year: 2000 publication-title: Mod. Opt. |
| SSID | ssj0004326 |
| Score | 2.5142949 |
| Snippet | Various extensions of the standard model of particle physics predict the existence of very light bosons, with masses ranging from about 10−5 eV for the QCD... ABSTRACT Various extensions of the standard model of particle physics predict the existence of very light bosons, with masses ranging from about 10−5 eV for... Various extensions of the standard model of particle physics predict the existence of very light bosons, with masses ranging from about 10-5eV for the QCD... |
| SourceID | unpaywall proquest wiley oup |
| SourceType | Open Access Repository Aggregation Database Publisher |
| StartPage | 135 |
| SubjectTerms | cosmology: theory Dark matter galaxies: haloes galaxies: kinematics and dynamics methods: analytical Stars & galaxies |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL-UCbQE1UJCRECey2tT5PS5Vqwppe6io1ANSNLYnsNpdp9psSsupj4DEG_ZJmHF2F7YqEkLcHP_Esj3jfOPMfBbiTQUqVVnfhnEOHJKDWVhAZUIbZQCVMkZ7SqHhSXp8Fn84T84X_k8cC9PxQ6wO3Fgz_H7NCg66WVdy76FFeJ09tDioKsnzHuNJKvDW1ekvJqlY-ZvXPEMj2QjRulPPvS-6E_LGyHOzdRdw_RUmk3Us6z9GR4_FeDmMzgdl3Gvnume-3WF4_D_j3BKPFphVDjoh2xYP0O2I3UHDp-j19Fq-lT7dHZI0OyIYEhKvZ_7AngoPJiOCxf7pifg0cJ_Z81VOmfph3k4lOCsv2eX3Sq4iKeXIyfd1g7c3Pw5HBGBx5G5vvpPpTrtkg1aS9FppYTaWU88PKr_ApMbmqTg7Ovx4cBwubngIaxoTma-JVVpBmhSwj4Q1bRxZhWlWZCZG2k0U6ApzSLDIte6rKksp1ySEYgzGlemrZ2LD1Q53aTUzq6kBFkB1GDRqQyIIBRpbUTIKxDtazfKi4_Aof7N9lrNb8uyWfnbLq0DsLZe9XGh1w_zOzCdPRmIgXq-KSR_5Jws4rFuuE8UEqVScBGJ_JS5_6Le8p9_MC8NfNyiHJ6c--fyfW74QDzm_c-PcExvzWYsvCWrN9SuvRD8BNvob5Q priority: 102 providerName: Wiley-Blackwell |
| Title | Angular momentum and vortex formation in Bose-Einstein-condensed cold dark matter haloes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2966.2012.20588.x https://www.proquest.com/docview/1001038499 https://www.proquest.com/docview/1014110345 https://academic.oup.com/mnras/article-pdf/422/1/135/18591284/mnras0422-0135.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 422 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1365-2966 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004326 issn: 1365-2966 databaseCode: KQ8 dateStart: 18270209 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1365-2966 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004326 issn: 1365-2966 databaseCode: TOX dateStart: 18591101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1365-2966 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1365-2966 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004326 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-N7gFe-BigBcZkJMQTaZo4zsdjmTZNSC3TtErlKXJsB6o1Tmka2PjrOTtJoQgkhHiJHPssyz7b-Z199wvAq4LTiMYj6YYJNyE5KnZTXghX-jHnBRUit5RCk2l0Pgvfzdl8Dy76WBjeeYUP-5CGUq957XXD6K5k4YVB4PmeT5nnG_I13F9bIcNmhZYxZUOUugP7EUN0PoD92fRi_KFnZ0T74EcoVmqvMm3a5O86-vQSxv3LRGyxJDH8SDthcAaN3m30it9-5cvlLr61H6izB_C571rrl3I9bDb5UHz7hfXxf_b9Idzv0CwZt3UfwZ7SB3A4rs35elXektfEptvjk_oAnAli9Gptj_Kx8GS5QMBs3x7DfKw_Gp9YUhpSiE1TEq4l-WKcgW_INsaSLDR5W9XKPV0gsFUL7aJBj3tnrSTBOS2J5OtrUlrWUPKJLytVP4HZ2enVybnb_ffBrXDQ0ahlkuaUo_54oBCBytCXVEVxGotQ4R5DeV6ohDOVJnk-okUcYa5giG2ECgsxok9hoCutDlGfscyxgko5yhgomQucmDxVQhaY9B14g4OdrVpmj-wni6hXf2bUn1n1ZzcOHPWKz7q1XhvWZ8Myj6ajAy-3xbhKzdUL16pqjIwfItCiIXMg2E6YP7Sb_abd2M6sv66QTaaXNvnsX5p7DvfMa-vXeQSDzbpRLxB7bfJjtDouA3xevZ8fd0vrOznFIfI |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQOZQLpQXUlEKNhDiR1aZ2_o5L1WoL3T1UrdQDkuW_wKpZp9psoOXUR0DiDfskzDi7W7YqEkLcnMSOZXvG-WYy85mQN4VkCUu7JuSZxJQcm4a5LHRoolTKgmmtPKXQYJj0T_mHs_hsdhwQ5sK0_BALhxtqht-vUcHRIb2s5T5ECwA7hmhhVlWcZR0AlA95AmYLIqTjWy4pzvzZa56jEayEaDms59433Ul6Q-y52rgLefVNluUymvWfo4M1Us4H0kahnHeaqero73c4Hv_TSJ-QxzPYSnutnK2TB9ZtkM1ejY70anxF31Jfbv0k9QYJBgDGq4n32cPDvXIEyNhfPSWfeu4zBr_SMbI_TJsxlc7Qrxj1e0kXyZR05Oj7qrY31z_3R4Bh7cjdXP8A6x02ytoaCgJsqJGTczr2FKH0iywrWz8jpwf7J3v9cHbIQ1jBmMCCjQ1TTCZxLnctwE3DI8Nskuap5hY2FCZVYTMZ2zxTqsuKNIG7OgYgoy0vdJc9JyuucnYTljM1ChrYXEIdxI1KgxTK3GpTQDEKyDtYTnHR0niI38yf-ewKnF3hZ1dcBmR7vu5iptg1UjwjpTzYiQF5vXgMKon_WaSzVYN1Ig6oivE4ILsLeflDv-KeflMvDX_dQAyGx7649c8td8hq_2RwJI4Ohx9fkEdYp43q3CYr00ljXwLymqpXXqN-AQnlIAY |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQkIAXYAO0wGBGQjyRqpmd22PZVo1LKzQxaQ9Ilm8Z1VKnahrYeNpPQOIf7pdwjtMWOg0JId6cxI5l-xznOyfnfCbkRSFZwtKuCXkmMSXHpmEuCx2aKJWyYForTyk0GCYHR_ztcXw8Pw4Ic2Fafoilww01w-_XqOB2YopVLfchWgDYMUQLs6riLOsAoLzJ4zzD-L69w19cUpz5s9c8RyNYCdFqWM-1b7qS9IbY83bjJvL8qyzLVTTrP0f9e6RcDKSNQjntNDPV0d-ucDz-p5HeJ3fnsJX2WjlbJzes2yCbvRod6dX4nL6kvtz6SeoNEgwAjFdT77OHh7vlCJCxv3pAPvXcCQa_0jGyP8yaMZXO0C8Y9XtGl8mUdOTo66q2lxc_9keAYe3IXV58B-sdNsraGgoCbKiR01M69hSh9LMsK1s_JEf9_Y-7B-H8kIewgjGBBRsbpphM4lzuWICbhkeG2STNU80tbChMqsJmMrZ5plSXFWkCd3UMQEZbXugue0TWXOXsJixnahQ0sLmEOogblQYplLnVpoBiFJBXsJxi0tJ4iN_Mn8XsCpxd4WdXnAVka7HuYq7YNVI8I6U82IkBeb58DCqJ_1mks1WDdSIOqIrxOCA7S3n5Q7_imn5TLw1_3UAMhoe--PifW26TWx_2-uL9m-G7J-QOVmmDOrfI2mza2KcAvGbqmVeon4SxH4o |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdG9wAvfAzQAgMZCfFEmqbO52OZNk1IrSZEpfIUXWwHqjVOaRrY-Ou5c5JCEUgI8eaPsyz7bOd39t0vjL0sQEQiHik3SIBCcnTsplBIV_kxQCGkzC2l0HQWXcyDt4twccAu-1gY6LzCh31IQ2k2UHvdNLprVXjBeOz5ni9CzyfyNTxfWyFis0LLWIRDlLrFDqMQ0fmAHc5nl5MPPTsj2gc_QrFS-5Rp01S-7-jTS5D7F0VshUlC_Eh7YXCERm83Zg03X2G12se39gN1fo997ofW-qVcDZttPpTffmF9_J9jv8_udmiWT9q2D9iBNkfseFLT_XpV3vBX3Kbb65P6iDlTxOjVxl7lY-XpaomA2eYessXEfCSfWF4SKcS2KTkYxb-QM_A138VY8qXhb6pau2dLBLZ6aVw06PHsrLXiuKYVV7C54qVlDeWfYFXp-hGbn5-9P71wu_8-uBVOOhq1oRK5ANQfjDUiUBX4SugoTmMZaDxjBOSFTiDUaZLnI1HEEZbKELGN1EEhR-IxG5jK6GPUZ6xybKBTQBmCkrnEhQmplqrApO-w1zjZ2bpl9sh-soh69Wek_syqP7t22Emv-Kzb6zWxPhPLPJqODnuxq8ZdSk8vYHTVkIwfINASQeiw8W7B_KHf7Df9xnZl_XWDbDp7Z5NP_qW7p-wOZVu_zhM22G4a_Qyx1zZ_3m2n77QZH-0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Angular+momentum+and+vortex+formation+in+Bose-Einstein-condensed+cold+dark+matter+haloes&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Rindler-Daller%2C+Tanja&rft.au=Shapiro%2C+Paul+R.&rft.date=2012-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=422&rft.issue=1&rft.spage=135&rft.epage=161&rft_id=info:doi/10.1111%2Fj.1365-2966.2012.20588.x&rft.externalDocID=10.1111%2Fj.1365-2966.2012.20588.x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |