Angular momentum and vortex formation in Bose-Einstein-condensed cold dark matter haloes

Various extensions of the standard model of particle physics predict the existence of very light bosons, with masses ranging from about 10−5 eV for the QCD axion down to 10−33 eV for ultra-light particles. These particles could be responsible for all or part of the cold dark matter (CDM) in the Univ...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 422; no. 1; pp. 135 - 161
Main Authors Rindler-Daller, Tanja, Shapiro, Paul R.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.05.2012
Oxford University Press
Subjects
Online AccessGet full text
ISSN0035-8711
1365-8711
1365-2966
1365-2966
DOI10.1111/j.1365-2966.2012.20588.x

Cover

Abstract Various extensions of the standard model of particle physics predict the existence of very light bosons, with masses ranging from about 10−5 eV for the QCD axion down to 10−33 eV for ultra-light particles. These particles could be responsible for all or part of the cold dark matter (CDM) in the Universe. For such particles to serve as CDM, their phase-space density must be high enough to form a Bose-Einstein condensate (BEC). The fluid-like nature of BEC-CDM dynamics differs from that of standard collisionless CDM, however, so different signature effects on galactic haloes may allow observations to distinguish them. Standard CDM has problems with galaxy observations on small scales; cuspy central density profiles of haloes and the overabundance of subhaloes seem to conflict with observations of dwarf galaxies. It has been suggested that BEC-CDM can overcome these shortcomings for a large range of particle mass m and self-interaction coupling strength g. For quantum coherence to influence structure on the scale of galactic haloes of radius R and mass M, either the de-Broglie wavelength λdeB≲R, which requires m≳m H≅ 10−25(R/100 kpc)−1/2(M/1012 M⊙)−1/2 eV, or else λdeB≪R but gravity is balanced by self-interaction, which requires m≫m H and g≫g H≅ 2 × 10−64(R/100 kpc)(M/1012 M⊙)−1 eV cm3. Here we study the largely neglected effects of angular momentum on BEC haloes. Dimensionless spin parameters λ≃ 0.05 are expected from tidal-torquing by large-scale structure formation, just as for standard CDM. Since laboratory BECs develop quantum vortices if rotated rapidly enough, we ask whether this amount of angular momentum is sufficient to form vortices in BEC haloes, which would affect their structure with potentially observable consequences. The minimum angular momentum required for a halo to sustain a vortex, L QM, corresponds to ℏ per particle, or ℏM/m. For λ= 0.05, this requires m≥ 9.5m H, close enough to the particle mass required to influence structure on galactic scales that BEC haloes may be subject to vortex formation. While this is a necessary condition, it is not sufficient. To determine if and when quantum vortices will form in BEC haloes with a given λ-value, we study the equilibrium of self-gravitating, rotating, virialized BEC haloes which satisfy the Gross-Pitaevskii-Poisson equations, and calculate under what conditions vortices are energetically favoured, in two limits: either just enough angular momentum for one vortex or a significant excess of angular momentum. For λ= 0.05, vortex formation is energetically favoured for L/L QM≥ 1 as long as both m/m H≥ 9.5 and g/g H≥ 68.0. Hence, vortices are expected for a wide range of BEC parameters. However, vortices cannot form for vanishing self-interaction (i.e. when λdeB≲R), and a range of particle parameters also remain even for BEC haloes supported by self-interaction, for which vortices will not form. Such BEC haloes can be modelled by compressible, (n= 1)-polytropic, irrotational Riemann-S ellipsoids.
AbstractList Various extensions of the standard model of particle physics predict the existence of very light bosons, with masses ranging from about 10-5eV for the QCD axion down to 10-33eV for ultra-light particles. These particles could be responsible for all or part of the cold dark matter (CDM) in the Universe. For such particles to serve as CDM, their phase-space density must be high enough to form a Bose-Einstein condensate (BEC). The fluid-like nature of BEC-CDM dynamics differs from that of standard collisionless CDM, however, so different signature effects on galactic haloes may allow observations to distinguish them. Standard CDM has problems with galaxy observations on small scales; cuspy central density profiles of haloes and the overabundance of subhaloes seem to conflict with observations of dwarf galaxies. It has been suggested that BEC-CDM can overcome these shortcomings for a large range of particle mass m and self-interaction coupling strength g. For quantum coherence to influence structure on the scale of galactic haloes of radius R and mass M, either the de-Broglie wavelength λdeBR, which requires mmH 10-25(R/100kpc)-1/2(M/1012M)-1/2eV, or else λdeBR but gravity is balanced by self-interaction, which requires mmHandggH 2 × 10-64(R/100kpc)(M/1012M)-1 eV cm3. Here we study the largely neglected effects of angular momentum on BEC haloes. Dimensionless spin parameters λ 0.05 are expected from tidal-torquing by large-scale structure formation, just as for standard CDM. Since laboratory BECs develop quantum vortices if rotated rapidly enough, we ask whether this amount of angular momentum is sufficient to form vortices in BEC haloes, which would affect their structure with potentially observable consequences. The minimum angular momentum required for a halo to sustain a vortex, LQM, corresponds to per particle, or M/m. For λ= 0.05, this requires m≥ 9.5mH, close enough to the particle mass required to influence structure on galactic scales that BEC haloes may be subject to vortex formation. While this is a necessary condition, it is not sufficient. To determine if and when quantum vortices will form in BEC haloes with a given λ-value, we study the equilibrium of self-gravitating, rotating, virialized BEC haloes which satisfy the Gross-Pitaevskii-Poisson equations, and calculate under what conditions vortices are energetically favoured, in two limits: either just enough angular momentum for one vortex or a significant excess of angular momentum. For λ= 0.05, vortex formation is energetically favoured for L/LQM≥ 1 as long as bothm/mH≥ 9.5 andg/gH≥ 68.0. Hence, vortices are expected for a wide range of BEC parameters. However, vortices cannot form for vanishing self-interaction (i.e. when λdeBR), and a range of particle parameters also remain even for BEC haloes supported by self-interaction, for which vortices will not form. Such BEC haloes can be modelled by compressible, (n= 1)-polytropic, irrotational Riemann-S ellipsoids. [PUBLICATION ABSTRACT]
Various extensions of the standard model of particle physics predict the existence of very light bosons, with masses ranging from about 10-5eV for the QCD axion down to 10-33eV for ultra-light particles. These particles could be responsible for all or part of the cold dark matter (CDM) in the Universe. For such particles to serve as CDM, their phase-space density must be high enough to form a Bose-Einstein condensate (BEC). The fluid-like nature of BEC-CDM dynamics differs from that of standard collisionless CDM, however, so different signature effects on galactic haloes may allow observations to distinguish them. Standard CDM has problems with galaxy observations on small scales; cuspy central density profiles of haloes and the overabundance of subhaloes seem to conflict with observations of dwarf galaxies. It has been suggested that BEC-CDM can overcome these shortcomings for a large range of particle mass m and self-interaction coupling strength g. For quantum coherence to influence structure on the scale of galactic haloes of radius R and mass M, either the de-Broglie wavelength lambda deB[lap]R, which requires m[gap]mH approximately equal to 10-25(R/100kpc)-1/2(M/1012M[odot])-1/2eV, or else lambda deB[Lt]R but gravity is balanced by self-interaction, which requires m>>mHandg>>gH approximately equal to 2 10-64(R/100kpc)(M/1012M[odot])-1 eV cm3. Here we study the largely neglected effects of angular momentum on BEC haloes. Dimensionless spin parameters lambda [sime] 0.05 are expected from tidal-torquing by large-scale structure formation, just as for standard CDM. Since laboratory BECs develop quantum vortices if rotated rapidly enough, we ask whether this amount of angular momentum is sufficient to form vortices in BEC haloes, which would affect their structure with potentially observable consequences. The minimum angular momentum required for a halo to sustain a vortex, LQM, corresponds to h per particle, or hM/m. For lambda = 0.05, this requires m greater than or equal to 9.5mH, close enough to the particle mass required to influence structure on galactic scales that BEC haloes may be subject to vortex formation. While this is a necessary condition, it is not sufficient. To determine if and when quantum vortices will form in BEC haloes with a given lambda -value, we study the equilibrium of self-gravitating, rotating, virialized BEC haloes which satisfy the Gross-Pitaevskii-Poisson equations, and calculate under what conditions vortices are energetically favoured, in two limits: either just enough angular momentum for one vortex or a significant excess of angular momentum. For lambda = 0.05, vortex formation is energetically favoured for L/LQM greater than or equal to 1 as long as bothm/mH greater than or equal to 9.5 andg/gH greater than or equal to 68.0. Hence, vortices are expected for a wide range of BEC parameters. However, vortices cannot form for vanishing self-interaction (i.e. when lambda deB[lap]R), and a range of particle parameters also remain even for BEC haloes supported by self-interaction, for which vortices will not form. Such BEC haloes can be modelled by compressible, (n= 1)-polytropic, irrotational Riemann-S ellipsoids.
ABSTRACT Various extensions of the standard model of particle physics predict the existence of very light bosons, with masses ranging from about 10−5 eV for the QCD axion down to 10−33 eV for ultra‐light particles. These particles could be responsible for all or part of the cold dark matter (CDM) in the Universe. For such particles to serve as CDM, their phase‐space density must be high enough to form a Bose–Einstein condensate (BEC). The fluid‐like nature of BEC‐CDM dynamics differs from that of standard collisionless CDM, however, so different signature effects on galactic haloes may allow observations to distinguish them. Standard CDM has problems with galaxy observations on small scales; cuspy central density profiles of haloes and the overabundance of subhaloes seem to conflict with observations of dwarf galaxies. It has been suggested that BEC‐CDM can overcome these shortcomings for a large range of particle mass m and self‐interaction coupling strength g. For quantum coherence to influence structure on the scale of galactic haloes of radius R and mass M, either the de‐Broglie wavelength λdeB≲R, which requires m≳mH≅ 10−25(R/100 kpc)−1/2(M/1012 M⊙)−1/2 eV, or else λdeB≪R but gravity is balanced by self‐interaction, which requires m≫mHandg≫gH≅ 2 × 10−64(R/100 kpc)(M/1012 M⊙)−1 eV cm3. Here we study the largely neglected effects of angular momentum on BEC haloes. Dimensionless spin parameters λ≃ 0.05 are expected from tidal‐torquing by large‐scale structure formation, just as for standard CDM. Since laboratory BECs develop quantum vortices if rotated rapidly enough, we ask whether this amount of angular momentum is sufficient to form vortices in BEC haloes, which would affect their structure with potentially observable consequences. The minimum angular momentum required for a halo to sustain a vortex, LQM, corresponds to ℏ per particle, or ℏM/m. For λ= 0.05, this requires m≥ 9.5mH, close enough to the particle mass required to influence structure on galactic scales that BEC haloes may be subject to vortex formation. While this is a necessary condition, it is not sufficient. To determine if and when quantum vortices will form in BEC haloes with a given λ‐value, we study the equilibrium of self‐gravitating, rotating, virialized BEC haloes which satisfy the Gross–Pitaevskii–Poisson equations, and calculate under what conditions vortices are energetically favoured, in two limits: either just enough angular momentum for one vortex or a significant excess of angular momentum. For λ= 0.05, vortex formation is energetically favoured for L/LQM≥ 1 as long as bothm/mH≥ 9.5 andg/gH≥ 68.0. Hence, vortices are expected for a wide range of BEC parameters. However, vortices cannot form for vanishing self‐interaction (i.e. when λdeB≲R), and a range of particle parameters also remain even for BEC haloes supported by self‐interaction, for which vortices will not form. Such BEC haloes can be modelled by compressible, (n= 1)‐polytropic, irrotational Riemann‐S ellipsoids.
Various extensions of the standard model of particle physics predict the existence of very light bosons, with masses ranging from about 10−5 eV for the QCD axion down to 10−33 eV for ultra-light particles. These particles could be responsible for all or part of the cold dark matter (CDM) in the Universe. For such particles to serve as CDM, their phase-space density must be high enough to form a Bose-Einstein condensate (BEC). The fluid-like nature of BEC-CDM dynamics differs from that of standard collisionless CDM, however, so different signature effects on galactic haloes may allow observations to distinguish them. Standard CDM has problems with galaxy observations on small scales; cuspy central density profiles of haloes and the overabundance of subhaloes seem to conflict with observations of dwarf galaxies. It has been suggested that BEC-CDM can overcome these shortcomings for a large range of particle mass m and self-interaction coupling strength g. For quantum coherence to influence structure on the scale of galactic haloes of radius R and mass M, either the de-Broglie wavelength λdeB≲R, which requires m≳m H≅ 10−25(R/100 kpc)−1/2(M/1012 M⊙)−1/2 eV, or else λdeB≪R but gravity is balanced by self-interaction, which requires m≫m H and g≫g H≅ 2 × 10−64(R/100 kpc)(M/1012 M⊙)−1 eV cm3. Here we study the largely neglected effects of angular momentum on BEC haloes. Dimensionless spin parameters λ≃ 0.05 are expected from tidal-torquing by large-scale structure formation, just as for standard CDM. Since laboratory BECs develop quantum vortices if rotated rapidly enough, we ask whether this amount of angular momentum is sufficient to form vortices in BEC haloes, which would affect their structure with potentially observable consequences. The minimum angular momentum required for a halo to sustain a vortex, L QM, corresponds to ℏ per particle, or ℏM/m. For λ= 0.05, this requires m≥ 9.5m H, close enough to the particle mass required to influence structure on galactic scales that BEC haloes may be subject to vortex formation. While this is a necessary condition, it is not sufficient. To determine if and when quantum vortices will form in BEC haloes with a given λ-value, we study the equilibrium of self-gravitating, rotating, virialized BEC haloes which satisfy the Gross-Pitaevskii-Poisson equations, and calculate under what conditions vortices are energetically favoured, in two limits: either just enough angular momentum for one vortex or a significant excess of angular momentum. For λ= 0.05, vortex formation is energetically favoured for L/L QM≥ 1 as long as both m/m H≥ 9.5 and g/g H≥ 68.0. Hence, vortices are expected for a wide range of BEC parameters. However, vortices cannot form for vanishing self-interaction (i.e. when λdeB≲R), and a range of particle parameters also remain even for BEC haloes supported by self-interaction, for which vortices will not form. Such BEC haloes can be modelled by compressible, (n= 1)-polytropic, irrotational Riemann-S ellipsoids.
Author Shapiro, Paul R.
Rindler-Daller, Tanja
Author_xml – sequence: 1
  givenname: Tanja
  surname: Rindler-Daller
  fullname: Rindler-Daller, Tanja
  organization: 1Department of Astronomy and Texas Cosmology Center, The University of Texas at Austin, Austin, TX 78712, USA
– sequence: 2
  givenname: Paul R.
  surname: Shapiro
  fullname: Shapiro, Paul R.
  email: shapiro@astro.as.utexas.edu
  organization: 1Department of Astronomy and Texas Cosmology Center, The University of Texas at Austin, Austin, TX 78712, USA
BookMark eNqNkF9LwzAUxYNMcE6_Q8AXXzqTpumaF2GO-Qemgij4FrL2VjvTZCat27692So-KIJ5uAm5v3O49xyinrEGEMKUDGk4Z4shZSmPYpGmw5jQOBSeZcP1Hup_N3qoTwjjUTai9AAder8ghCQsTvvoeWxeWq0crm0NpmlrrEyBP6xrYI1L62rVVNbgyuAL6yGaVsY3UJkot6YA46HAudUFLpR7w4FtwOFXpS34I7RfKu3h-OseoKfL6ePkOprdX91MxrPIhumyiPKCzZlKuVAxUBEXCS0YpCMxyhNIYs7UvIRMcRDZfE5YOUrDb84zKnJIypywARKdb2uWarNSWsulq2rlNpISuY1ILuQ2CblNQm4jkruI5DpoTzvt0tn3Fnwj68rnoLUyYFsfDGhCKWEJD-jJD3RhW2fCZoEigckSIQJ13lGrSsPm34PI27uH3TMYsM7Atss_5NHvPT4BUcGYtw
ContentType Journal Article
Copyright 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS 2012
2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS
Copyright_xml – notice: 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS 2012
– notice: 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS
DBID 8FD
H8D
L7M
7TG
KL.
ADTOC
UNPAY
DOI 10.1111/j.1365-2966.2012.20588.x
DatabaseName Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList Technology Research Database
Meteorological & Geoastrophysical Abstracts - Academic


Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 161
ExternalDocumentID 10.1111/j.1365-2966.2012.20588.x
2635571861
MNR20588
Genre article
Feature
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAMMB
AANHP
ABAZT
ABEJV
ABGNP
ABNGD
ABVLG
ACRPL
ACUKT
ACUXJ
ACYXJ
ADNMO
AEFGJ
AGQPQ
AGXDD
AHGBF
AIDQK
AIDYY
ALXQX
AMNDL
ANAKG
APJGH
JXSIZ
8FD
H8D
L7M
7TG
KL.
ADTOC
UNPAY
ID FETCH-LOGICAL-o3658-15d3b3a659a2e192d41d3e6797c4e4253abfe8a5e98bb03f76e42c5819ce4fc03
IEDL.DBID UNPAY
ISSN 0035-8711
1365-8711
1365-2966
IngestDate Sun Oct 26 03:45:31 EDT 2025
Fri Jul 11 16:11:46 EDT 2025
Sun Jul 13 05:14:59 EDT 2025
Wed Aug 20 07:24:45 EDT 2025
Wed Aug 28 03:26:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords methods: analytical
galaxies: kinematics and dynamics
dark matter
galaxies: haloes
cosmology: theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-o3658-15d3b3a659a2e192d41d3e6797c4e4253abfe8a5e98bb03f76e42c5819ce4fc03
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/mnras/article-pdf/422/1/135/18591284/mnras0422-0135.pdf
PQID 1001038499
PQPubID 42411
PageCount 27
ParticipantIDs unpaywall_primary_10_1111_j_1365_2966_2012_20588_x
proquest_miscellaneous_1014110345
proquest_journals_1001038499
wiley_primary_10_1111_j_1365_2966_2012_20588_x_MNR20588
oup_primary_10_1111_j_1365-2966_2012_20588_x
PublicationCentury 2000
PublicationDate May 2012
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: May 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationTitleAbbrev Monthly Notices of the Royal Astronomical Society
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Oxford University Press
Publisher_xml – name: Blackwell Publishing Ltd
– name: Oxford University Press
References 1974; 16
2007; 664
2009; 01
2002; 19
2000; 47
2000; 5
2000; 534
2004; 69
2010; 104
2000; 85
2009; 671
2008; 78
1983; 51
1998; 81
1983; 50
1996; 460
1968; 172
2007; 75
2008; 387
1939
2008; 100
1955; 1
2006; 650
2001; 86
2010; 60
2010; 715
1993; 416
1997; 55
1987; 319
2007; 375
1999; 59
1997; 56
1987
1985; 215
2006; 369
2010; 7
2012; 537
1989; 39
2011; 413
2011; 415
2010; 407
2006; 12
2011
2010
1993; 88
2002; 34
1986; 57
2011; 84
1998
2003
2010; 81
2009; 697
1996; 53
2001; 63
2002a; 332
2001; 64
2010; 82
1969; 187
2007; 06
1990; 64
1983; 122
2005; 363
2002b; 332
2008; 06
2003; 68
2000; 84
1994; 50
1969
2009; 103
References_xml – volume: 84
  start-page: 055013
  year: 2011
  publication-title: Phys. Rev. D
– year: 2011
– volume: 416
  start-page: L71
  year: 1993
  publication-title: ApJ
– volume: 55
  start-page: 6081
  year: 1997
  publication-title: Phys. Rev. D
– volume: 1
  start-page: 17
  year: 1955
  publication-title: Prog. Low Temp. Phys.
– volume: 84
  start-page: 043531
  year: 2011
  publication-title: Phys. Rev. D
– volume: 319
  start-page: 575
  year: 1987
  publication-title: ApJ
– volume: 84
  start-page: 5687
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 715
  start-page: L35
  year: 2010
  publication-title: ApJ
– volume: 63
  start-page: 063506
  year: 2001
  publication-title: Phys. Rev. D
– volume: 57
  start-page: 2485
  year: 1986
  publication-title: Phys. Rev. Lett.
– volume: 60
  start-page: 405
  year: 2010
  publication-title: Ann. Rev. Nucl. Part. Sci.
– volume: 51
  start-page: 1415
  year: 1983
  publication-title: Phys. Rev. Lett.
– volume: 64
  start-page: 1084
  year: 1990
  publication-title: Phys. Rev. Lett.
– volume: 104
  start-page: 041301
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 85
  start-page: 1158
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 81
  start-page: 123530
  year: 2010
  publication-title: Phys. Rev. D
– volume: 39
  start-page: 4207
  year: 1989
  publication-title: Phys. Rev. A
– volume: 88
  start-page: 205
  year: 1993
  publication-title: ApJS
– volume: 82
  start-page: 103528
  year: 2010
  publication-title: Phys. Rev. D
– volume: 68
  start-page: 024023
  year: 2003
  publication-title: Phys. Rev. D
– volume: 537
  start-page: 127
  year: 2012
  publication-title: A&A
– volume: 56
  start-page: 6391
  year: 1997
  publication-title: Phys. Rev. D
– volume: 407
  start-page: 1338
  year: 2010
  publication-title: MNRAS
– volume: 55
  start-page: 2126
  year: 1997
  publication-title: Phys. Rev. A
– volume: 64
  start-page: 063603
  year: 2001
  publication-title: Phys. Rev. A
– volume: 68
  start-page: 023511
  year: 2003
  publication-title: Phys. Rev. D
– volume: 59
  start-page: 086004
  year: 1999
  publication-title: Phys. Rev. D
– year: 1969
– volume: 172
  start-page: 1331
  year: 1968
  publication-title: Phys. Rev.
– volume: 415
  start-page: 1125
  year: 2011
  publication-title: MNRAS
– volume: 332
  start-page: 325
  year: 2002a
  publication-title: MNRAS
– volume: 7
  start-page: 01
  year: 2010
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 187
  start-page: 1767
  year: 1969
  publication-title: Phys. Rev.
– volume: 12
  start-page: 012
  year: 2006
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 375
  start-page: 163
  year: 2007
  publication-title: MNRAS
– volume: 460
  start-page: 506
  year: 1996
  publication-title: Nucl. Phys. B
– volume: 413
  start-page: 3095
  year: 2011
  publication-title: MNRAS
– volume: 215
  start-page: 575
  year: 1985
  publication-title: MNRAS
– volume: 06
  start-page: 025
  year: 2007
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 363
  start-page: 1092
  year: 2005
  publication-title: MNRAS
– volume: 84
  start-page: 3760
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 16
  start-page: 533
  year: 1974
  publication-title: J. Low Temp. Phys.
– year: 1939
– volume: 86
  start-page: 377
  year: 2001
  publication-title: Phys. Rev. Lett.
– volume: 06
  start-page: 033
  year: 2008
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 534
  start-page: L127
  year: 2000
  publication-title: ApJ
– volume: 697
  start-page: 850
  year: 2009
  publication-title: ApJ
– volume: 122
  start-page: 221
  year: 1983
  publication-title: Phys. Lett. B
– year: 1987
– volume: 19
  start-page: L157
  year: 2002
  publication-title: Class. Quant. Grav.
– year: 2003
– start-page: 244
  year: 2010
– volume: 671
  start-page: 174
  year: 2009
  publication-title: Phys. Lett. B
– volume: 56
  start-page: 762
  year: 1997
  publication-title: Phys. Rev. D
– volume: 387
  start-page: 1851
  year: 2008
  publication-title: Physica A
– volume: 19
  start-page: 5017
  year: 2002
  publication-title: Class. Quant. Grav.
– volume: 01
  start-page: 014
  year: 2009
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 69
  start-page: 124033
  year: 2004
  publication-title: Phys. Rev. D
– volume: 332
  start-page: 339
  year: 2002b
  publication-title: MNRAS
– volume: 664
  start-page: 117
  year: 2007
  publication-title: ApJ
– volume: 81
  start-page: 3067
  year: 1998
  publication-title: Phys. Rev. Lett.
– volume: 650
  start-page: 770
  year: 2006
  publication-title: ApJ
– volume: 100
  start-page: 080402
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 75
  start-page: 043504
  year: 2007
  publication-title: Phys. Rev. D
– volume: 50
  start-page: 925
  year: 1983
  publication-title: Phys. Rev. Lett.
– volume: 50
  start-page: 3650
  year: 1994
  publication-title: Phys. Rev. D
– volume: 5
  start-page: 103
  year: 2000
  publication-title: New Astron.
– volume: 34
  start-page: 633
  year: 2002
  publication-title: Gen. Rel. Grav.
– volume: 369
  start-page: 485
  year: 2006
  publication-title: MNRAS
– volume: 78
  start-page: 063508
  year: 2008
  publication-title: Phys. Rev. D
– volume: 53
  start-page: 2236
  year: 1996
  publication-title: Phys. Rev. D
– start-page: 403
  year: 1998
– volume: 103
  start-page: 111301
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 82
  start-page: 064042
  year: 2010
  publication-title: Phys. Rev. D
– volume: 47
  start-page: 2715
  year: 2000
  publication-title: Mod. Opt.
SSID ssj0004326
Score 2.5142949
Snippet Various extensions of the standard model of particle physics predict the existence of very light bosons, with masses ranging from about 10−5 eV for the QCD...
ABSTRACT Various extensions of the standard model of particle physics predict the existence of very light bosons, with masses ranging from about 10−5 eV for...
Various extensions of the standard model of particle physics predict the existence of very light bosons, with masses ranging from about 10-5eV for the QCD...
SourceID unpaywall
proquest
wiley
oup
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 135
SubjectTerms cosmology: theory
Dark matter
galaxies: haloes
galaxies: kinematics and dynamics
methods: analytical
Stars & galaxies
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL-UCbQE1UJCRECey2tT5PS5Vqwppe6io1ANSNLYnsNpdp9psSsupj4DEG_ZJmHF2F7YqEkLcHP_Esj3jfOPMfBbiTQUqVVnfhnEOHJKDWVhAZUIbZQCVMkZ7SqHhSXp8Fn84T84X_k8cC9PxQ6wO3Fgz_H7NCg66WVdy76FFeJ09tDioKsnzHuNJKvDW1ekvJqlY-ZvXPEMj2QjRulPPvS-6E_LGyHOzdRdw_RUmk3Us6z9GR4_FeDmMzgdl3Gvnume-3WF4_D_j3BKPFphVDjoh2xYP0O2I3UHDp-j19Fq-lT7dHZI0OyIYEhKvZ_7AngoPJiOCxf7pifg0cJ_Z81VOmfph3k4lOCsv2eX3Sq4iKeXIyfd1g7c3Pw5HBGBx5G5vvpPpTrtkg1aS9FppYTaWU88PKr_ApMbmqTg7Ovx4cBwubngIaxoTma-JVVpBmhSwj4Q1bRxZhWlWZCZG2k0U6ApzSLDIte6rKksp1ySEYgzGlemrZ2LD1Q53aTUzq6kBFkB1GDRqQyIIBRpbUTIKxDtazfKi4_Aof7N9lrNb8uyWfnbLq0DsLZe9XGh1w_zOzCdPRmIgXq-KSR_5Jws4rFuuE8UEqVScBGJ_JS5_6Le8p9_MC8NfNyiHJ6c--fyfW74QDzm_c-PcExvzWYsvCWrN9SuvRD8BNvob5Q
  priority: 102
  providerName: Wiley-Blackwell
Title Angular momentum and vortex formation in Bose-Einstein-condensed cold dark matter haloes
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2966.2012.20588.x
https://www.proquest.com/docview/1001038499
https://www.proquest.com/docview/1014110345
https://academic.oup.com/mnras/article-pdf/422/1/135/18591284/mnras0422-0135.pdf
UnpaywallVersion publishedVersion
Volume 422
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004326
  issn: 1365-2966
  databaseCode: KQ8
  dateStart: 18270209
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004326
  issn: 1365-2966
  databaseCode: TOX
  dateStart: 18591101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1365-2966
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004326
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-N7gFe-BigBcZkJMQTaZo4zsdjmTZNSC3TtErlKXJsB6o1Tmka2PjrOTtJoQgkhHiJHPssyz7b-Z199wvAq4LTiMYj6YYJNyE5KnZTXghX-jHnBRUit5RCk2l0Pgvfzdl8Dy76WBjeeYUP-5CGUq957XXD6K5k4YVB4PmeT5nnG_I13F9bIcNmhZYxZUOUugP7EUN0PoD92fRi_KFnZ0T74EcoVmqvMm3a5O86-vQSxv3LRGyxJDH8SDthcAaN3m30it9-5cvlLr61H6izB_C571rrl3I9bDb5UHz7hfXxf_b9Idzv0CwZt3UfwZ7SB3A4rs35elXektfEptvjk_oAnAli9Gptj_Kx8GS5QMBs3x7DfKw_Gp9YUhpSiE1TEq4l-WKcgW_INsaSLDR5W9XKPV0gsFUL7aJBj3tnrSTBOS2J5OtrUlrWUPKJLytVP4HZ2enVybnb_ffBrXDQ0ahlkuaUo_54oBCBytCXVEVxGotQ4R5DeV6ohDOVJnk-okUcYa5giG2ECgsxok9hoCutDlGfscyxgko5yhgomQucmDxVQhaY9B14g4OdrVpmj-wni6hXf2bUn1n1ZzcOHPWKz7q1XhvWZ8Myj6ajAy-3xbhKzdUL16pqjIwfItCiIXMg2E6YP7Sb_abd2M6sv66QTaaXNvnsX5p7DvfMa-vXeQSDzbpRLxB7bfJjtDouA3xevZ8fd0vrOznFIfI
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQOZQLpQXUlEKNhDiR1aZ2_o5L1WoL3T1UrdQDkuW_wKpZp9psoOXUR0DiDfskzDi7W7YqEkLcnMSOZXvG-WYy85mQN4VkCUu7JuSZxJQcm4a5LHRoolTKgmmtPKXQYJj0T_mHs_hsdhwQ5sK0_BALhxtqht-vUcHRIb2s5T5ECwA7hmhhVlWcZR0AlA95AmYLIqTjWy4pzvzZa56jEayEaDms59433Ul6Q-y52rgLefVNluUymvWfo4M1Us4H0kahnHeaqero73c4Hv_TSJ-QxzPYSnutnK2TB9ZtkM1ejY70anxF31Jfbv0k9QYJBgDGq4n32cPDvXIEyNhfPSWfeu4zBr_SMbI_TJsxlc7Qrxj1e0kXyZR05Oj7qrY31z_3R4Bh7cjdXP8A6x02ytoaCgJsqJGTczr2FKH0iywrWz8jpwf7J3v9cHbIQ1jBmMCCjQ1TTCZxLnctwE3DI8Nskuap5hY2FCZVYTMZ2zxTqsuKNIG7OgYgoy0vdJc9JyuucnYTljM1ChrYXEIdxI1KgxTK3GpTQDEKyDtYTnHR0niI38yf-ewKnF3hZ1dcBmR7vu5iptg1UjwjpTzYiQF5vXgMKon_WaSzVYN1Ig6oivE4ILsLeflDv-KeflMvDX_dQAyGx7649c8td8hq_2RwJI4Ohx9fkEdYp43q3CYr00ljXwLymqpXXqN-AQnlIAY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQkIAXYAO0wGBGQjyRqpmd22PZVo1LKzQxaQ9Ilm8Z1VKnahrYeNpPQOIf7pdwjtMWOg0JId6cxI5l-xznOyfnfCbkRSFZwtKuCXkmMSXHpmEuCx2aKJWyYForTyk0GCYHR_ztcXw8Pw4Ic2Fafoilww01w-_XqOB2YopVLfchWgDYMUQLs6riLOsAoLzJ4zzD-L69w19cUpz5s9c8RyNYCdFqWM-1b7qS9IbY83bjJvL8qyzLVTTrP0f9e6RcDKSNQjntNDPV0d-ucDz-p5HeJ3fnsJX2WjlbJzes2yCbvRod6dX4nL6kvtz6SeoNEgwAjFdT77OHh7vlCJCxv3pAPvXcCQa_0jGyP8yaMZXO0C8Y9XtGl8mUdOTo66q2lxc_9keAYe3IXV58B-sdNsraGgoCbKiR01M69hSh9LMsK1s_JEf9_Y-7B-H8kIewgjGBBRsbpphM4lzuWICbhkeG2STNU80tbChMqsJmMrZ5plSXFWkCd3UMQEZbXugue0TWXOXsJixnahQ0sLmEOogblQYplLnVpoBiFJBXsJxi0tJ4iN_Mn8XsCpxd4WdXnAVka7HuYq7YNVI8I6U82IkBeb58DCqJ_1mks1WDdSIOqIrxOCA7S3n5Q7_imn5TLw1_3UAMhoe--PifW26TWx_2-uL9m-G7J-QOVmmDOrfI2mza2KcAvGbqmVeon4SxH4o
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdG9wAvfAzQAgMZCfFEmqbO52OZNk1IrSZEpfIUXWwHqjVOaRrY-Ou5c5JCEUgI8eaPsyz7bOd39t0vjL0sQEQiHik3SIBCcnTsplBIV_kxQCGkzC2l0HQWXcyDt4twccAu-1gY6LzCh31IQ2k2UHvdNLprVXjBeOz5ni9CzyfyNTxfWyFis0LLWIRDlLrFDqMQ0fmAHc5nl5MPPTsj2gc_QrFS-5Rp01S-7-jTS5D7F0VshUlC_Eh7YXCERm83Zg03X2G12se39gN1fo997ofW-qVcDZttPpTffmF9_J9jv8_udmiWT9q2D9iBNkfseFLT_XpV3vBX3Kbb65P6iDlTxOjVxl7lY-XpaomA2eYessXEfCSfWF4SKcS2KTkYxb-QM_A138VY8qXhb6pau2dLBLZ6aVw06PHsrLXiuKYVV7C54qVlDeWfYFXp-hGbn5-9P71wu_8-uBVOOhq1oRK5ANQfjDUiUBX4SugoTmMZaDxjBOSFTiDUaZLnI1HEEZbKELGN1EEhR-IxG5jK6GPUZ6xybKBTQBmCkrnEhQmplqrApO-w1zjZ2bpl9sh-soh69Wek_syqP7t22Emv-Kzb6zWxPhPLPJqODnuxq8ZdSk8vYHTVkIwfINASQeiw8W7B_KHf7Df9xnZl_XWDbDp7Z5NP_qW7p-wOZVu_zhM22G4a_Qyx1zZ_3m2n77QZH-0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Angular+momentum+and+vortex+formation+in+Bose-Einstein-condensed+cold+dark+matter+haloes&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Rindler-Daller%2C+Tanja&rft.au=Shapiro%2C+Paul+R.&rft.date=2012-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=422&rft.issue=1&rft.spage=135&rft.epage=161&rft_id=info:doi/10.1111%2Fj.1365-2966.2012.20588.x&rft.externalDocID=10.1111%2Fj.1365-2966.2012.20588.x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon