Performance study of LMS based adaptive algorithms for unknown system identification
Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we pre...
        Saved in:
      
    
          | Published in | AIP conference proceedings Vol. 1605; no. 1 | 
|---|---|
| Main Authors | , | 
| Format | Conference Proceeding Journal Article | 
| Language | English | 
| Published | 
        Melville
          American Institute of Physics
    
        10.07.2014
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0094-243X 1935-0465 1551-7616 1551-7616  | 
| DOI | 10.1063/1.4887594 | 
Cover
| Abstract | Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment. | 
    
|---|---|
| AbstractList | Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment. | 
    
| Author | Javed Shazia Ahmad Noor Atinah  | 
    
| Author_xml | – sequence: 1 fullname: Javed, Shazia – sequence: 2 fullname: Ahmad, Noor Atinah organization: School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang (Malaysia)  | 
    
| BackLink | https://www.osti.gov/biblio/22306148$$D View this record in Osti.gov | 
    
| BookMark | eNpF0E1LAzEYBOAgFWyrB_9BwJuwNclmk92jFL-gomAFbyFN3tjUNqmbrGX_vZUWPM3lYWBmhAYhBkDokpIJJaK8oRNe17Jq-Aka0qqihRRUDNCQkIYXjJcfZ2iU0ooQ1khZD9H8FVoX240OBnDKne1xdHj2_IYXOoHF2upt9j-A9foztj4vNwnvPe7CV4i7gFOfMmywtxCyd97o7GM4R6dOrxNcHHOM3u_v5tPHYvby8DS9nRWRcZELIWpwEpzmTAPn4GorgFlhStk4XpuyspJqYRqyaCSTVlhbu7LRzBBgWrhyjK4PvV3Y6n6n12u1bf1Gt72iRP39oag6_rHHVwccU_YqGZ_BLE0MAUxWjJVEUF7_q20bvztIWa1i14b9CsUoE5XkhIryF70hbeQ | 
    
| ContentType | Conference Proceeding Journal Article  | 
    
| Copyright | 2014 AIP Publishing LLC. | 
    
| Copyright_xml | – notice: 2014 AIP Publishing LLC. | 
    
| DBID | 8FD H8D L7M OTOTI ADTOC UNPAY  | 
    
| DOI | 10.1063/1.4887594 | 
    
| DatabaseName | Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 1551-7616 | 
    
| EndPage | 238 | 
    
| ExternalDocumentID | 10.1063/1.4887594 22306148  | 
    
| Genre | Conference Proceeding | 
    
| GroupedDBID | -~X 23M 5GY 8FD AAAAW AABDS AAPUP AAYIH ABJGX ACBRY ACZLF ADCTM ADMLS AEJMO AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN F5P FDOHQ FFFMQ H8D HAM L7M M71 M73 RIP RQS SJN ~02 AAEUA ABPTK AGIHO ESX J23 OTOTI UE8 0ZJ ADTOC NEUPN RDFOP UNPAY  | 
    
| ID | FETCH-LOGICAL-o246t-668ef7efa42ae44ef8d6e2d6c379f48c35d71a6c90b9727d6dd8f39a2c0e2a6f3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0094-243X 1935-0465 1551-7616  | 
    
| IngestDate | Tue Aug 19 23:20:23 EDT 2025 Fri May 19 01:41:07 EDT 2023 Mon Jun 30 06:07:08 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-o246t-668ef7efa42ae44ef8d6e2d6c379f48c35d71a6c90b9727d6dd8f39a2c0e2a6f3 | 
    
| Notes | ObjectType-Conference Proceeding-1 SourceType-Conference Papers & Proceedings-1 content type line 21  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pubs.aip.org/aip/acp/article-pdf/1605/1/233/12114476/233_1_online.pdf | 
    
| PQID | 2126574016 | 
    
| PQPubID | 2050672 | 
    
| ParticipantIDs | unpaywall_primary_10_1063_1_4887594 osti_scitechconnect_22306148 proquest_journals_2126574016  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20140710 | 
    
| PublicationDateYYYYMMDD | 2014-07-10 | 
    
| PublicationDate_xml | – month: 07 year: 2014 text: 20140710 day: 10  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Melville | 
    
| PublicationPlace_xml | – name: Melville – name: United States  | 
    
| PublicationTitle | AIP conference proceedings | 
    
| PublicationYear | 2014 | 
    
| Publisher | American Institute of Physics | 
    
| Publisher_xml | – name: American Institute of Physics | 
    
| SSID | ssj0029778 | 
    
| Score | 2.0071237 | 
    
| Snippet | Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as... | 
    
| SourceID | unpaywall osti proquest  | 
    
| SourceType | Open Access Repository Aggregation Database  | 
    
| SubjectTerms | Adaptive algorithms Adaptive filters ADAPTIVE SYSTEMS ADIABATIC SURFACE IONIZATION ALGORITHMS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COMPARATIVE EVALUATIONS Comparative studies Computer simulation Convergence Filtration ITERATIVE METHODS Misalignment NOISE Performance evaluation Robustness SENSITIVITY SIGNALS SIMULATION Spectral sensitivity STOCHASTIC PROCESSES System identification  | 
    
| Title | Performance study of LMS based adaptive algorithms for unknown system identification | 
    
| URI | https://www.proquest.com/docview/2126574016 https://www.osti.gov/biblio/22306148 https://pubs.aip.org/aip/acp/article-pdf/1605/1/233/12114476/233_1_online.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 1605 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbKrhCceBVRKJUluDoPv5IcK6CqULdaqV1pOUUTP2DFkkTdrFD76xkn2S1w4sAhhyijyPaMPZ_tmW8IeZ8jYEtxEWSZrhImVVYwqACYTb0oROVxMxeykWeX-nwhPy_V8oDMdrkw2IhNBKt2oAhetTEYfIZBZK31cYr4O05jLkQc2MmkzHR4KdNyoJaIUOgBmWqF0HxCpovL-emXgYlSMi7FsudPVSm2rS-LivhFhfBGtWMd0vjfCK06U6GO8aTBifYH-Hy0rVu4_Qnr9W9-6OwJqfc96MNPvkfbrorM3V_kjv-ti0_J4X1KIJ3vnd0zcuDq5-RhHz9qNi_I9fw-AYH2lLW08fRidkWDm7QULLRhYaWw_trcrLpvPzYU5em2Dod6NR0IpenKjsFLvb0cksXZp-sP52ws2MAaLnXHtM6dz5wHycFJ6XxuteNWG5EVXuZGKJuloE2RVAXiJqutzdEkgJvEcdBevCSTuqndK0JFwqGwzjrlHC4zHBC4FlWVmgQEghRxRI6DakrECYHs1oSoINOVPOyocIeHn3cqK8dJuSnRS2sVKhDqI_Jur8ayHWg9yv46XodhHtX_-p-k3pDHCKJkOO9Nk2My6W627i0Cla46IdPTj7OLq5PRDH8BNQDjyg | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbKVghOvIooFGQJrk7iZ5IjQlQVYquV6ErLKZr4AasuSdTNCsGvZ5xkt8CJA4ccoowi2zP2fLZnviHkTYGAjeMiyHJTZ0zpvGRQAzDHgyxlHXAzF7OR55fmYqk-rPTqiMz3uTDYiG0C626kCF53KVh8xkFknQspR_yd8lRImUZ2MqVyE18qXo3UEgkK3SHHRiM0n5Hj5eXi7eeRiVIxoeRq4E_VHNs2lEVF_KJjeKPesw4Z_G-CVp3rWMd41uJE-wN83ts1Hfz4DpvNb37o_AFpDj0Ywk-uk11fJ_bnX-SO_62LD8nJbUogXRyc3SNy5JvH5O4QP2q3T8jV4jYBgQ6UtbQN9OP8E41u0lFw0MWFlcLmS3uz7r9-21KUp7smHuo1dCSUpms3BS8N9nJClufvr95dsKlgA2uFMj0zpvAh9wGUAK-UD4UzXjhjZV4GVVipXc7B2DKrS8RNzjhXoEmAsJkXYIJ8SmZN2_hnhMpMQOm889p7XGYEIHAt65rbDCSCFHlKzqJqKsQJkezWxqgg21ci7qhwh4ef9yqrpkm5rdBLGx0rEJpT8vqgxqobaT2q4TrexGGe1P_8n6RekPsIolQ87-XZGZn1Nzv_EoFKX7-azO8XHpLiNg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=AIP+conference+proceedings&rft.atitle=Performance+study+of+LMS+based+adaptive+algorithms+for+unknown+system+identification&rft.au=Javed+Shazia&rft.au=Ahmad+Noor+Atinah&rft.date=2014-07-10&rft.pub=American+Institute+of+Physics&rft.issn=0094-243X&rft.eissn=1551-7616&rft.volume=1605&rft.issue=1&rft.epage=238&rft_id=info:doi/10.1063%2F1.4887594&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-243X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-243X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-243X&client=summon |