Performance study of LMS based adaptive algorithms for unknown system identification

Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we pre...

Full description

Saved in:
Bibliographic Details
Published inAIP conference proceedings Vol. 1605; no. 1
Main Authors Javed, Shazia, Ahmad, Noor Atinah
Format Conference Proceeding Journal Article
LanguageEnglish
Published Melville American Institute of Physics 10.07.2014
Subjects
Online AccessGet full text
ISSN0094-243X
1935-0465
1551-7616
1551-7616
DOI10.1063/1.4887594

Cover

Abstract Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.
AbstractList Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.
Author Javed Shazia
Ahmad Noor Atinah
Author_xml – sequence: 1
  fullname: Javed, Shazia
– sequence: 2
  fullname: Ahmad, Noor Atinah
  organization: School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang (Malaysia)
BackLink https://www.osti.gov/biblio/22306148$$D View this record in Osti.gov
BookMark eNpF0E1LAzEYBOAgFWyrB_9BwJuwNclmk92jFL-gomAFbyFN3tjUNqmbrGX_vZUWPM3lYWBmhAYhBkDokpIJJaK8oRNe17Jq-Aka0qqihRRUDNCQkIYXjJcfZ2iU0ooQ1khZD9H8FVoX240OBnDKne1xdHj2_IYXOoHF2upt9j-A9foztj4vNwnvPe7CV4i7gFOfMmywtxCyd97o7GM4R6dOrxNcHHOM3u_v5tPHYvby8DS9nRWRcZELIWpwEpzmTAPn4GorgFlhStk4XpuyspJqYRqyaCSTVlhbu7LRzBBgWrhyjK4PvV3Y6n6n12u1bf1Gt72iRP39oag6_rHHVwccU_YqGZ_BLE0MAUxWjJVEUF7_q20bvztIWa1i14b9CsUoE5XkhIryF70hbeQ
ContentType Conference Proceeding
Journal Article
Copyright 2014 AIP Publishing LLC.
Copyright_xml – notice: 2014 AIP Publishing LLC.
DBID 8FD
H8D
L7M
OTOTI
ADTOC
UNPAY
DOI 10.1063/1.4887594
DatabaseName Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1551-7616
EndPage 238
ExternalDocumentID 10.1063/1.4887594
22306148
Genre Conference Proceeding
GroupedDBID -~X
23M
5GY
8FD
AAAAW
AABDS
AAPUP
AAYIH
ABJGX
ACBRY
ACZLF
ADCTM
ADMLS
AEJMO
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
F5P
FDOHQ
FFFMQ
H8D
HAM
L7M
M71
M73
RIP
RQS
SJN
~02
AAEUA
ABPTK
AGIHO
ESX
J23
OTOTI
UE8
0ZJ
ADTOC
NEUPN
RDFOP
UNPAY
ID FETCH-LOGICAL-o246t-668ef7efa42ae44ef8d6e2d6c379f48c35d71a6c90b9727d6dd8f39a2c0e2a6f3
IEDL.DBID UNPAY
ISSN 0094-243X
1935-0465
1551-7616
IngestDate Tue Aug 19 23:20:23 EDT 2025
Fri May 19 01:41:07 EDT 2023
Mon Jun 30 06:07:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-o246t-668ef7efa42ae44ef8d6e2d6c379f48c35d71a6c90b9727d6dd8f39a2c0e2a6f3
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.aip.org/aip/acp/article-pdf/1605/1/233/12114476/233_1_online.pdf
PQID 2126574016
PQPubID 2050672
ParticipantIDs unpaywall_primary_10_1063_1_4887594
osti_scitechconnect_22306148
proquest_journals_2126574016
PublicationCentury 2000
PublicationDate 20140710
PublicationDateYYYYMMDD 2014-07-10
PublicationDate_xml – month: 07
  year: 2014
  text: 20140710
  day: 10
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
– name: United States
PublicationTitle AIP conference proceedings
PublicationYear 2014
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
SSID ssj0029778
Score 2.0071237
Snippet Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as...
SourceID unpaywall
osti
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Adaptive algorithms
Adaptive filters
ADAPTIVE SYSTEMS
ADIABATIC SURFACE IONIZATION
ALGORITHMS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COMPARATIVE EVALUATIONS
Comparative studies
Computer simulation
Convergence
Filtration
ITERATIVE METHODS
Misalignment
NOISE
Performance evaluation
Robustness
SENSITIVITY
SIGNALS
SIMULATION
Spectral sensitivity
STOCHASTIC PROCESSES
System identification
Title Performance study of LMS based adaptive algorithms for unknown system identification
URI https://www.proquest.com/docview/2126574016
https://www.osti.gov/biblio/22306148
https://pubs.aip.org/aip/acp/article-pdf/1605/1/233/12114476/233_1_online.pdf
UnpaywallVersion publishedVersion
Volume 1605
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbKrhCceBVRKJUluDoPv5IcK6CqULdaqV1pOUUTP2DFkkTdrFD76xkn2S1w4sAhhyijyPaMPZ_tmW8IeZ8jYEtxEWSZrhImVVYwqACYTb0oROVxMxeykWeX-nwhPy_V8oDMdrkw2IhNBKt2oAhetTEYfIZBZK31cYr4O05jLkQc2MmkzHR4KdNyoJaIUOgBmWqF0HxCpovL-emXgYlSMi7FsudPVSm2rS-LivhFhfBGtWMd0vjfCK06U6GO8aTBifYH-Hy0rVu4_Qnr9W9-6OwJqfc96MNPvkfbrorM3V_kjv-ti0_J4X1KIJ3vnd0zcuDq5-RhHz9qNi_I9fw-AYH2lLW08fRidkWDm7QULLRhYaWw_trcrLpvPzYU5em2Dod6NR0IpenKjsFLvb0cksXZp-sP52ws2MAaLnXHtM6dz5wHycFJ6XxuteNWG5EVXuZGKJuloE2RVAXiJqutzdEkgJvEcdBevCSTuqndK0JFwqGwzjrlHC4zHBC4FlWVmgQEghRxRI6DakrECYHs1oSoINOVPOyocIeHn3cqK8dJuSnRS2sVKhDqI_Jur8ayHWg9yv46XodhHtX_-p-k3pDHCKJkOO9Nk2My6W627i0Cla46IdPTj7OLq5PRDH8BNQDjyg
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbKVghOvIooFGQJrk7iZ5IjQlQVYquV6ErLKZr4AasuSdTNCsGvZ5xkt8CJA4ccoowi2zP2fLZnviHkTYGAjeMiyHJTZ0zpvGRQAzDHgyxlHXAzF7OR55fmYqk-rPTqiMz3uTDYiG0C626kCF53KVh8xkFknQspR_yd8lRImUZ2MqVyE18qXo3UEgkK3SHHRiM0n5Hj5eXi7eeRiVIxoeRq4E_VHNs2lEVF_KJjeKPesw4Z_G-CVp3rWMd41uJE-wN83ts1Hfz4DpvNb37o_AFpDj0Ywk-uk11fJ_bnX-SO_62LD8nJbUogXRyc3SNy5JvH5O4QP2q3T8jV4jYBgQ6UtbQN9OP8E41u0lFw0MWFlcLmS3uz7r9-21KUp7smHuo1dCSUpms3BS8N9nJClufvr95dsKlgA2uFMj0zpvAh9wGUAK-UD4UzXjhjZV4GVVipXc7B2DKrS8RNzjhXoEmAsJkXYIJ8SmZN2_hnhMpMQOm889p7XGYEIHAt65rbDCSCFHlKzqJqKsQJkezWxqgg21ci7qhwh4ef9yqrpkm5rdBLGx0rEJpT8vqgxqobaT2q4TrexGGe1P_8n6RekPsIolQ87-XZGZn1Nzv_EoFKX7-azO8XHpLiNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=AIP+conference+proceedings&rft.atitle=Performance+study+of+LMS+based+adaptive+algorithms+for+unknown+system+identification&rft.au=Javed+Shazia&rft.au=Ahmad+Noor+Atinah&rft.date=2014-07-10&rft.pub=American+Institute+of+Physics&rft.issn=0094-243X&rft.eissn=1551-7616&rft.volume=1605&rft.issue=1&rft.epage=238&rft_id=info:doi/10.1063%2F1.4887594&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-243X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-243X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-243X&client=summon