군사용 SAR 이미지 초해상화를 위한 딥러닝 기반의 네트워크 구조에 관한 연구

The Republic of Korea military is using SAR(Synthetic Aperture Radar) geographic intelligence to deal with security threats. However, human experts have difficulty on analyzing acquired SAR images and identifying military targets due to low resolution. In this paper, we study the deep learning-based...

Full description

Saved in:
Bibliographic Details
Published in한국CDE학회 논문집 Vol. 26; no. 2; pp. 154 - 162
Main Authors 류제민(Jemin Ryu), 마정목(Jungmok Ma)
Format Journal Article
LanguageKorean
Published (사)한국CDE학회 01.06.2021
한국CDE학회
Subjects
Online AccessGet full text
ISSN2508-4003
2508-402X
DOI10.7315/CDE.2021.154

Cover

Abstract The Republic of Korea military is using SAR(Synthetic Aperture Radar) geographic intelligence to deal with security threats. However, human experts have difficulty on analyzing acquired SAR images and identifying military targets due to low resolution. In this paper, we study the deep learning-based network architecture fit for the super-resolution of military SAR images. Previous military SAR image super-resolution studies mainly conducted on improving the results of super-resolution, but it was difficult to find studies on network architecture. The proposed neural network is a deep learning-based super-resolution networks. And it consists of input, learning, upsampling, and output layers with real military SAR images. We show and experiment with networks for super-resolution of military SAR images, while focusing on the input and upsampling layers. Experiment results show that we able to find a suitable architecture of input and upsampling layers is discussed. KCI Citation Count: 3
AbstractList The Republic of Korea military is using SAR(Synthetic Aperture Radar) geographic intelligence to deal with security threats. However, human experts have difficulty on analyzing acquired SAR images and identifying military targets due to low resolution. In this paper, we study the deep learning-based network architecture fit for the super-resolution of military SAR images. Previous military SAR image super-resolution studies mainly conducted on improving the results of super-resolution, but it was difficult to find studies on network architecture. The proposed neural network is a deep learning-based super-resolution networks. And it consists of input, learning, upsampling, and output layers with real military SAR images. We show and experiment with networks for super-resolution of military SAR images, while focusing on the input and upsampling layers. Experiment results show that we able to find a suitable architecture of input and upsampling layers is discussed. KCI Citation Count: 3
Author 마정목(Jungmok Ma)
류제민(Jemin Ryu)
Author_xml – sequence: 1
  fullname: 류제민(Jemin Ryu)
– sequence: 2
  fullname: 마정목(Jungmok Ma)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002721158$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNo9jM1KAlEAhS9hkJm7HuBuWrQYu78z3qWolSAJ5qLdMHpnZLA0Rlq003IR1aKFopUSQRKB0CwUXPREzp13yEpanY_Dd84miNQbdRuAbYwSBsV8L53JJggiOIE5WwNRwlFSY4icRP4Z0Q0QbzbdMuKUGgamLAqqi5mvribq6QMep4pQjabB51y9t6Ca3oS9qbpuh4_dYPwF1bAT9oYw6I6Dl0lwN4KLuR_4AzUawKDzFt7O1fN92J7AxWyiXn3Vf4CLaetnofr-stsC64512rTjq4yB0n62lD7U8oWDXDqV1-o6E5ogWDJsM2JLPek4UkeWEBXdkUgSjjmpMMdgjDuUWtRARlJgaXAuyzrVRQUhSWNg9--27jlmreKaDcv9zWrDrHlmqljKmcIQVBCxdHdW7oXnntnStczzJVjepXlUyGQx4jpKckG_AY9Lhbs
ContentType Journal Article
DBID DBRKI
TDB
ACYCR
DOI 10.7315/CDE.2021.154
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
Korean Citation Index
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate A Study on Deep Learning-Based Super-Resolution Network Architecture for Military SAR Image
DocumentTitle_FL A Study on Deep Learning-Based Super-Resolution Network Architecture for Military SAR Image
EISSN 2508-402X
EndPage 162
ExternalDocumentID oai_kci_go_kr_ARTI_9793929
NODE10560859
GroupedDBID .UV
DBRKI
TDB
ACYCR
ID FETCH-LOGICAL-n649-921d41e42ed68ffd60a99c6fd0d25152c4f7445f33a3707891d755db6369c00d3
ISSN 2508-4003
IngestDate Fri Jun 06 04:16:43 EDT 2025
Thu Feb 06 13:26:57 EST 2025
IsPeerReviewed false
IsScholarly false
Issue 2
Keywords Deep learning
Synthetic aperture radar image
Super-resolution
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-n649-921d41e42ed68ffd60a99c6fd0d25152c4f7445f33a3707891d755db6369c00d3
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9793929
nurimedia_primary_NODE10560859
PublicationCentury 2000
PublicationDate 2021-06
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06
PublicationDecade 2020
PublicationTitle 한국CDE학회 논문집
PublicationYear 2021
Publisher (사)한국CDE학회
한국CDE학회
Publisher_xml – name: (사)한국CDE학회
– name: 한국CDE학회
SSID ssib053377134
ssib026264091
ssib044738302
ssib029071402
Score 1.7733474
Snippet The Republic of Korea military is using SAR(Synthetic Aperture Radar) geographic intelligence to deal with security threats. However, human experts have...
SourceID nrf
nurimedia
SourceType Open Website
Publisher
StartPage 154
SubjectTerms 기계공학
Title 군사용 SAR 이미지 초해상화를 위한 딥러닝 기반의 네트워크 구조에 관한 연구
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10560859
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002721158
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 한국CDE학회 논문집, 2021, 26(2), , pp.154-162
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2508-402X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044738302
  issn: 2508-4003
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxdGjrQS-iqFg_yiDmtEydj8wkOWZmp1ShFbRCb8vOV5HCVkp78VBa7UHUg4eWVm0RwSLCgnvYQg_-op3Z_-BLMrs7LQrVy5B57-Xl5b1J8l6YvGjafSuRGwuOkUYRMzAmiRFRMzGYS6LItUmSMXF2eG7em32GHy26i2PjG9XTJWvRdPzyj-dK_seqAAO7ilOy_2DZIVMAQBnsC0-wMDzPZWMUcuS7yDdRGCBqIx6IAuOIs9pT_qQm3-rIxyj0EZ9BPhUQThA1JQ4QFEB1xFxJBEwccC0lhCGmqgEqUJwAjUtqJkC-IAG8KMzIxn1EoVyvScGoFMwXT0ZLURiV9YAPl6woL4ViAAwkxAJOtbJnqkPcKrvICGKmwmHxi0ZFFokUVGW9qtM9pBtg60E9HACZLHBoXUkmuiv7HYzUxSzxJYprKkHJo62TUj2qc9yUDSg9B6dIiNSyIpHa4sJC1f0Wu_JfmBwh5xR5NI2Dj0khSjfVNJ5WYfIi-cHSYalk2qUXYqk16uwCRxyZCwSanBayTQ8rVfOIn1nfT2USX46fN5ZWGsurDYiXHjYYTM_gII9rF2zieeIGkLmNcDAf2xDsQvg_nP9tJk67jdLFwch2qunjIHIgRP3IMey0OmsixH5QFRo8udYqOIAXW-viFguYCite3cIV7XIZjulcja2r2tjyyjVtqXfcKV61i08_dBhFenHYzX-eFN839aL7pr_bLV5v9T_u5Ee_9OJgu797oOc7R_mXdv7uUO-ddPLOfnG4r-fb3_pvT4rP7_tbbb133C6-doq9D3qvuylqFHsdgF3XFmbChWDWKC8kMVoeZgazrQRbKbbTxKNZlnhmk7HYyxIzgSjBtWOcEYzdzHGajkiixayEuG4SeY7HYtNMnBvaRGulld7U9IgAm8TMrBRYMi9uxnaUUtLEOLahWjap3QP9SGv93WqT2tRQfY0XKjlNY_5xPYSYyROJC2-dh8tt7dLoM7-jTaytrqd3wdFei6bk1_Ab8EivyQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EA%B5%B0%EC%82%AC%EC%9A%A9+SAR+%EC%9D%B4%EB%AF%B8%EC%A7%80+%EC%B4%88%ED%95%B4%EC%83%81%ED%99%94%EB%A5%BC+%EC%9C%84%ED%95%9C+%EB%94%A5%EB%9F%AC%EB%8B%9D+%EA%B8%B0%EB%B0%98%EC%9D%98+%EB%84%A4%ED%8A%B8%EC%9B%8C%ED%81%AC+%EA%B5%AC%EC%A1%B0%EC%97%90+%EA%B4%80%ED%95%9C+%EC%97%B0%EA%B5%AC&rft.jtitle=%ED%95%9C%EA%B5%ADCDE%ED%95%99%ED%9A%8C+%EB%85%BC%EB%AC%B8%EC%A7%91%2C+26%282%29&rft.au=%EB%A5%98%EC%A0%9C%EB%AF%BC&rft.au=%EB%A7%88%EC%A0%95%EB%AA%A9&rft.date=2021-06-01&rft.pub=%ED%95%9C%EA%B5%ADCDE%ED%95%99%ED%9A%8C&rft.issn=2508-4003&rft.eissn=2508-402X&rft.spage=154&rft.epage=162&rft_id=info:doi/10.7315%2FCDE.2021.154&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9793929
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2508-4003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2508-4003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2508-4003&client=summon