군사용 SAR 이미지 초해상화를 위한 딥러닝 기반의 네트워크 구조에 관한 연구
The Republic of Korea military is using SAR(Synthetic Aperture Radar) geographic intelligence to deal with security threats. However, human experts have difficulty on analyzing acquired SAR images and identifying military targets due to low resolution. In this paper, we study the deep learning-based...
Saved in:
Published in | 한국CDE학회 논문집 Vol. 26; no. 2; pp. 154 - 162 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Korean |
Published |
(사)한국CDE학회
01.06.2021
한국CDE학회 |
Subjects | |
Online Access | Get full text |
ISSN | 2508-4003 2508-402X |
DOI | 10.7315/CDE.2021.154 |
Cover
Abstract | The Republic of Korea military is using SAR(Synthetic Aperture Radar) geographic intelligence to deal with security threats. However, human experts have difficulty on analyzing acquired SAR images and identifying military targets due to low resolution. In this paper, we study the deep learning-based network architecture fit for the super-resolution of military SAR images. Previous military SAR image super-resolution studies mainly conducted on improving the results of super-resolution, but it was difficult to find studies on network architecture. The proposed neural network is a deep learning-based super-resolution networks. And it consists of input, learning, upsampling, and output layers with real military SAR images. We show and experiment with networks for super-resolution of military SAR images, while focusing on the input and upsampling layers. Experiment results show that we able to find a suitable architecture of input and upsampling layers is discussed. KCI Citation Count: 3 |
---|---|
AbstractList | The Republic of Korea military is using SAR(Synthetic Aperture Radar) geographic intelligence to deal with security threats. However, human experts have difficulty on analyzing acquired SAR images and identifying military targets due to low resolution. In this paper, we study the deep learning-based network architecture fit for the super-resolution of military SAR images. Previous military SAR image super-resolution studies mainly conducted on improving the results of super-resolution, but it was difficult to find studies on network architecture. The proposed neural network is a deep learning-based super-resolution networks. And it consists of input, learning, upsampling, and output layers with real military SAR images. We show and experiment with networks for super-resolution of military SAR images, while focusing on the input and upsampling layers. Experiment results show that we able to find a suitable architecture of input and upsampling layers is discussed. KCI Citation Count: 3 |
Author | 마정목(Jungmok Ma) 류제민(Jemin Ryu) |
Author_xml | – sequence: 1 fullname: 류제민(Jemin Ryu) – sequence: 2 fullname: 마정목(Jungmok Ma) |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002721158$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNo9jM1KAlEAhS9hkJm7HuBuWrQYu78z3qWolSAJ5qLdMHpnZLA0Rlq003IR1aKFopUSQRKB0CwUXPREzp13yEpanY_Dd84miNQbdRuAbYwSBsV8L53JJggiOIE5WwNRwlFSY4icRP4Z0Q0QbzbdMuKUGgamLAqqi5mvribq6QMep4pQjabB51y9t6Ca3oS9qbpuh4_dYPwF1bAT9oYw6I6Dl0lwN4KLuR_4AzUawKDzFt7O1fN92J7AxWyiXn3Vf4CLaetnofr-stsC64512rTjq4yB0n62lD7U8oWDXDqV1-o6E5ogWDJsM2JLPek4UkeWEBXdkUgSjjmpMMdgjDuUWtRARlJgaXAuyzrVRQUhSWNg9--27jlmreKaDcv9zWrDrHlmqljKmcIQVBCxdHdW7oXnntnStczzJVjepXlUyGQx4jpKckG_AY9Lhbs |
ContentType | Journal Article |
DBID | DBRKI TDB ACYCR |
DOI | 10.7315/CDE.2021.154 |
DatabaseName | DBPIA - 디비피아 Nurimedia DBPIA Journals Korean Citation Index |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | A Study on Deep Learning-Based Super-Resolution Network Architecture for Military SAR Image |
DocumentTitle_FL | A Study on Deep Learning-Based Super-Resolution Network Architecture for Military SAR Image |
EISSN | 2508-402X |
EndPage | 162 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9793929 NODE10560859 |
GroupedDBID | .UV DBRKI TDB ACYCR |
ID | FETCH-LOGICAL-n649-921d41e42ed68ffd60a99c6fd0d25152c4f7445f33a3707891d755db6369c00d3 |
ISSN | 2508-4003 |
IngestDate | Fri Jun 06 04:16:43 EDT 2025 Thu Feb 06 13:26:57 EST 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 2 |
Keywords | Deep learning Synthetic aperture radar image Super-resolution |
Language | Korean |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-n649-921d41e42ed68ffd60a99c6fd0d25152c4f7445f33a3707891d755db6369c00d3 |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9793929 nurimedia_primary_NODE10560859 |
PublicationCentury | 2000 |
PublicationDate | 2021-06 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06 |
PublicationDecade | 2020 |
PublicationTitle | 한국CDE학회 논문집 |
PublicationYear | 2021 |
Publisher | (사)한국CDE학회 한국CDE학회 |
Publisher_xml | – name: (사)한국CDE학회 – name: 한국CDE학회 |
SSID | ssib053377134 ssib026264091 ssib044738302 ssib029071402 |
Score | 1.7733474 |
Snippet | The Republic of Korea military is using SAR(Synthetic Aperture Radar) geographic intelligence to deal with security threats. However, human experts have... |
SourceID | nrf nurimedia |
SourceType | Open Website Publisher |
StartPage | 154 |
SubjectTerms | 기계공학 |
Title | 군사용 SAR 이미지 초해상화를 위한 딥러닝 기반의 네트워크 구조에 관한 연구 |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10560859 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002721158 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 한국CDE학회 논문집, 2021, 26(2), , pp.154-162 |
journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2508-402X dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044738302 issn: 2508-4003 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxdGjrQS-iqFg_yiDmtEydj8wkOWZmp1ShFbRCb8vOV5HCVkp78VBa7UHUg4eWVm0RwSLCgnvYQg_-op3Z_-BLMrs7LQrVy5B57-Xl5b1J8l6YvGjafSuRGwuOkUYRMzAmiRFRMzGYS6LItUmSMXF2eG7em32GHy26i2PjG9XTJWvRdPzyj-dK_seqAAO7ilOy_2DZIVMAQBnsC0-wMDzPZWMUcuS7yDdRGCBqIx6IAuOIs9pT_qQm3-rIxyj0EZ9BPhUQThA1JQ4QFEB1xFxJBEwccC0lhCGmqgEqUJwAjUtqJkC-IAG8KMzIxn1EoVyvScGoFMwXT0ZLURiV9YAPl6woL4ViAAwkxAJOtbJnqkPcKrvICGKmwmHxi0ZFFokUVGW9qtM9pBtg60E9HACZLHBoXUkmuiv7HYzUxSzxJYprKkHJo62TUj2qc9yUDSg9B6dIiNSyIpHa4sJC1f0Wu_JfmBwh5xR5NI2Dj0khSjfVNJ5WYfIi-cHSYalk2qUXYqk16uwCRxyZCwSanBayTQ8rVfOIn1nfT2USX46fN5ZWGsurDYiXHjYYTM_gII9rF2zieeIGkLmNcDAf2xDsQvg_nP9tJk67jdLFwch2qunjIHIgRP3IMey0OmsixH5QFRo8udYqOIAXW-viFguYCite3cIV7XIZjulcja2r2tjyyjVtqXfcKV61i08_dBhFenHYzX-eFN839aL7pr_bLV5v9T_u5Ee_9OJgu797oOc7R_mXdv7uUO-ddPLOfnG4r-fb3_pvT4rP7_tbbb133C6-doq9D3qvuylqFHsdgF3XFmbChWDWKC8kMVoeZgazrQRbKbbTxKNZlnhmk7HYyxIzgSjBtWOcEYzdzHGajkiixayEuG4SeY7HYtNMnBvaRGulld7U9IgAm8TMrBRYMi9uxnaUUtLEOLahWjap3QP9SGv93WqT2tRQfY0XKjlNY_5xPYSYyROJC2-dh8tt7dLoM7-jTaytrqd3wdFei6bk1_Ab8EivyQ |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EA%B5%B0%EC%82%AC%EC%9A%A9+SAR+%EC%9D%B4%EB%AF%B8%EC%A7%80+%EC%B4%88%ED%95%B4%EC%83%81%ED%99%94%EB%A5%BC+%EC%9C%84%ED%95%9C+%EB%94%A5%EB%9F%AC%EB%8B%9D+%EA%B8%B0%EB%B0%98%EC%9D%98+%EB%84%A4%ED%8A%B8%EC%9B%8C%ED%81%AC+%EA%B5%AC%EC%A1%B0%EC%97%90+%EA%B4%80%ED%95%9C+%EC%97%B0%EA%B5%AC&rft.jtitle=%ED%95%9C%EA%B5%ADCDE%ED%95%99%ED%9A%8C+%EB%85%BC%EB%AC%B8%EC%A7%91%2C+26%282%29&rft.au=%EB%A5%98%EC%A0%9C%EB%AF%BC&rft.au=%EB%A7%88%EC%A0%95%EB%AA%A9&rft.date=2021-06-01&rft.pub=%ED%95%9C%EA%B5%ADCDE%ED%95%99%ED%9A%8C&rft.issn=2508-4003&rft.eissn=2508-402X&rft.spage=154&rft.epage=162&rft_id=info:doi/10.7315%2FCDE.2021.154&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9793929 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2508-4003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2508-4003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2508-4003&client=summon |