음향센서로부터 수집된 데이터를 이용한 비지도 학습 기반의 플랜트 배관계에 대한 미세누출 탐지 방법
In this paper, we propose a deep auto-encoder-based pipe leak detection (PLD) technique from time-series acoustic data collected by microphone sensor nodes. The key idea of the proposed technique is to learn representative features of the leak-free state using leak-free time-series acoustic data and...
Saved in:
| Published in | 한국컴퓨터정보학회논문지 Vol. 24; no. 9; pp. 21 - 27 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | Korean |
| Published |
한국컴퓨터정보학회
01.09.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1598-849X 2383-9945 |
| DOI | 10.9708/jksci.2019.24.09.021 |
Cover
| Abstract | In this paper, we propose a deep auto-encoder-based pipe leak detection (PLD) technique from time-series acoustic data collected by microphone sensor nodes. The key idea of the proposed technique is to learn representative features of the leak-free state using leak-free time-series acoustic data and the deep auto-encoder. The proposed technique can be used to create a PLD model that detects leaks in the pipeline in an unsupervised learning manner. This means that we only use leak-free data without labeling while training the deep auto-encoder. In addition, when compared to the previous supervised learning-based PLD method that uses image features, this technique does not require complex preprocessing of time-series acoustic data owing to the unsupervised feature extraction scheme. The experimental results show that the proposed PLD method using the deep auto-encoder can provide reliable PLD accuracy even considering unsupervised learning-based feature extraction. KCI Citation Count: 0 |
|---|---|
| AbstractList | In this paper, we propose a deep auto-encoder-based pipe leak detection (PLD) technique from time-series acoustic data collected by microphone sensor nodes. The key idea of the proposed technique is to learn representative features of the leak-free state using leak-free time-series acoustic data and the deep auto-encoder. The proposed technique can be used to create a PLD model that detects leaks in the pipeline in an unsupervised learning manner. This means that we only use leak-free data without labeling while training the deep auto-encoder. In addition, when compared to the previous supervised learning-based PLD method that uses image features, this technique does not require complex preprocessing of time-series acoustic data owing to the unsupervised feature extraction scheme. The experimental results show that the proposed PLD method using the deep auto-encoder can provide reliable PLD accuracy even considering unsupervised learning-based feature extraction. KCI Citation Count: 0 |
| Author | 여도엽(Doyeob Yeo) 이재철(Jae-Cheol Lee) 배지훈(Ji-Hoon Bae) |
| Author_xml | – sequence: 1 fullname: 여도엽(Doyeob Yeo) – sequence: 2 fullname: 배지훈(Ji-Hoon Bae) – sequence: 3 fullname: 이재철(Jae-Cheol Lee) |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002504180$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNotjLtKA0EARQdRMD7-wGIaC4td57EzO1OKbwgGJIXdsq_IGk0kwcIu4BYhRIxgNMpGsBCxcvFFBL8oM_sPLmp1L5dzzwyYrNVrIQALGJnSRmL5oNr0I5MgLE1imUiaiOAJUCBUUENKi02CAmZSGMKSe9NgvtmMPEQ5sSVhvAA6etjNrh91_K3jRD0k6rOVxSnU7YF-ulS9BKrzVA_f8009fsO86bvnrJ_PX7F-aqmLGGb9W935gONRqtKBHg5gdtVV90nWGUGVpuP31vgt1jc9qLqt3-PLSMcj1Y71ZwKzs15uybln9dqfA1MV97AZzv_nLChvrJdXt4xiaXN7daVo1LglDNfDGIcVzhnjoccC38cuDyi3XEn9MPA8wXy7EoZICIw4wVQKPyAW44HtMm5jOguW_rS1RsWp-pFTd6Pf3K871YazslvedjhihBCas4v_7EkjOgqDyHWO8-I2Tp2d0to6krkec0F_AIh-oYs |
| ContentType | Journal Article |
| DBID | DBRKI TDB ACYCR |
| DOI | 10.9708/jksci.2019.24.09.021 |
| DatabaseName | DBPIA - 디비피아 Nurimedia DBPIA Journals Korean Citation Index |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitleAlternate | Unsupervised Learning-Based Pipe Leak Detection using Deep Auto-Encoder |
| DocumentTitle_FL | Unsupervised Learning-Based Pipe Leak Detection using Deep Auto-Encoder |
| EISSN | 2383-9945 |
| EndPage | 27 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_6052223 NODE09139168 |
| GroupedDBID | .UV ALMA_UNASSIGNED_HOLDINGS DBRKI TDB ACYCR |
| ID | FETCH-LOGICAL-n648-ab111ef66556eb5dcc1a6d364a93cedbb85c7fee08810621398cd2456d7a56713 |
| ISSN | 1598-849X |
| IngestDate | Sun Mar 09 07:50:47 EDT 2025 Thu Feb 06 13:28:01 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 9 |
| Keywords | Deep learning Pipe leak detection Acoustic signal Auto-encoder Unsupervised learning |
| Language | Korean |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-n648-ab111ef66556eb5dcc1a6d364a93cedbb85c7fee08810621398cd2456d7a56713 |
| PageCount | 7 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_6052223 nurimedia_primary_NODE09139168 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09 |
| PublicationDecade | 2010 |
| PublicationTitle | 한국컴퓨터정보학회논문지 |
| PublicationYear | 2019 |
| Publisher | 한국컴퓨터정보학회 |
| Publisher_xml | – name: 한국컴퓨터정보학회 |
| SSID | ssib036279256 ssib001107257 ssib044738270 ssib012146333 ssib008451689 ssib053377514 |
| Score | 1.7100188 |
| Snippet | In this paper, we propose a deep auto-encoder-based pipe leak detection (PLD) technique from time-series acoustic data collected by microphone sensor nodes.... |
| SourceID | nrf nurimedia |
| SourceType | Open Website Publisher |
| StartPage | 21 |
| SubjectTerms | 컴퓨터학 |
| Title | 음향센서로부터 수집된 데이터를 이용한 비지도 학습 기반의 플랜트 배관계에 대한 미세누출 탐지 방법 |
| URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09139168 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002504180 |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | 한국컴퓨터정보학회논문지, 2019, 24(9), 186, pp.21-27 |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2383-9945 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044738270 issn: 1598-849X databaseCode: M~E dateStart: 19960101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1Na9RANNR60IsoKtaPEsScltR8TDIzx3xsqYL1UqG3ZfMlurCV0l48yII5lFKxgtUqW8FDKT25aC0V-oua7H_wzUw2SUuFKl6yj7dv3ryPZOe97Mx7knQvQTgKcRSrQdtuqwiHVCU2RqqWBJpBQ8NOEl7tc9aeeYIezlvzY-NxbdfS8lIwFb489VzJv3gVcOBXdkr2LzxbMgUEwOBfuIKH4XomHytNT6G-Qjyl6SvUVhyLYQhSXK8AKACu4ugF4NpsZwMQMxqtwYmIQgkDHKxQnRFRDagbDCI-UBWTuKgcx1laMEmj9h0AjuJQLok1YuBSNkIwJ3wcmQZMY0RFuQSO4lqAgg9ScIerEAqYUyLIEdcTxGtyZXw-jjQKcjbOYYIQAZjFxBS00oQyXqF7JZ4zzaYsTEY4ESnGgaU4EUxjMouMdBjNxzQFwFBE885RfF_y50JYiuNzZm5hPmoqDqnZEZhqjJ6xMkc0wi4-s6fQmFjcoSCvV8grzAlPh4EgQ6C11zmFzo5XGrvAuH5FUlqsdAzMxpQ_xqX0a5Oz85i2jlZ_TaRX--DEg_3f1a-vmZSoBPGOyBBScBwEgqZKKbKOrY21KEsUhDi5flPMz6Q870D4x7Zd0ilDlCEeja2XSz8RxhwrmN4Jn7WeLrQ6iy1ICx-0IGdncfA56bwBiz_r8PLoVbPKGnQNG7U__wlrXl01YdANiCbMKiuCkA9ToypBhRA2iVEte5BAYSy6CpSmEYd2mXr3T1MOAtvuIsTDF7rLrKkHrAy1IHfusnSpyE5lR_zUXJHGOgtXpdV8a234YTtPD_O0n33tZ_u9YTqQ85XNfOddtt6XszeDfGsPcNn2oQxQ_nl3uAHoX2m-08vepvJw41O--lM-Ohhkg818a1Mevl_LvvSHqwdyNhgc7fWOfqT5x3U5W-vxgd8O8vQgW0nz_b48fL0OXIBuN_u-cU2am27OeTNq0cJF7dqIqO0AQqk4sW3LsuPAisJQb9uRaaM2NcM4CgJihTiJYwh1dM02IBslYcS2YkS4bdlYN69L492FbnxDklHQtiLwCiZxgkwjJCaOTS0OkK6bhpkEE9JdMCF3_J9vgAlpsrRw64Uo59Oafew3eXVkcPrNs3C5JV2snrDb0vjS4nJ8B1KTpWCS31i_AXj_A34 |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%9D%8C%ED%96%A5%EC%84%BC%EC%84%9C%EB%A1%9C%EB%B6%80%ED%84%B0+%EC%88%98%EC%A7%91%EB%90%9C+%EB%8D%B0%EC%9D%B4%ED%84%B0%EB%A5%BC+%EC%9D%B4%EC%9A%A9%ED%95%9C+%EB%B9%84%EC%A7%80%EB%8F%84+%ED%95%99%EC%8A%B5+%EA%B8%B0%EB%B0%98%EC%9D%98+%ED%94%8C%EB%9E%9C%ED%8A%B8+%EB%B0%B0%EA%B4%80%EA%B3%84%EC%97%90+%EB%8C%80%ED%95%9C+%EB%AF%B8%EC%84%B8%EB%88%84%EC%B6%9C+%ED%83%90%EC%A7%80+%EB%B0%A9%EB%B2%95&rft.jtitle=%ED%95%9C%EA%B5%AD%EC%BB%B4%ED%93%A8%ED%84%B0%EC%A0%95%EB%B3%B4%ED%95%99%ED%9A%8C%EB%85%BC%EB%AC%B8%EC%A7%80%2C+24%289%29&rft.au=%EC%97%AC%EB%8F%84%EC%97%BD&rft.au=%EB%B0%B0%EC%A7%80%ED%9B%88&rft.au=%EC%9D%B4%EC%9E%AC%EC%B2%A0&rft.date=2019-09-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%BB%B4%ED%93%A8%ED%84%B0%EC%A0%95%EB%B3%B4%ED%95%99%ED%9A%8C&rft.issn=1598-849X&rft.eissn=2383-9945&rft.spage=21&rft.epage=27&rft_id=info:doi/10.9708%2Fjksci.2019.24.09.021&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_6052223 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-849X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-849X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-849X&client=summon |