음향센서로부터 수집된 데이터를 이용한 비지도 학습 기반의 플랜트 배관계에 대한 미세누출 탐지 방법

In this paper, we propose a deep auto-encoder-based pipe leak detection (PLD) technique from time-series acoustic data collected by microphone sensor nodes. The key idea of the proposed technique is to learn representative features of the leak-free state using leak-free time-series acoustic data and...

Full description

Saved in:
Bibliographic Details
Published in한국컴퓨터정보학회논문지 Vol. 24; no. 9; pp. 21 - 27
Main Authors 여도엽(Doyeob Yeo), 배지훈(Ji-Hoon Bae), 이재철(Jae-Cheol Lee)
Format Journal Article
LanguageKorean
Published 한국컴퓨터정보학회 01.09.2019
Subjects
Online AccessGet full text
ISSN1598-849X
2383-9945
DOI10.9708/jksci.2019.24.09.021

Cover

Abstract In this paper, we propose a deep auto-encoder-based pipe leak detection (PLD) technique from time-series acoustic data collected by microphone sensor nodes. The key idea of the proposed technique is to learn representative features of the leak-free state using leak-free time-series acoustic data and the deep auto-encoder. The proposed technique can be used to create a PLD model that detects leaks in the pipeline in an unsupervised learning manner. This means that we only use leak-free data without labeling while training the deep auto-encoder. In addition, when compared to the previous supervised learning-based PLD method that uses image features, this technique does not require complex preprocessing of time-series acoustic data owing to the unsupervised feature extraction scheme. The experimental results show that the proposed PLD method using the deep auto-encoder can provide reliable PLD accuracy even considering unsupervised learning-based feature extraction. KCI Citation Count: 0
AbstractList In this paper, we propose a deep auto-encoder-based pipe leak detection (PLD) technique from time-series acoustic data collected by microphone sensor nodes. The key idea of the proposed technique is to learn representative features of the leak-free state using leak-free time-series acoustic data and the deep auto-encoder. The proposed technique can be used to create a PLD model that detects leaks in the pipeline in an unsupervised learning manner. This means that we only use leak-free data without labeling while training the deep auto-encoder. In addition, when compared to the previous supervised learning-based PLD method that uses image features, this technique does not require complex preprocessing of time-series acoustic data owing to the unsupervised feature extraction scheme. The experimental results show that the proposed PLD method using the deep auto-encoder can provide reliable PLD accuracy even considering unsupervised learning-based feature extraction. KCI Citation Count: 0
Author 여도엽(Doyeob Yeo)
이재철(Jae-Cheol Lee)
배지훈(Ji-Hoon Bae)
Author_xml – sequence: 1
  fullname: 여도엽(Doyeob Yeo)
– sequence: 2
  fullname: 배지훈(Ji-Hoon Bae)
– sequence: 3
  fullname: 이재철(Jae-Cheol Lee)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002504180$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotjLtKA0EARQdRMD7-wGIaC4td57EzO1OKbwgGJIXdsq_IGk0kwcIu4BYhRIxgNMpGsBCxcvFFBL8oM_sPLmp1L5dzzwyYrNVrIQALGJnSRmL5oNr0I5MgLE1imUiaiOAJUCBUUENKi02CAmZSGMKSe9NgvtmMPEQ5sSVhvAA6etjNrh91_K3jRD0k6rOVxSnU7YF-ulS9BKrzVA_f8009fsO86bvnrJ_PX7F-aqmLGGb9W935gONRqtKBHg5gdtVV90nWGUGVpuP31vgt1jc9qLqt3-PLSMcj1Y71ZwKzs15uybln9dqfA1MV97AZzv_nLChvrJdXt4xiaXN7daVo1LglDNfDGIcVzhnjoccC38cuDyi3XEn9MPA8wXy7EoZICIw4wVQKPyAW44HtMm5jOguW_rS1RsWp-pFTd6Pf3K871YazslvedjhihBCas4v_7EkjOgqDyHWO8-I2Tp2d0to6krkec0F_AIh-oYs
ContentType Journal Article
DBID DBRKI
TDB
ACYCR
DOI 10.9708/jksci.2019.24.09.021
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
Korean Citation Index
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Unsupervised Learning-Based Pipe Leak Detection using Deep Auto-Encoder
DocumentTitle_FL Unsupervised Learning-Based Pipe Leak Detection using Deep Auto-Encoder
EISSN 2383-9945
EndPage 27
ExternalDocumentID oai_kci_go_kr_ARTI_6052223
NODE09139168
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
DBRKI
TDB
ACYCR
ID FETCH-LOGICAL-n648-ab111ef66556eb5dcc1a6d364a93cedbb85c7fee08810621398cd2456d7a56713
ISSN 1598-849X
IngestDate Sun Mar 09 07:50:47 EDT 2025
Thu Feb 06 13:28:01 EST 2025
IsPeerReviewed false
IsScholarly false
Issue 9
Keywords Deep learning
Pipe leak detection
Acoustic signal
Auto-encoder
Unsupervised learning
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-n648-ab111ef66556eb5dcc1a6d364a93cedbb85c7fee08810621398cd2456d7a56713
PageCount 7
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_6052223
nurimedia_primary_NODE09139168
PublicationCentury 2000
PublicationDate 2019-09
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09
PublicationDecade 2010
PublicationTitle 한국컴퓨터정보학회논문지
PublicationYear 2019
Publisher 한국컴퓨터정보학회
Publisher_xml – name: 한국컴퓨터정보학회
SSID ssib036279256
ssib001107257
ssib044738270
ssib012146333
ssib008451689
ssib053377514
Score 1.7100188
Snippet In this paper, we propose a deep auto-encoder-based pipe leak detection (PLD) technique from time-series acoustic data collected by microphone sensor nodes....
SourceID nrf
nurimedia
SourceType Open Website
Publisher
StartPage 21
SubjectTerms 컴퓨터학
Title 음향센서로부터 수집된 데이터를 이용한 비지도 학습 기반의 플랜트 배관계에 대한 미세누출 탐지 방법
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09139168
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002504180
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 한국컴퓨터정보학회논문지, 2019, 24(9), 186, pp.21-27
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2383-9945
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044738270
  issn: 1598-849X
  databaseCode: M~E
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1Na9RANNR60IsoKtaPEsScltR8TDIzx3xsqYL1UqG3ZfMlurCV0l48yII5lFKxgtUqW8FDKT25aC0V-oua7H_wzUw2SUuFKl6yj7dv3ryPZOe97Mx7knQvQTgKcRSrQdtuqwiHVCU2RqqWBJpBQ8NOEl7tc9aeeYIezlvzY-NxbdfS8lIwFb489VzJv3gVcOBXdkr2LzxbMgUEwOBfuIKH4XomHytNT6G-Qjyl6SvUVhyLYQhSXK8AKACu4ugF4NpsZwMQMxqtwYmIQgkDHKxQnRFRDagbDCI-UBWTuKgcx1laMEmj9h0AjuJQLok1YuBSNkIwJ3wcmQZMY0RFuQSO4lqAgg9ScIerEAqYUyLIEdcTxGtyZXw-jjQKcjbOYYIQAZjFxBS00oQyXqF7JZ4zzaYsTEY4ESnGgaU4EUxjMouMdBjNxzQFwFBE885RfF_y50JYiuNzZm5hPmoqDqnZEZhqjJ6xMkc0wi4-s6fQmFjcoSCvV8grzAlPh4EgQ6C11zmFzo5XGrvAuH5FUlqsdAzMxpQ_xqX0a5Oz85i2jlZ_TaRX--DEg_3f1a-vmZSoBPGOyBBScBwEgqZKKbKOrY21KEsUhDi5flPMz6Q870D4x7Zd0ilDlCEeja2XSz8RxhwrmN4Jn7WeLrQ6iy1ICx-0IGdncfA56bwBiz_r8PLoVbPKGnQNG7U__wlrXl01YdANiCbMKiuCkA9ToypBhRA2iVEte5BAYSy6CpSmEYd2mXr3T1MOAtvuIsTDF7rLrKkHrAy1IHfusnSpyE5lR_zUXJHGOgtXpdV8a234YTtPD_O0n33tZ_u9YTqQ85XNfOddtt6XszeDfGsPcNn2oQxQ_nl3uAHoX2m-08vepvJw41O--lM-Ohhkg818a1Mevl_LvvSHqwdyNhgc7fWOfqT5x3U5W-vxgd8O8vQgW0nz_b48fL0OXIBuN_u-cU2am27OeTNq0cJF7dqIqO0AQqk4sW3LsuPAisJQb9uRaaM2NcM4CgJihTiJYwh1dM02IBslYcS2YkS4bdlYN69L492FbnxDklHQtiLwCiZxgkwjJCaOTS0OkK6bhpkEE9JdMCF3_J9vgAlpsrRw64Uo59Oafew3eXVkcPrNs3C5JV2snrDb0vjS4nJ8B1KTpWCS31i_AXj_A34
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%9D%8C%ED%96%A5%EC%84%BC%EC%84%9C%EB%A1%9C%EB%B6%80%ED%84%B0+%EC%88%98%EC%A7%91%EB%90%9C+%EB%8D%B0%EC%9D%B4%ED%84%B0%EB%A5%BC+%EC%9D%B4%EC%9A%A9%ED%95%9C+%EB%B9%84%EC%A7%80%EB%8F%84+%ED%95%99%EC%8A%B5+%EA%B8%B0%EB%B0%98%EC%9D%98+%ED%94%8C%EB%9E%9C%ED%8A%B8+%EB%B0%B0%EA%B4%80%EA%B3%84%EC%97%90+%EB%8C%80%ED%95%9C+%EB%AF%B8%EC%84%B8%EB%88%84%EC%B6%9C+%ED%83%90%EC%A7%80+%EB%B0%A9%EB%B2%95&rft.jtitle=%ED%95%9C%EA%B5%AD%EC%BB%B4%ED%93%A8%ED%84%B0%EC%A0%95%EB%B3%B4%ED%95%99%ED%9A%8C%EB%85%BC%EB%AC%B8%EC%A7%80%2C+24%289%29&rft.au=%EC%97%AC%EB%8F%84%EC%97%BD&rft.au=%EB%B0%B0%EC%A7%80%ED%9B%88&rft.au=%EC%9D%B4%EC%9E%AC%EC%B2%A0&rft.date=2019-09-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%BB%B4%ED%93%A8%ED%84%B0%EC%A0%95%EB%B3%B4%ED%95%99%ED%9A%8C&rft.issn=1598-849X&rft.eissn=2383-9945&rft.spage=21&rft.epage=27&rft_id=info:doi/10.9708%2Fjksci.2019.24.09.021&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_6052223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-849X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-849X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-849X&client=summon