공간 빅 데이터 분석을 활용한 연령계층 간 주거이동의 공간적 특성(방향성) 차이

이 연구는 대도시권 가구의 주거이동에 대한 공간적 특성, 그중에서도 주거이동의 방향성에 대한 분석 방법론을 제시하고, 이를 실제 주거이동 가구를 대상으로 적용하여연령계층 간 주거이동 방향성에 차이가 있는지 실증함을 목적으로 한다. 이 연구의 결과는 기존 연구들과 달리, 공간 빅 데이터를구축하여 소규모 공간단위 간 주거이동의 특성에 대한 지식정보를 창출하기 위한 방법론을 제시할 뿐만 아니라, 대도시권에서의주거이동과 관련한 연령계층별 차이를 실증분석함으로써 주택및 주거분야 정책 수립에 추가적으로 활용·참조가 가능한 기초자료를 제공할 수...

Full description

Saved in:
Bibliographic Details
Published in국토계획 Vol. 55; no. 1; pp. 98 - 111
Main Author 이창효(Yi, Changhyo)
Format Journal Article
LanguageKorean
Published 대한국토·도시계획학회 01.02.2020
Subjects
Online AccessGet full text
ISSN1226-7147
2383-9171
DOI10.17208/jkpa.2020.02.55.1.98

Cover

Abstract 이 연구는 대도시권 가구의 주거이동에 대한 공간적 특성, 그중에서도 주거이동의 방향성에 대한 분석 방법론을 제시하고, 이를 실제 주거이동 가구를 대상으로 적용하여연령계층 간 주거이동 방향성에 차이가 있는지 실증함을 목적으로 한다. 이 연구의 결과는 기존 연구들과 달리, 공간 빅 데이터를구축하여 소규모 공간단위 간 주거이동의 특성에 대한 지식정보를 창출하기 위한 방법론을 제시할 뿐만 아니라, 대도시권에서의주거이동과 관련한 연령계층별 차이를 실증분석함으로써 주택및 주거분야 정책 수립에 추가적으로 활용·참조가 가능한 기초자료를 제공할 수 있을 것이다. The volume, distance, and direction of movement are the main research subjects in the study of the spatial characteristics of the residential relocation. This study focuses on the direction of movement in terms of residential relocation and proposes a methodology for analyzing the direction of residential relocation in small-sized spatial units using the spatial big data. In addition, by applying the proposed methodology, it identifies the directional difference in the residential relocation among the various age groups. The proposed directional analysis methodology is a small-unit weighted linear directional mean (sWLDM). This is an improvement over the linear directional mean (LDM) widely used in the spatial analysis, which was applied to the relocated households in the Seoul metropolitan region. The application results were visualized using the geographical information system and analyzed using the root mean square error (RMSE) and a paired t-test. The analysis results showed the directional difference in the residential relocation according to the temporal change, age group, and region. The directional difference in the residential relocation decreased in the age groups over 40 but increased in the groups under 40 years. Moreover, in the regions within the Seoul metropolitan area, the directional differences among the age groups gradually increased from 2005 to 2015. This study has implications in the construction of the existing official statistical data to be used as the spatial big data. In addition, the new methodology that derives new knowledge information in terms of residential relocation direction was proposed. KCI Citation Count: 4
AbstractList 이 연구는 대도시권 가구의 주거이동에 대한 공간적 특성, 그중에서도 주거이동의 방향성에 대한 분석 방법론을 제시하고, 이를 실제 주거이동 가구를 대상으로 적용하여연령계층 간 주거이동 방향성에 차이가 있는지 실증함을 목적으로 한다. 이 연구의 결과는 기존 연구들과 달리, 공간 빅 데이터를구축하여 소규모 공간단위 간 주거이동의 특성에 대한 지식정보를 창출하기 위한 방법론을 제시할 뿐만 아니라, 대도시권에서의주거이동과 관련한 연령계층별 차이를 실증분석함으로써 주택및 주거분야 정책 수립에 추가적으로 활용·참조가 가능한 기초자료를 제공할 수 있을 것이다. The volume, distance, and direction of movement are the main research subjects in the study of the spatial characteristics of the residential relocation. This study focuses on the direction of movement in terms of residential relocation and proposes a methodology for analyzing the direction of residential relocation in small-sized spatial units using the spatial big data. In addition, by applying the proposed methodology, it identifies the directional difference in the residential relocation among the various age groups. The proposed directional analysis methodology is a small-unit weighted linear directional mean (sWLDM). This is an improvement over the linear directional mean (LDM) widely used in the spatial analysis, which was applied to the relocated households in the Seoul metropolitan region. The application results were visualized using the geographical information system and analyzed using the root mean square error (RMSE) and a paired t-test. The analysis results showed the directional difference in the residential relocation according to the temporal change, age group, and region. The directional difference in the residential relocation decreased in the age groups over 40 but increased in the groups under 40 years. Moreover, in the regions within the Seoul metropolitan area, the directional differences among the age groups gradually increased from 2005 to 2015. This study has implications in the construction of the existing official statistical data to be used as the spatial big data. In addition, the new methodology that derives new knowledge information in terms of residential relocation direction was proposed. KCI Citation Count: 4
Author 이창효(Yi, Changhyo)
Author_xml – sequence: 1
  fullname: 이창효(Yi, Changhyo)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002563471$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotjE1LAkEAhocoyMyfEMwlqMNu8-Xs7FHKSpCE8L7M7o6xaSpKh47BdgmiUx-GghBB3lbMSOgXubP_oTU9vc_hed4tsN5sNRUAOxiZ2CJIHFzW29IkiCATETOfN7FpizWQIVRQw8YWXgcZTAg3LMysTZDrdgMXMWYxJjDJgMZ8Mp1HIYxndzB-iPTgKwkjGH-HOhzoQQiTXl-_jZKnPtQvUTyczSeh_pnCRaLff-fjRRE_9vTgFS6f9PAWJvczHY734miUPH-ktA919JmK22CjJhtdlVttFlSPi9XDU6NcOSkdFspGkzPLINwV-RrjPmYut7HCHmWCc0k8KZXwXEl5HguBEPddmyju-QoJl6ZYU9j1Fc2C_eVts1Nz6l7gtGTwvxctp95xCufVksNtRBkWqbu7cq87wZXyA-m0U5CdG-esclRENkWCIYv-AXNhjVY
ContentType Journal Article
DBID DBRKI
TDB
ACYCR
DOI 10.17208/jkpa.2020.02.55.1.98
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
Korean Citation Index
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Directional Difference of the Residential Relocation among the Age Groups Using Spatial Big Data Analysis
DocumentTitle_FL Directional Difference of the Residential Relocation among the Age Groups Using Spatial Big Data Analysis
EISSN 2383-9171
EndPage 111
ExternalDocumentID oai_kci_go_kr_ARTI_6903418
NODE09308407
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
DBRKI
M~E
TDB
ACYCR
ID FETCH-LOGICAL-n647-26b85f46d14b691e1c34866a2caae8cba365188006db92e6cde08b392efe1bde3
ISSN 1226-7147
IngestDate Tue Nov 21 21:14:26 EST 2023
Thu Feb 06 13:24:35 EST 2025
IsPeerReviewed false
IsScholarly false
Issue 1
Keywords 공간 빅 데이터
Small-unit Weighted Linear Directional Mean
Spatial Big Data
주거이동
이동 방향성
소규모 공간단위 가중 선형 방향성 평균
Residential Relocation
Direction of Movement
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-n647-26b85f46d14b691e1c34866a2caae8cba365188006db92e6cde08b392efe1bde3
PageCount 14
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_6903418
nurimedia_primary_NODE09308407
PublicationCentury 2000
PublicationDate 2020-02
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02
PublicationDecade 2020
PublicationTitle 국토계획
PublicationYear 2020
Publisher 대한국토·도시계획학회
Publisher_xml – name: 대한국토·도시계획학회
SSID ssib044744812
ssib008451685
ssib022228909
ssib001148845
ssib001106634
ssib006780971
Score 1.7241067
Snippet 이 연구는 대도시권 가구의 주거이동에 대한 공간적 특성, 그중에서도 주거이동의 방향성에 대한 분석 방법론을 제시하고, 이를 실제 주거이동 가구를 대상으로...
SourceID nrf
nurimedia
SourceType Open Website
Publisher
StartPage 98
SubjectTerms 공학일반
Title 공간 빅 데이터 분석을 활용한 연령계층 간 주거이동의 공간적 특성(방향성) 차이
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09308407
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002563471
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 국토계획, 2020, 55(1), 247, pp.98-111
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2383-9171
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044744812
  issn: 1226-7147
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANLT1oBdRVKwfJYgDyrJrkp1MZo75KlWwXir0tmSSWakr21LaiwdBiBdBBMGPShcKItjbllpxwV-0m_0Pvplkd7O2QvUyTN7MvI95Sd6bZOY9TbstEo6dWPBqE8oqJpRXo6hpgELAFsqMkDZXuy2WydJj_GDVXp2ZfVfatbS9xWvx8xPPlfyPVgEGepWnZP9Bs2OkAIA66BdK0DCUp9IxCl3k1ZFnq4qBKK6g0EMeQ9RWNRpIcOgjBhWMwgC6ACTvReQFtEEJzXknhSFAjCHmK5CLXKYgNkAqCuQonB5yDUkpZyHH5FHgpVJmxkcu8OcrkDnNC3C3KAnlEEYrx6VR46FiKqaoq-gphgGZRZUUxohBgly71MoUddlMx0TLnrgiYiM3UKiJpDMRJZCCw-TB_WfbMpRV6YNJSQSF3wuK_i4tf0KB9bIxtR1FSezLnSWj6TyBBd9CnlPMTaEdb9RzmrUCCRtB_JJ5AWe36ph5jNGaUDDwmeT-hzwRTWFG8sTchUNSWKNjts6x1AGOp60NGT_LMmTsWduumbXR6HJs8T9s_lR08Va81niy3mhtNmANdb9BmAGuDZ3VzlhgKWU6lIcvwomLbUontRxCEExA6c80OD8yLNn4mspM0JP4SBg7GNN8E8JoMoqDdVKeeydJA25fexO8xbPtbZnyAt6bJRdw5YJ2vli76W7-IF7UZlrrl7Rn_cOjfjfVB71X-uBNN-t8H6ZdffAjzdJO1kn14c5u9nl_-H5Xzz52B3u9_mGa_TzS5ZDsy6_-gRwxeLuTdT7pOaZs76U-fN3L0oM7g-7-8MNXqN3Vs-436HhZW1kMV_ylapHCpNomMgQK4dRuYpKYmBNmCjOuY0pIZMVRJGjMozpRARENknBmCRInwqAcliyiKUyeiPoVba693hZXNT1OmlZCBI9w08QsIpEJCy8RG3WeWHXHNue1WzBJSpd_1-m8tjCew8ZGHs6msfwoCOHNDJoynGunwXJdOzd5im5oc1ub2-ImuOZbfEHdK78BLze9mw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EA%B3%B5%EA%B0%84+%EB%B9%85+%EB%8D%B0%EC%9D%B4%ED%84%B0+%EB%B6%84%EC%84%9D%EC%9D%84+%ED%99%9C%EC%9A%A9%ED%95%9C+%EC%97%B0%EB%A0%B9%EA%B3%84%EC%B8%B5+%EA%B0%84+%EC%A3%BC%EA%B1%B0%EC%9D%B4%EB%8F%99%EC%9D%98+%EA%B3%B5%EA%B0%84%EC%A0%81+%ED%8A%B9%EC%84%B1%28%EB%B0%A9%ED%96%A5%EC%84%B1%29+%EC%B0%A8%EC%9D%B4&rft.jtitle=%EA%B5%AD%ED%86%A0%EA%B3%84%ED%9A%8D%2C+55%281%29&rft.au=%EC%9D%B4%EC%B0%BD%ED%9A%A8&rft.date=2020-02-01&rft.pub=%EB%8C%80%ED%95%9C%EA%B5%AD%ED%86%A0%C2%B7%EB%8F%84%EC%8B%9C%EA%B3%84%ED%9A%8D%ED%95%99%ED%9A%8C&rft.issn=1226-7147&rft.eissn=2383-9171&rft.spage=98&rft.epage=111&rft_id=info:doi/10.17208%2Fjkpa.2020.02.55.1.98&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_6903418
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7147&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7147&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7147&client=summon