오토인코더를 이용한 지하전력구 이상감지 시스템

With the advent of the era of the 4th industrial revolution, AI technique has been applied in various fields. KEPCO developed an anomaly detection system using AI technology to detect abnormal situation in the underground cable tunnel. This anomaly-detection system consists of a robot-based data acq...

Full description

Saved in:
Bibliographic Details
Published in전기학회 논문지 P권, 69(2) Vol. 69P; no. 2; pp. 69 - 75
Main Authors 강수경(Su-Kyung Kang), 박명혜(Myung-Hye Park), 김영현(Young-Hyun Kim), 김낙우(Nac-Woo Kim), 서인용(In-Yong Seo)
Format Journal Article
LanguageKorean
Published 대한전기학회 01.06.2020
Subjects
Online AccessGet full text
ISSN1229-800X
2586-7792
DOI10.5370/KIEEP.2020.69.2.69

Cover

Abstract With the advent of the era of the 4th industrial revolution, AI technique has been applied in various fields. KEPCO developed an anomaly detection system using AI technology to detect abnormal situation in the underground cable tunnel. This anomaly-detection system consists of a robot-based data acquisition, communication and analysis module which works with stacked autoencoder neural network model. This system utilizes the data from audio sensors and determines the condition of equipment in the underground cable tunnel which is normal or abnormal. Moreover, by adding the attention-module in autoencoder neural network model we increased the recognition accuracy by 4%. The performance of this system is over 90%. Also, we investigated the performance of adversarial autoencoder (AAE) and attention based AAE model, which showed worse failure detection rate than attention added autoencoder model. KCI Citation Count: 0
AbstractList With the advent of the era of the 4th industrial revolution, AI technique has been applied in various fields. KEPCO developed an anomaly detection system using AI technology to detect abnormal situation in the underground cable tunnel. This anomaly-detection system consists of a robot-based data acquisition, communication and analysis module which works with stacked autoencoder neural network model. This system utilizes the data from audio sensors and determines the condition of equipment in the underground cable tunnel which is normal or abnormal. Moreover, by adding the attention-module in autoencoder neural network model we increased the recognition accuracy by 4%. The performance of this system is over 90%. Also, we investigated the performance of adversarial autoencoder (AAE) and attention based AAE model, which showed worse failure detection rate than attention added autoencoder model. KCI Citation Count: 0
Author 김영현(Young-Hyun Kim)
김낙우(Nac-Woo Kim)
박명혜(Myung-Hye Park)
강수경(Su-Kyung Kang)
서인용(In-Yong Seo)
Author_xml – sequence: 1
  fullname: 강수경(Su-Kyung Kang)
– sequence: 2
  fullname: 박명혜(Myung-Hye Park)
– sequence: 3
  fullname: 김영현(Young-Hyun Kim)
– sequence: 4
  fullname: 김낙우(Nac-Woo Kim)
– sequence: 5
  fullname: 서인용(In-Yong Seo)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002592984$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotjD9Lw0AAxQ-pYK39Ak5dHBwS70_uLhlLjRosVqSD23G5JBKqqaQ4uCn-GRTBoYUiLXRoEcHBQcFBv1B7-Q6G2je834P3eKugkLSTEIB1BE1KONza91z30MQQQ5M5Js5tCRQxtZnBuYMLoIgwdgwbwuMVUO50Yh9aFmcEY1QENd0fZ_cjPfzWv93ZU3c2-ano4ad-ect6g4p-vcp6fT26nY0m06_3eXNzPf14zouKfhzoh3F2N1gDy5E87YTlBUugueM2a3tGvbHr1ap1I2EWMnzJA0yVHSgfhYrZTPmUOTAKVBRiwqhCMhcnPrUokhGykM2lwr5Fc4YQkxLY_L9N0ki0VCzaMp7zpC1aqageNT3hEE4wt_LtxmJ7kcZnYRBLcZ4HmV6Kg8a2Cx1CEYWI_AH3eHLF
ContentType Journal Article
DBID DBRKI
TDB
ACYCR
DOI 10.5370/KIEEP.2020.69.2.69
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
Korean Citation Index
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Development of Anomaly-Detection System for the Underground Cable Tunnel using Autoencoder
DocumentTitle_FL Development of Anomaly-Detection System for the Underground Cable Tunnel using Autoencoder
EISSN 2586-7792
EndPage 75
ExternalDocumentID oai_kci_go_kr_ARTI_9373274
NODE09351501
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
DBRKI
TDB
ACYCR
ID FETCH-LOGICAL-n641-ba7d25c8dcb1ec686cb5690fdcfe2365c1aaaa73b5451af14187ac2b4587ae023
ISSN 1229-800X
IngestDate Sun Mar 09 07:50:54 EDT 2025
Thu Feb 06 13:25:58 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Anomaly-Detection
Adversarial-Autoencoder
Stacked Autoencoder
Underground Cable Tunnel
Autoencoder
Self-attention
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-n641-ba7d25c8dcb1ec686cb5690fdcfe2365c1aaaa73b5451af14187ac2b4587ae023
PageCount 7
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9373274
nurimedia_primary_NODE09351501
PublicationCentury 2000
PublicationDate 2020-06
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06
PublicationDecade 2020
PublicationTitle 전기학회 논문지 P권, 69(2)
PublicationYear 2020
Publisher 대한전기학회
Publisher_xml – name: 대한전기학회
SSID ssib044763221
ssib005299917
ssib013785837
ssib053377038
ssib006781898
ssib036278838
ssib022234313
Score 2.1207697
Snippet With the advent of the era of the 4th industrial revolution, AI technique has been applied in various fields. KEPCO developed an anomaly detection system using...
SourceID nrf
nurimedia
SourceType Open Website
Publisher
StartPage 69
SubjectTerms 전기공학
Title 오토인코더를 이용한 지하전력구 이상감지 시스템
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09351501
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002592984
Volume 69P
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 전기학회 논문지 P권, 2020, 69(2), , pp.69-75
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2586-7792
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044763221
  issn: 1229-800X
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFB_aetCLKCrWj7KIc1qyJpPMZOaYZCOtpbVgxd5CMsmKFHaldA_1IIofB0Xw0EKRFnpoEcFDDwoe9B9qs_-DbyabTVoLVveQHWby3ps3L5n3e8m8DEK3O4lriyxJDMF4ZjiJS4zYYalhZtCQCEvaqcp3nptn0w-de0t0aWx8v7Zqqb-atOSzE_NK_seqUAd2VVmy_2DZEVOogDLYF45gYTieysY4DLDg2HNw2MacYc_UNW3sc1Xw21hAk495WfAo9oNmeZKjCx72hKIXFIuizXPV-odhleYEjHnBwFQ8Qg_7FHvHOHEbYKluU4snRoz0SdwH5rrgld1V4urQuCbHUwr4oy4U3fMwD7QySgfdl2CoZyFmlKhWdoFqeVyrADVEjQfhD_rG7BrMcM1Z_aRcVFR-SQWsPSVGSeWq34TPKRJjei1rLujF5eKIMKHHS9tCjYAmAz0I13MpkPW7Tb1t9UlkoBHROmpbQBcIn4-l8ajXq9MMH8wQs1pApm8lTR_U7BWcZhxrrogQAfjBXCo8ta4jlDOIh8QR_8XEQu1GJTVvVGyCM8Q1xQY1xz0mtV21xHR2JgwXWkqLFhMt0iopj3yJfP5-O1TvzSGGsMbRGQJ-VG2WMvc8rGZ0ogKOWuayC4CwCugt2-WUV4BYgVNAsCMPAWjK5bX3-I4D7o9UABNiExdclM5vLYenyIRTetz5UwtAjN0VAJpnu321WwZMuTX0uHgBnR-GfQ2vuIcvorHl3iUU5Ju7g7c7-faP_Nf64Yf1w72fjXz7W_7py2Bjq5F_fjHY2Mx3Xh_u7B18_6pbXr082P8IDY38_Vb-bnfwZusyWrwbLgbTxnBTE6PLHMtIYjclVPJUJlYmGWcyoUyYnVR2MmIzKq0YfjBNQmRjxR3LsbgbS5I4FP4zANhX0ES3182uogaJaSpZSixbEodKBpEGEYnpxmnGRErlJLoFukfL8kmkviGv_h_3ouWVCCLlmQjCEpu4ziSaGg1N9LT4wE1UN_S1v51wHZ2rrv4baGJ1pZ_dBKC-mkzpa-M3gmO3gw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%98%A4%ED%86%A0%EC%9D%B8%EC%BD%94%EB%8D%94%EB%A5%BC+%EC%9D%B4%EC%9A%A9%ED%95%9C+%EC%A7%80%ED%95%98%EC%A0%84%EB%A0%A5%EA%B5%AC+%EC%9D%B4%EC%83%81%EA%B0%90%EC%A7%80+%EC%8B%9C%EC%8A%A4%ED%85%9C&rft.jtitle=%EC%A0%84%EA%B8%B0%ED%95%99%ED%9A%8C%EB%85%BC%EB%AC%B8%EC%A7%80+P&rft.au=%EA%B0%95%EC%88%98%EA%B2%BD%28Su-Kyung+Kang%29&rft.au=%EB%B0%95%EB%AA%85%ED%98%9C%28Myung-Hye+Park%29&rft.au=%EA%B9%80%EC%98%81%ED%98%84%28Young-Hyun+Kim%29&rft.au=%EA%B9%80%EB%82%99%EC%9A%B0%28Nac-Woo+Kim%29&rft.date=2020-06-01&rft.pub=%EB%8C%80%ED%95%9C%EC%A0%84%EA%B8%B0%ED%95%99%ED%9A%8C&rft.issn=1229-800X&rft.eissn=2586-7792&rft.volume=69P&rft.issue=2&rft.spage=69&rft.epage=75&rft_id=info:doi/10.5370%2FKIEEP.2020.69.2.69&rft.externalDocID=NODE09351501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-800X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-800X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-800X&client=summon