Machine learning prediction algorithms for 2- , 5- and 10-year risk of Alzheimer's, Parkinson's and dementia at age 65: a study using medical records from France and the UK General Practitioners
Leveraging machine learning on electronic health records offers a promising method for early identification of individuals at risk for dementia and neurodegenerative diseases. Current risk algorithms heavily rely on age, highlighting the need for alternative models with strong predictive power, espe...
        Saved in:
      
    
          | Published in | bioRxiv (Cold Spring Harbor Laboratory) | 
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
        
        25.01.2025
     | 
| Online Access | Get full text | 
| DOI | 10.1101/2025.01.22.25320969 | 
Cover
| Abstract | Leveraging machine learning on electronic health records offers a promising method for early identification of individuals at risk for dementia and neurodegenerative diseases. Current risk algorithms heavily rely on age, highlighting the need for alternative models with strong predictive power, especially at age 65, a crucial time for early screening and prevention.
This prospective study analyzed electronic health records (EHR) from 76,427 adults (age 65, 52.1% women) using the THIN database. A general risk algorithm for Alzheimer's disease, Parkinson's disease, and dementia was developed using machine learning to select predictors from diagnoses, and medications.
Medications (e.g., laxatives, urological drugs, antidepressants), along with sex, BMI, and comorbidities, were key predictors. The algorithm achieved a 38.4% detection rate at a 5% false-positive rate for 2-year dementia prediction.
The validated prediction algorithms, easy to implement in primary care, identify high-risk 65-year-olds using medication records. Further refinement and broader validation are needed. | 
    
|---|---|
| AbstractList | Leveraging machine learning on electronic health records offers a promising method for early identification of individuals at risk for dementia and neurodegenerative diseases. Current risk algorithms heavily rely on age, highlighting the need for alternative models with strong predictive power, especially at age 65, a crucial time for early screening and prevention.
This prospective study analyzed electronic health records (EHR) from 76,427 adults (age 65, 52.1% women) using the THIN database. A general risk algorithm for Alzheimer's disease, Parkinson's disease, and dementia was developed using machine learning to select predictors from diagnoses, and medications.
Medications (e.g., laxatives, urological drugs, antidepressants), along with sex, BMI, and comorbidities, were key predictors. The algorithm achieved a 38.4% detection rate at a 5% false-positive rate for 2-year dementia prediction.
The validated prediction algorithms, easy to implement in primary care, identify high-risk 65-year-olds using medication records. Further refinement and broader validation are needed. | 
    
| Author | Nedelec, Thomas Hamieh, Nadine Fang, Fang McRae, Allan Kivimäki, Mika Guinebretiere, Octave Zaidi, Karim Sipilä, Pyry Ansart, Manon Montaud, Charlotte Fournier, Nemo Hswen, Yulin Slaouti, Yanis Couvy-Duchesne, Baptiste Yang, Fen Freydenzon, Anna Wei, Dang Belloir, Antoine Lekens, Beranger Durrleman, Stanley  | 
    
| Author_xml | – sequence: 1 givenname: Thomas surname: Nedelec fullname: Nedelec, Thomas – sequence: 2 givenname: Karim surname: Zaidi fullname: Zaidi, Karim – sequence: 3 givenname: Charlotte surname: Montaud fullname: Montaud, Charlotte – sequence: 4 givenname: Octave surname: Guinebretiere fullname: Guinebretiere, Octave – sequence: 5 givenname: Pyry surname: Sipilä fullname: Sipilä, Pyry – sequence: 6 givenname: Dang surname: Wei fullname: Wei, Dang – sequence: 7 givenname: Fen surname: Yang fullname: Yang, Fen – sequence: 8 givenname: Anna surname: Freydenzon fullname: Freydenzon, Anna – sequence: 9 givenname: Antoine surname: Belloir fullname: Belloir, Antoine – sequence: 10 givenname: Nemo surname: Fournier fullname: Fournier, Nemo – sequence: 11 givenname: Nadine surname: Hamieh fullname: Hamieh, Nadine – sequence: 12 givenname: Beranger surname: Lekens fullname: Lekens, Beranger – sequence: 13 givenname: Yanis surname: Slaouti fullname: Slaouti, Yanis – sequence: 14 givenname: Allan surname: McRae fullname: McRae, Allan – sequence: 15 givenname: Baptiste surname: Couvy-Duchesne fullname: Couvy-Duchesne, Baptiste – sequence: 16 givenname: Yulin surname: Hswen fullname: Hswen, Yulin – sequence: 17 givenname: Fang surname: Fang fullname: Fang, Fang – sequence: 18 givenname: Mika surname: Kivimäki fullname: Kivimäki, Mika – sequence: 19 givenname: Manon surname: Ansart fullname: Ansart, Manon – sequence: 20 givenname: Stanley surname: Durrleman fullname: Durrleman, Stanley  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39974040$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNo9UblOw0AQdQHiCHwBEpqOBofZw3FMhxABBAgKqK2xd5yssNfRriMUPo8vw04I1WveNW-Ooz3XOo6iM4FjIVBcSZTJGMVYyrFMlMRskh1EhyrLUo0aj6KfFyoX1jHUTN5ZN4elZ2PLzrYOqJ633naLJkDVepAxXEISAzkDAuN1rwBvwye0FdzU3wu2DfuLcAlv5D-tC627CBuy4YZdZwmoA5ozTJJrIAjdyqxhFYbQZsikGjyXrTd9nG8bmHlyJW8cugXDxxPcs2Pf09489Q2HjuzDSbRfUR349A9H0cfs7v32IX5-vX-8vXmOG6kwi1WqGSk11RR1hkpqYbCUSig1SauCCUmKItXSpFOpCk4KWarpRGcaBRYmKdUo0lvflVvS-ovqOl9625Bf5wLzYe18WDsfUOa7tXvZ-Va2XBX9mf-a3Q_ULyTagdA | 
    
| ContentType | Journal Article | 
    
| DBID | NPM UNPAY  | 
    
| DOI | 10.1101/2025.01.22.25320969 | 
    
| DatabaseName | PubMed Unpaywall  | 
    
| DatabaseTitle | PubMed | 
    
| DatabaseTitleList | PubMed | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:11838986 39974040  | 
    
| Genre | Journal Article Preprint  | 
    
| GroupedDBID | NPM UNPAY  | 
    
| ID | FETCH-LOGICAL-m2309-374e0a7df804903241d0c2313367fbea0a21b742d7823be5b2c386494010bd5c3 | 
    
| IEDL.DBID | UNPAY | 
    
| IngestDate | Sun Oct 26 04:07:17 EDT 2025 Fri Feb 21 04:12:24 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-m2309-374e0a7df804903241d0c2313367fbea0a21b742d7823be5b2c386494010bd5c3 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/11838986 | 
    
| PMID | 39974040 | 
    
| ParticipantIDs | unpaywall_primary_10_1101_2025_01_22_25320969 pubmed_primary_39974040  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20250125 | 
    
| PublicationDateYYYYMMDD | 2025-01-25 | 
    
| PublicationDate_xml | – month: 1 year: 2025 text: 20250125 day: 25  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | bioRxiv (Cold Spring Harbor Laboratory) | 
    
| PublicationTitleAlternate | medRxiv | 
    
| PublicationYear | 2025 | 
    
| Score | 1.9000492 | 
    
| SecondaryResourceType | preprint | 
    
| Snippet | Leveraging machine learning on electronic health records offers a promising method for early identification of individuals at risk for dementia and... | 
    
| SourceID | unpaywall pubmed  | 
    
| SourceType | Open Access Repository Index Database  | 
    
| Title | Machine learning prediction algorithms for 2- , 5- and 10-year risk of Alzheimer's, Parkinson's and dementia at age 65: a study using medical records from France and the UK General Practitioners | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39974040 https://www.ncbi.nlm.nih.gov/pmc/articles/11838986  | 
    
| UnpaywallVersion | submittedVersion | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29btswECYSZ2iX_qB_6U9wQ8dIoUiRkrsZRYOghY0MNZBOAimRthBJNmQZRTLlNfJCfZA-SY-UbATdMgkSRVHAHe6-4313JOQzl8akllK0fpYGsdJJoEWqgkjmVJmxkTx3tcPTmbyYx9-vxNUBYbtaGE_az3UZNlUdNuXScyvXdX6244mdISJGJ5vKQ3IkBeLvETmazy4nv4aWQqhiLqD3zTgZC5k7-GDs6Mx7B_Nk26zVzW9VVQ88yfnzvrpv4xsQOgLJdbjtdJjf_tee8XE_-YI8G4AlTPqxl-TANK_In6nnShoYDodYwLp1mRknDVDVYtWW3bLeACJXYAGcgghANQWg1bzBGeCI57CyMKlul6asTfv37n5zCq5U2leNuVs_ofC7jKUC1QFaKJDiCyjwvWvBUesXUPcZIeh3hXDJdlWDP9bD-C8gEIX5DxjaYMPDPkqb12R-_u3n14tgOLkhqJlL2fAkNlQlhU1dYhExW1TQHJEk5zKx2iiqWKQxKC8Qn3BthGY5T2U8xmCP6kLk_A0ZNbjAOwKaowdNrJLWlV0xoc04RbHbqIiksUock7e9YLN1354jQ8iVxGibjkmwl_R-0Mc8NMqcimTuyrKdirx_5PsfyFP31O3HMPGRjLp2az4hQun0CTmcXU5PBsX8B5sM5-4 | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbpwwELbSzaG99Ef9S_qjOfQYiDHYsL2tqkZRq0Q9dKX0hGywd1GBXbGsquSU1-gL9UH6JJ0x7CrqLScExhhpRjPfeL4ZM_YhVtZmjnO0fo4HiTZpYGSmg0gVXNupVXFBtcMXl-p8nny5klcHTOxqYTxpvzBV2NZN2FZLz61cN8Xpjid2iogYnWymHrBDJRF_T9jh_PLb7MfYUghVjAJ634xTiFDQwQdTojPvHczDbbvW1790Xd_xJGdPhuq-jW9ASASSn-G2N2Fx8197xvv95FP2eASWMBvGnrED2z5nfy48V9LCeDjEAtYdZWZIGqDrxaqr-mWzAUSuIAI4ARmAbktAq3mNM4CI57ByMKtvlrZqbPf39vfmBKhU2leN0a2fUPpdxkqD7gEtFCj5ETT43rVA1PoFNENGCIZdIVyyWzXgj_Ww_gsIRGH-FcY22HC3j9LmBZufff7-6TwYT24IGkEpmzhNLNdp6TJKLCJmi0peIJKMY5U6YzXXIjIYlJeIT2JjpRFFnKlkisEeN6Us4pds0uICrxmYGD1o6rRyVHYlpLHTDMXuojJS1ml5xF4Ngs3XQ3uOHCFXmqBtOmLBXtL7QR_z8CgnFcnpKvKdihzf8_037BE9pf0YId-ySd9t7TtEKL15P6rkPzCe5uI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+prediction+algorithms+for+2-+%2C+5-+and+10-year+risk+of+Alzheimer%E2%80%99s%2C+Parkinson%E2%80%99s+and+dementia+at+age+65%3A+a+study+using+medical+records+from+France+and+the+UK+General+Practitioners&rft.jtitle=bioRxiv+%28Cold+Spring+Harbor+Laboratory%29&rft.date=2025-01-25&rft_id=info:doi/10.1101%2F2025.01.22.25320969&rft.externalDocID=oai%3Apubmedcentral.nih.gov%3A11838986 |