Machine learning prediction algorithms for 2- , 5- and 10-year risk of Alzheimer's, Parkinson's and dementia at age 65: a study using medical records from France and the UK General Practitioners

Leveraging machine learning on electronic health records offers a promising method for early identification of individuals at risk for dementia and neurodegenerative diseases. Current risk algorithms heavily rely on age, highlighting the need for alternative models with strong predictive power, espe...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv (Cold Spring Harbor Laboratory)
Main Authors Nedelec, Thomas, Zaidi, Karim, Montaud, Charlotte, Guinebretiere, Octave, Sipilä, Pyry, Wei, Dang, Yang, Fen, Freydenzon, Anna, Belloir, Antoine, Fournier, Nemo, Hamieh, Nadine, Lekens, Beranger, Slaouti, Yanis, McRae, Allan, Couvy-Duchesne, Baptiste, Hswen, Yulin, Fang, Fang, Kivimäki, Mika, Ansart, Manon, Durrleman, Stanley
Format Journal Article
LanguageEnglish
Published United States 25.01.2025
Online AccessGet full text
DOI10.1101/2025.01.22.25320969

Cover

Abstract Leveraging machine learning on electronic health records offers a promising method for early identification of individuals at risk for dementia and neurodegenerative diseases. Current risk algorithms heavily rely on age, highlighting the need for alternative models with strong predictive power, especially at age 65, a crucial time for early screening and prevention. This prospective study analyzed electronic health records (EHR) from 76,427 adults (age 65, 52.1% women) using the THIN database. A general risk algorithm for Alzheimer's disease, Parkinson's disease, and dementia was developed using machine learning to select predictors from diagnoses, and medications. Medications (e.g., laxatives, urological drugs, antidepressants), along with sex, BMI, and comorbidities, were key predictors. The algorithm achieved a 38.4% detection rate at a 5% false-positive rate for 2-year dementia prediction. The validated prediction algorithms, easy to implement in primary care, identify high-risk 65-year-olds using medication records. Further refinement and broader validation are needed.
AbstractList Leveraging machine learning on electronic health records offers a promising method for early identification of individuals at risk for dementia and neurodegenerative diseases. Current risk algorithms heavily rely on age, highlighting the need for alternative models with strong predictive power, especially at age 65, a crucial time for early screening and prevention. This prospective study analyzed electronic health records (EHR) from 76,427 adults (age 65, 52.1% women) using the THIN database. A general risk algorithm for Alzheimer's disease, Parkinson's disease, and dementia was developed using machine learning to select predictors from diagnoses, and medications. Medications (e.g., laxatives, urological drugs, antidepressants), along with sex, BMI, and comorbidities, were key predictors. The algorithm achieved a 38.4% detection rate at a 5% false-positive rate for 2-year dementia prediction. The validated prediction algorithms, easy to implement in primary care, identify high-risk 65-year-olds using medication records. Further refinement and broader validation are needed.
Author Nedelec, Thomas
Hamieh, Nadine
Fang, Fang
McRae, Allan
Kivimäki, Mika
Guinebretiere, Octave
Zaidi, Karim
Sipilä, Pyry
Ansart, Manon
Montaud, Charlotte
Fournier, Nemo
Hswen, Yulin
Slaouti, Yanis
Couvy-Duchesne, Baptiste
Yang, Fen
Freydenzon, Anna
Wei, Dang
Belloir, Antoine
Lekens, Beranger
Durrleman, Stanley
Author_xml – sequence: 1
  givenname: Thomas
  surname: Nedelec
  fullname: Nedelec, Thomas
– sequence: 2
  givenname: Karim
  surname: Zaidi
  fullname: Zaidi, Karim
– sequence: 3
  givenname: Charlotte
  surname: Montaud
  fullname: Montaud, Charlotte
– sequence: 4
  givenname: Octave
  surname: Guinebretiere
  fullname: Guinebretiere, Octave
– sequence: 5
  givenname: Pyry
  surname: Sipilä
  fullname: Sipilä, Pyry
– sequence: 6
  givenname: Dang
  surname: Wei
  fullname: Wei, Dang
– sequence: 7
  givenname: Fen
  surname: Yang
  fullname: Yang, Fen
– sequence: 8
  givenname: Anna
  surname: Freydenzon
  fullname: Freydenzon, Anna
– sequence: 9
  givenname: Antoine
  surname: Belloir
  fullname: Belloir, Antoine
– sequence: 10
  givenname: Nemo
  surname: Fournier
  fullname: Fournier, Nemo
– sequence: 11
  givenname: Nadine
  surname: Hamieh
  fullname: Hamieh, Nadine
– sequence: 12
  givenname: Beranger
  surname: Lekens
  fullname: Lekens, Beranger
– sequence: 13
  givenname: Yanis
  surname: Slaouti
  fullname: Slaouti, Yanis
– sequence: 14
  givenname: Allan
  surname: McRae
  fullname: McRae, Allan
– sequence: 15
  givenname: Baptiste
  surname: Couvy-Duchesne
  fullname: Couvy-Duchesne, Baptiste
– sequence: 16
  givenname: Yulin
  surname: Hswen
  fullname: Hswen, Yulin
– sequence: 17
  givenname: Fang
  surname: Fang
  fullname: Fang, Fang
– sequence: 18
  givenname: Mika
  surname: Kivimäki
  fullname: Kivimäki, Mika
– sequence: 19
  givenname: Manon
  surname: Ansart
  fullname: Ansart, Manon
– sequence: 20
  givenname: Stanley
  surname: Durrleman
  fullname: Durrleman, Stanley
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39974040$$D View this record in MEDLINE/PubMed
BookMark eNo9UblOw0AQdQHiCHwBEpqOBofZw3FMhxABBAgKqK2xd5yssNfRriMUPo8vw04I1WveNW-Ooz3XOo6iM4FjIVBcSZTJGMVYyrFMlMRskh1EhyrLUo0aj6KfFyoX1jHUTN5ZN4elZ2PLzrYOqJ633naLJkDVepAxXEISAzkDAuN1rwBvwye0FdzU3wu2DfuLcAlv5D-tC627CBuy4YZdZwmoA5ozTJJrIAjdyqxhFYbQZsikGjyXrTd9nG8bmHlyJW8cugXDxxPcs2Pf09489Q2HjuzDSbRfUR349A9H0cfs7v32IX5-vX-8vXmOG6kwi1WqGSk11RR1hkpqYbCUSig1SauCCUmKItXSpFOpCk4KWarpRGcaBRYmKdUo0lvflVvS-ovqOl9625Bf5wLzYe18WDsfUOa7tXvZ-Va2XBX9mf-a3Q_ULyTagdA
ContentType Journal Article
DBID NPM
UNPAY
DOI 10.1101/2025.01.22.25320969
DatabaseName PubMed
Unpaywall
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID oai:pubmedcentral.nih.gov:11838986
39974040
Genre Journal Article
Preprint
GroupedDBID NPM
UNPAY
ID FETCH-LOGICAL-m2309-374e0a7df804903241d0c2313367fbea0a21b742d7823be5b2c386494010bd5c3
IEDL.DBID UNPAY
IngestDate Sun Oct 26 04:07:17 EDT 2025
Fri Feb 21 04:12:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-m2309-374e0a7df804903241d0c2313367fbea0a21b742d7823be5b2c386494010bd5c3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/11838986
PMID 39974040
ParticipantIDs unpaywall_primary_10_1101_2025_01_22_25320969
pubmed_primary_39974040
PublicationCentury 2000
PublicationDate 20250125
PublicationDateYYYYMMDD 2025-01-25
PublicationDate_xml – month: 1
  year: 2025
  text: 20250125
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle bioRxiv (Cold Spring Harbor Laboratory)
PublicationTitleAlternate medRxiv
PublicationYear 2025
Score 1.9000492
SecondaryResourceType preprint
Snippet Leveraging machine learning on electronic health records offers a promising method for early identification of individuals at risk for dementia and...
SourceID unpaywall
pubmed
SourceType Open Access Repository
Index Database
Title Machine learning prediction algorithms for 2- , 5- and 10-year risk of Alzheimer's, Parkinson's and dementia at age 65: a study using medical records from France and the UK General Practitioners
URI https://www.ncbi.nlm.nih.gov/pubmed/39974040
https://www.ncbi.nlm.nih.gov/pmc/articles/11838986
UnpaywallVersion submittedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29btswECYSZ2iX_qB_6U9wQ8dIoUiRkrsZRYOghY0MNZBOAimRthBJNmQZRTLlNfJCfZA-SY-UbATdMgkSRVHAHe6-4313JOQzl8akllK0fpYGsdJJoEWqgkjmVJmxkTx3tcPTmbyYx9-vxNUBYbtaGE_az3UZNlUdNuXScyvXdX6244mdISJGJ5vKQ3IkBeLvETmazy4nv4aWQqhiLqD3zTgZC5k7-GDs6Mx7B_Nk26zVzW9VVQ88yfnzvrpv4xsQOgLJdbjtdJjf_tee8XE_-YI8G4AlTPqxl-TANK_In6nnShoYDodYwLp1mRknDVDVYtWW3bLeACJXYAGcgghANQWg1bzBGeCI57CyMKlul6asTfv37n5zCq5U2leNuVs_ofC7jKUC1QFaKJDiCyjwvWvBUesXUPcZIeh3hXDJdlWDP9bD-C8gEIX5DxjaYMPDPkqb12R-_u3n14tgOLkhqJlL2fAkNlQlhU1dYhExW1TQHJEk5zKx2iiqWKQxKC8Qn3BthGY5T2U8xmCP6kLk_A0ZNbjAOwKaowdNrJLWlV0xoc04RbHbqIiksUock7e9YLN1354jQ8iVxGibjkmwl_R-0Mc8NMqcimTuyrKdirx_5PsfyFP31O3HMPGRjLp2az4hQun0CTmcXU5PBsX8B5sM5-4
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbpwwELbSzaG99Ef9S_qjOfQYiDHYsL2tqkZRq0Q9dKX0hGywd1GBXbGsquSU1-gL9UH6JJ0x7CrqLScExhhpRjPfeL4ZM_YhVtZmjnO0fo4HiTZpYGSmg0gVXNupVXFBtcMXl-p8nny5klcHTOxqYTxpvzBV2NZN2FZLz61cN8Xpjid2iogYnWymHrBDJRF_T9jh_PLb7MfYUghVjAJ634xTiFDQwQdTojPvHczDbbvW1790Xd_xJGdPhuq-jW9ASASSn-G2N2Fx8197xvv95FP2eASWMBvGnrED2z5nfy48V9LCeDjEAtYdZWZIGqDrxaqr-mWzAUSuIAI4ARmAbktAq3mNM4CI57ByMKtvlrZqbPf39vfmBKhU2leN0a2fUPpdxkqD7gEtFCj5ETT43rVA1PoFNENGCIZdIVyyWzXgj_Ww_gsIRGH-FcY22HC3j9LmBZufff7-6TwYT24IGkEpmzhNLNdp6TJKLCJmi0peIJKMY5U6YzXXIjIYlJeIT2JjpRFFnKlkisEeN6Us4pds0uICrxmYGD1o6rRyVHYlpLHTDMXuojJS1ml5xF4Ngs3XQ3uOHCFXmqBtOmLBXtL7QR_z8CgnFcnpKvKdihzf8_037BE9pf0YId-ySd9t7TtEKL15P6rkPzCe5uI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+prediction+algorithms+for+2-+%2C+5-+and+10-year+risk+of+Alzheimer%E2%80%99s%2C+Parkinson%E2%80%99s+and+dementia+at+age+65%3A+a+study+using+medical+records+from+France+and+the+UK+General+Practitioners&rft.jtitle=bioRxiv+%28Cold+Spring+Harbor+Laboratory%29&rft.date=2025-01-25&rft_id=info:doi/10.1101%2F2025.01.22.25320969&rft.externalDocID=oai%3Apubmedcentral.nih.gov%3A11838986