MFCC와 CNN을 이용한 저고도 초소형 무인기 탐지 및 분류에 대한 연구
This paper is related to detection and classification for micro-sized aircraft that flies at low-altitude. The deep-learning based method using sounds coming from the micro-sized aircraft is proposed to detect and identify them efficiently. We use MFCC as sound features and CNN as a detector and cla...
Saved in:
| Published in | 한국정보통신학회논문지 Vol. 24; no. 3; pp. 364 - 370 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | Korean |
| Published |
한국정보통신학회
2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2234-4772 2288-4165 |
| DOI | 10.6109/jkiice.2020.24.3.364 |
Cover
| Abstract | This paper is related to detection and classification for micro-sized aircraft that flies at low-altitude. The deep-learning based method using sounds coming from the micro-sized aircraft is proposed to detect and identify them efficiently. We use MFCC as sound features and CNN as a detector and classifier. We've proved that each micro-drones have their own distinguishable MFCC feature and confirmed that we can apply CNN as a detector and classifier even though drone sound has time-related sequence. Typically many papers deal with RNN for time-related features, but we prove that if the number of frame in the MFCC features are enough to contain the time-related information, we can classify those features with CNN. With this approach, we've achieved high detection and classification ratio with low-computation power at the same time using the data set which consists of four different drone sounds. So, this paper presents the simple and effecive method of detection and classification method for micro-sized aircraft. 본 논문은 저고도로 비행하는 초소형 무인기에 대한 탐지 및 분류에 대한 기술로써, 단순히 초소형 무인기를 탐지만 하는 것이 아니라 탐지된 무인기의 종류 및 모델까지 인식하는 심화학습 기반 탐지 및 분류 기법을 제안한다. 무인기의 소리 특성으로 MFCC를 사용하였고 탐지 및 분류를 위해 CNN를 사용하였다. 무인기들은 각각 CNN을 통해 구분할 수 있는 MFCC 특성을 가짐을 입증하였고, 또한 총 4가지의 무인기에 대한 dataset을 대상으로 분류를 한 결과 time-related sequence를 가지는 MFCC라 하더라도 RNN 대신 CNN를 사용하면 탐지 및 분류 능력을 갖추면서도 연산량을 줄일 수 있음을 검증하였다. 따라서 본 논문은 간단하면서도 효과적인 초소형 무인기 탐지 및 분류 방법을 제시한다. |
|---|---|
| AbstractList | 본 논문은 저고도로 비행하는 초소형 무인기에 대한 탐지 및 분류에 대한 기술로써, 단순히 초소형 무인기를 탐지만 하는 것이 아니라 탐지된 무인기의 종류 및 모델까지 인식하는 심화학습 기반 탐지 및 분류 기법을 제안한다. 무인기의 소리 특성으로 MFCC를 사용하였고 탐지 및 분류를 위해 CNN를 사용하였다. 무인기들은 각각 CNN을 통해 구분할 수 있는 MFCC 특성을 가짐을 입증하였고, 또한 총 4가지의 무인기에 대한 dataset을 대상으로 분류를 한 결과 time-related sequence를 가지는 MFCC라 하더라도 RNN 대신 CNN를 사용하면 탐지 및 분류 능력을 갖추면서도 연산량을 줄일 수 있음을 검증하였다. 따라서 본 논문은 간단하면서도 효과적인 초소형 무인기 탐지 및 분류 방법을 제시한다. This paper is related to detection and classification for micro-sized aircraft that flies at low-altitude. The deep-learning based method using sounds coming from the micro-sized aircraft is proposed to detect and identify them efficiently. We use MFCC as sound features and CNN as a detector and classifier. We’ve proved that each micro-drones have their own distinguishable MFCC feature and confirmed that we can apply CNN as a detector and classifier even though drone sound has time-related sequence. Typically many papers deal with RNN for time-related features, but we prove that if the number of frame in the MFCC features are enough to contain the time-related information, we can classify those features with CNN. With this approach, we’ve achieved high detection and classification ratio with low-computation power at the same time using the data set which consists of four different drone sounds. So, this paper presents the simple and effecive method of detection and classification method for micro-sized aircraft. KCI Citation Count: 0 This paper is related to detection and classification for micro-sized aircraft that flies at low-altitude. The deep-learning based method using sounds coming from the micro-sized aircraft is proposed to detect and identify them efficiently. We use MFCC as sound features and CNN as a detector and classifier. We've proved that each micro-drones have their own distinguishable MFCC feature and confirmed that we can apply CNN as a detector and classifier even though drone sound has time-related sequence. Typically many papers deal with RNN for time-related features, but we prove that if the number of frame in the MFCC features are enough to contain the time-related information, we can classify those features with CNN. With this approach, we've achieved high detection and classification ratio with low-computation power at the same time using the data set which consists of four different drone sounds. So, this paper presents the simple and effecive method of detection and classification method for micro-sized aircraft. 본 논문은 저고도로 비행하는 초소형 무인기에 대한 탐지 및 분류에 대한 기술로써, 단순히 초소형 무인기를 탐지만 하는 것이 아니라 탐지된 무인기의 종류 및 모델까지 인식하는 심화학습 기반 탐지 및 분류 기법을 제안한다. 무인기의 소리 특성으로 MFCC를 사용하였고 탐지 및 분류를 위해 CNN를 사용하였다. 무인기들은 각각 CNN을 통해 구분할 수 있는 MFCC 특성을 가짐을 입증하였고, 또한 총 4가지의 무인기에 대한 dataset을 대상으로 분류를 한 결과 time-related sequence를 가지는 MFCC라 하더라도 RNN 대신 CNN를 사용하면 탐지 및 분류 능력을 갖추면서도 연산량을 줄일 수 있음을 검증하였다. 따라서 본 논문은 간단하면서도 효과적인 초소형 무인기 탐지 및 분류 방법을 제시한다. |
| Author | 신경식(Kyeongsik Shin) 오혁준(Hyukjun Oh) 유신우(Sinwoo Yoo) |
| Author_xml | – sequence: 1 fullname: 신경식(Kyeongsik Shin) – sequence: 2 fullname: 유신우(Sinwoo Yoo) – sequence: 3 fullname: 오혁준(Hyukjun Oh) |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002571709$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNpFkLtKA0EYhQdRMEbfwGIbC4td57YzO2VY75cEJI3VMO5Fxo0byWphF1DEQkia4AUDNiKCRcAoPlN28g7GRLA6h8P3_xzOHJhO62kEwCKCDkNQrBwnWgeRgyGGDqYOcQijU6CAsefZFDF3-tcTalPO8SxYyDJ9CAnDXCDCCuBgb933zUPT8stl072yTLdvHt-GnSfLPDcHH895a5T1b8z17fC-Y-XvfdP9Hnz3rOFl27w2rbzXsvKvq_zl3ty1rfy2Ob686w0-3-fBTKxqWbTwp0VQXV-r-pv2bmVjyy_t2omg3MYixC50FcIwYCzGnuIIRRDRQNE4oDASMaXcVdCNiaKj5oIrggMeiliESAhSBMuTt2kjlkmgZV3psR7VZdKQpf3qluRUQI_TEbs0YROdnWmZhllNbpd2Kr_bQZe5hHuCUfzPpecNfRKFWsnTkVGNC1murK5BQTCCLic_fQuGLA |
| ContentType | Journal Article |
| DBID | DBRKI TDB JDI ACYCR |
| DEWEY | 003.5 |
| DOI | 10.6109/jkiice.2020.24.3.364 |
| DatabaseName | DBPIA - 디비피아 Nurimedia DBPIA Journals [Open Access] KoreaScience Korean Citation Index |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| DocumentTitleAlternate | Detection and Classification for Low-altitude Micro Drone with MFCC and CNN |
| DocumentTitle_FL | Detection and Classification for Low-altitude Micro Drone with MFCC and CNN |
| EISSN | 2288-4165 |
| EndPage | 370 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_7490874 JAKO202005653789642 NODE09321057 |
| GroupedDBID | .UV ALMA_UNASSIGNED_HOLDINGS DBRKI TDB JDI ACYCR |
| ID | FETCH-LOGICAL-k947-29d2505a120c66f28a711e014ca4fc40e9f4475a05f3a4b0397a32c7d9f9d1993 |
| ISSN | 2234-4772 |
| IngestDate | Sun Mar 09 07:51:22 EDT 2025 Fri Dec 22 12:03:57 EST 2023 Thu Feb 06 13:24:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | CNN 초소형 무인기 탐지 drone detection 초소형 무인기 분류 물체 분류를 위한 딥러닝 classification for micro-drone MFCC Deep learning for objection classification |
| Language | Korean |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-k947-29d2505a120c66f28a711e014ca4fc40e9f4475a05f3a4b0397a32c7d9f9d1993 |
| Notes | KISTI1.1003/JNL.JAKO202005653789642 http://jkiice.org |
| OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202005653789642&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
| PageCount | 7 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_7490874 kisti_ndsl_JAKO202005653789642 nurimedia_primary_NODE09321057 |
| PublicationCentury | 2000 |
| PublicationDate | 2020 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | 한국정보통신학회논문지 |
| PublicationTitleAlternate | Journal of the Korea Institute of Information and Communication Engineering |
| PublicationYear | 2020 |
| Publisher | 한국정보통신학회 |
| Publisher_xml | – name: 한국정보통신학회 |
| SSID | ssib036279136 ssib053377456 ssib044738262 ssib015937029 ssib023393675 ssib012146319 |
| Score | 2.104251 |
| Snippet | This paper is related to detection and classification for micro-sized aircraft that flies at low-altitude. The deep-learning based method using sounds coming... 본 논문은 저고도로 비행하는 초소형 무인기에 대한 탐지 및 분류에 대한 기술로써, 단순히 초소형 무인기를 탐지만 하는 것이 아니라 탐지된 무인기의 종류 및 모델까지... |
| SourceID | nrf kisti nurimedia |
| SourceType | Open Website Open Access Repository Publisher |
| StartPage | 364 |
| SubjectTerms | 전자/정보통신공학 |
| Title | MFCC와 CNN을 이용한 저고도 초소형 무인기 탐지 및 분류에 대한 연구 |
| URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09321057 http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202005653789642&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002571709 |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | 한국정보통신학회논문지, 2020, 24(3), , pp.364-370 |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2288-4165 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044738262 issn: 2234-4772 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1Na9RANLT1oBdRVKwfJYhzWnZNMjPJzDHJ7lIr3V4q1FNIslmpK1up7cWDLFjEQ6G9lFax0IuI0EPRKv1N3fQ_-N4km01LhSpespOZ9968j0zy3uzMG017GCYJ75gJr5qRLaqsw0U15FFSjUz4iWLGQ4obhWdb9vRTNrPAF8bGv5dWLa2uRLX4zbn7Sv7FqlAHdsVdsn9h2YIoVEAZ7AtXsDBcL2Tj2abvk4ZPpCTCqPitlrqpE8EqecljquASV5JGnUhOpK_aXAPXODRc4lEsNzwimkM8QBICC8Imwld4AlArCOX6Q5pAXCgCgnhGBaEEJdJQxB3kB8E96KaZlYAWUxQ4kkMKDoCrNugEmSnzB41exh8neXrI3IUu4Iat9VweqMR-qGKwjsxDK0rhKQkzrEwNrpILOubE84diiYJ1fO4sBr53eRq6RAr6tYhXz2tkvQwiFS8jWKV9zzgFIojLcrUKU_UKGjfKEzCWUQyW_yXv6JUPvhqrMic7zKiW5HXw1IPbzEufGZplfs89FpodvXL2Y2hnuWRfdBcxOxVyXrNYjdYK5HLu8TM-wans4914MXi-FHSXA4ixHgcO_lfssHHtkoVzYLhc9m1j-A438aB4OkoRCN4ysDdywS1KJS3lDwL_yZEmLVxixhwqSiksIRqBAEUdwlwoJ9sBi-I9Ok84CDMx9loEb7G3DE7m5d4qnpQBr9uS5zh_Tbuah3y6m43f69pYd-mG9gzHbvqxr8OoTXfX9HT3MP307WTrs57u9Y9_7A02oO7wQ_p-_WRnSx_sH6a7R8dHB_rJu830a18fHGzog19rgy876famPljvK8ztg-Of-ze1-WZj3p-u5secVLsS06TINoYhoWkZsW13LBE6ppkYJotD1omZkcgOJuUMDd6hIQONSSekVuy0ZUe2cfntLW2it9RLbmu6iCCaonGbR5KyKA6jsM3ahgw5xEwmTcSkNqU0E_Tar18GM-6TOVQchECcOkLazJrUHoDKlMH_bHigUmg0eJXlxAlac_WGIXFDIHfuXITKXe0Kdp7NZt7TJlaWV5P74N-vRFPqgfoNnonE1A |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MFCC%EC%99%80+CNN%EC%9D%84+%EC%9D%B4%EC%9A%A9%ED%95%9C+%EC%A0%80%EA%B3%A0%EB%8F%84+%EC%B4%88%EC%86%8C%ED%98%95+%EB%AC%B4%EC%9D%B8%EA%B8%B0+%ED%83%90%EC%A7%80+%EB%B0%8F+%EB%B6%84%EB%A5%98%EC%97%90+%EB%8C%80%ED%95%9C+%EC%97%B0%EA%B5%AC&rft.jtitle=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C%EB%85%BC%EB%AC%B8%EC%A7%80%2C+24%283%29&rft.au=%EC%8B%A0%EA%B2%BD%EC%8B%9D&rft.au=%EC%9C%A0%EC%8B%A0%EC%9A%B0&rft.au=%EC%98%A4%ED%98%81%EC%A4%80&rft.date=2020&rft.pub=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C&rft.issn=2234-4772&rft.eissn=2288-4165&rft.spage=364&rft.epage=370&rft_id=info:doi/10.6109%2Fjkiice.2020.24.3.364&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_7490874 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-4772&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-4772&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-4772&client=summon |