MFCC와 CNN을 이용한 저고도 초소형 무인기 탐지 및 분류에 대한 연구

This paper is related to detection and classification for micro-sized aircraft that flies at low-altitude. The deep-learning based method using sounds coming from the micro-sized aircraft is proposed to detect and identify them efficiently. We use MFCC as sound features and CNN as a detector and cla...

Full description

Saved in:
Bibliographic Details
Published in한국정보통신학회논문지 Vol. 24; no. 3; pp. 364 - 370
Main Authors 신경식(Kyeongsik Shin), 유신우(Sinwoo Yoo), 오혁준(Hyukjun Oh)
Format Journal Article
LanguageKorean
Published 한국정보통신학회 2020
Subjects
Online AccessGet full text
ISSN2234-4772
2288-4165
DOI10.6109/jkiice.2020.24.3.364

Cover

Abstract This paper is related to detection and classification for micro-sized aircraft that flies at low-altitude. The deep-learning based method using sounds coming from the micro-sized aircraft is proposed to detect and identify them efficiently. We use MFCC as sound features and CNN as a detector and classifier. We've proved that each micro-drones have their own distinguishable MFCC feature and confirmed that we can apply CNN as a detector and classifier even though drone sound has time-related sequence. Typically many papers deal with RNN for time-related features, but we prove that if the number of frame in the MFCC features are enough to contain the time-related information, we can classify those features with CNN. With this approach, we've achieved high detection and classification ratio with low-computation power at the same time using the data set which consists of four different drone sounds. So, this paper presents the simple and effecive method of detection and classification method for micro-sized aircraft. 본 논문은 저고도로 비행하는 초소형 무인기에 대한 탐지 및 분류에 대한 기술로써, 단순히 초소형 무인기를 탐지만 하는 것이 아니라 탐지된 무인기의 종류 및 모델까지 인식하는 심화학습 기반 탐지 및 분류 기법을 제안한다. 무인기의 소리 특성으로 MFCC를 사용하였고 탐지 및 분류를 위해 CNN를 사용하였다. 무인기들은 각각 CNN을 통해 구분할 수 있는 MFCC 특성을 가짐을 입증하였고, 또한 총 4가지의 무인기에 대한 dataset을 대상으로 분류를 한 결과 time-related sequence를 가지는 MFCC라 하더라도 RNN 대신 CNN를 사용하면 탐지 및 분류 능력을 갖추면서도 연산량을 줄일 수 있음을 검증하였다. 따라서 본 논문은 간단하면서도 효과적인 초소형 무인기 탐지 및 분류 방법을 제시한다.
AbstractList 본 논문은 저고도로 비행하는 초소형 무인기에 대한 탐지 및 분류에 대한 기술로써, 단순히 초소형 무인기를 탐지만 하는 것이 아니라 탐지된 무인기의 종류 및 모델까지 인식하는 심화학습 기반 탐지 및 분류 기법을 제안한다. 무인기의 소리 특성으로 MFCC를 사용하였고 탐지 및 분류를 위해 CNN를 사용하였다. 무인기들은 각각 CNN을 통해 구분할 수 있는 MFCC 특성을 가짐을 입증하였고, 또한 총 4가지의 무인기에 대한 dataset을 대상으로 분류를 한 결과 time-related sequence를 가지는 MFCC라 하더라도 RNN 대신 CNN를 사용하면 탐지 및 분류 능력을 갖추면서도 연산량을 줄일 수 있음을 검증하였다. 따라서 본 논문은 간단하면서도 효과적인 초소형 무인기 탐지 및 분류 방법을 제시한다. This paper is related to detection and classification for micro-sized aircraft that flies at low-altitude. The deep-learning based method using sounds coming from the micro-sized aircraft is proposed to detect and identify them efficiently. We use MFCC as sound features and CNN as a detector and classifier. We’ve proved that each micro-drones have their own distinguishable MFCC feature and confirmed that we can apply CNN as a detector and classifier even though drone sound has time-related sequence. Typically many papers deal with RNN for time-related features, but we prove that if the number of frame in the MFCC features are enough to contain the time-related information, we can classify those features with CNN. With this approach, we’ve achieved high detection and classification ratio with low-computation power at the same time using the data set which consists of four different drone sounds. So, this paper presents the simple and effecive method of detection and classification method for micro-sized aircraft. KCI Citation Count: 0
This paper is related to detection and classification for micro-sized aircraft that flies at low-altitude. The deep-learning based method using sounds coming from the micro-sized aircraft is proposed to detect and identify them efficiently. We use MFCC as sound features and CNN as a detector and classifier. We've proved that each micro-drones have their own distinguishable MFCC feature and confirmed that we can apply CNN as a detector and classifier even though drone sound has time-related sequence. Typically many papers deal with RNN for time-related features, but we prove that if the number of frame in the MFCC features are enough to contain the time-related information, we can classify those features with CNN. With this approach, we've achieved high detection and classification ratio with low-computation power at the same time using the data set which consists of four different drone sounds. So, this paper presents the simple and effecive method of detection and classification method for micro-sized aircraft. 본 논문은 저고도로 비행하는 초소형 무인기에 대한 탐지 및 분류에 대한 기술로써, 단순히 초소형 무인기를 탐지만 하는 것이 아니라 탐지된 무인기의 종류 및 모델까지 인식하는 심화학습 기반 탐지 및 분류 기법을 제안한다. 무인기의 소리 특성으로 MFCC를 사용하였고 탐지 및 분류를 위해 CNN를 사용하였다. 무인기들은 각각 CNN을 통해 구분할 수 있는 MFCC 특성을 가짐을 입증하였고, 또한 총 4가지의 무인기에 대한 dataset을 대상으로 분류를 한 결과 time-related sequence를 가지는 MFCC라 하더라도 RNN 대신 CNN를 사용하면 탐지 및 분류 능력을 갖추면서도 연산량을 줄일 수 있음을 검증하였다. 따라서 본 논문은 간단하면서도 효과적인 초소형 무인기 탐지 및 분류 방법을 제시한다.
Author 신경식(Kyeongsik Shin)
오혁준(Hyukjun Oh)
유신우(Sinwoo Yoo)
Author_xml – sequence: 1
  fullname: 신경식(Kyeongsik Shin)
– sequence: 2
  fullname: 유신우(Sinwoo Yoo)
– sequence: 3
  fullname: 오혁준(Hyukjun Oh)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002571709$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNpFkLtKA0EYhQdRMEbfwGIbC4td57YzO2VY75cEJI3VMO5Fxo0byWphF1DEQkia4AUDNiKCRcAoPlN28g7GRLA6h8P3_xzOHJhO62kEwCKCDkNQrBwnWgeRgyGGDqYOcQijU6CAsefZFDF3-tcTalPO8SxYyDJ9CAnDXCDCCuBgb933zUPT8stl072yTLdvHt-GnSfLPDcHH895a5T1b8z17fC-Y-XvfdP9Hnz3rOFl27w2rbzXsvKvq_zl3ty1rfy2Ob686w0-3-fBTKxqWbTwp0VQXV-r-pv2bmVjyy_t2omg3MYixC50FcIwYCzGnuIIRRDRQNE4oDASMaXcVdCNiaKj5oIrggMeiliESAhSBMuTt2kjlkmgZV3psR7VZdKQpf3qluRUQI_TEbs0YROdnWmZhllNbpd2Kr_bQZe5hHuCUfzPpecNfRKFWsnTkVGNC1murK5BQTCCLic_fQuGLA
ContentType Journal Article
DBID DBRKI
TDB
JDI
ACYCR
DEWEY 003.5
DOI 10.6109/jkiice.2020.24.3.364
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
[Open Access] KoreaScience
Korean Citation Index
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
DocumentTitleAlternate Detection and Classification for Low-altitude Micro Drone with MFCC and CNN
DocumentTitle_FL Detection and Classification for Low-altitude Micro Drone with MFCC and CNN
EISSN 2288-4165
EndPage 370
ExternalDocumentID oai_kci_go_kr_ARTI_7490874
JAKO202005653789642
NODE09321057
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
DBRKI
TDB
JDI
ACYCR
ID FETCH-LOGICAL-k947-29d2505a120c66f28a711e014ca4fc40e9f4475a05f3a4b0397a32c7d9f9d1993
ISSN 2234-4772
IngestDate Sun Mar 09 07:51:22 EDT 2025
Fri Dec 22 12:03:57 EST 2023
Thu Feb 06 13:24:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords CNN
초소형 무인기 탐지
drone detection
초소형 무인기 분류
물체 분류를 위한 딥러닝
classification for micro-drone
MFCC
Deep learning for objection classification
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k947-29d2505a120c66f28a711e014ca4fc40e9f4475a05f3a4b0397a32c7d9f9d1993
Notes KISTI1.1003/JNL.JAKO202005653789642
http://jkiice.org
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202005653789642&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 7
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_7490874
kisti_ndsl_JAKO202005653789642
nurimedia_primary_NODE09321057
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle 한국정보통신학회논문지
PublicationTitleAlternate Journal of the Korea Institute of Information and Communication Engineering
PublicationYear 2020
Publisher 한국정보통신학회
Publisher_xml – name: 한국정보통신학회
SSID ssib036279136
ssib053377456
ssib044738262
ssib015937029
ssib023393675
ssib012146319
Score 2.104251
Snippet This paper is related to detection and classification for micro-sized aircraft that flies at low-altitude. The deep-learning based method using sounds coming...
본 논문은 저고도로 비행하는 초소형 무인기에 대한 탐지 및 분류에 대한 기술로써, 단순히 초소형 무인기를 탐지만 하는 것이 아니라 탐지된 무인기의 종류 및 모델까지...
SourceID nrf
kisti
nurimedia
SourceType Open Website
Open Access Repository
Publisher
StartPage 364
SubjectTerms 전자/정보통신공학
Title MFCC와 CNN을 이용한 저고도 초소형 무인기 탐지 및 분류에 대한 연구
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09321057
http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202005653789642&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002571709
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 한국정보통신학회논문지, 2020, 24(3), , pp.364-370
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2288-4165
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044738262
  issn: 2234-4772
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1Na9RANLT1oBdRVKwfJYhzWnZNMjPJzDHJ7lIr3V4q1FNIslmpK1up7cWDLFjEQ6G9lFax0IuI0EPRKv1N3fQ_-N4km01LhSpespOZ9968j0zy3uzMG017GCYJ75gJr5qRLaqsw0U15FFSjUz4iWLGQ4obhWdb9vRTNrPAF8bGv5dWLa2uRLX4zbn7Sv7FqlAHdsVdsn9h2YIoVEAZ7AtXsDBcL2Tj2abvk4ZPpCTCqPitlrqpE8EqecljquASV5JGnUhOpK_aXAPXODRc4lEsNzwimkM8QBICC8Imwld4AlArCOX6Q5pAXCgCgnhGBaEEJdJQxB3kB8E96KaZlYAWUxQ4kkMKDoCrNugEmSnzB41exh8neXrI3IUu4Iat9VweqMR-qGKwjsxDK0rhKQkzrEwNrpILOubE84diiYJ1fO4sBr53eRq6RAr6tYhXz2tkvQwiFS8jWKV9zzgFIojLcrUKU_UKGjfKEzCWUQyW_yXv6JUPvhqrMic7zKiW5HXw1IPbzEufGZplfs89FpodvXL2Y2hnuWRfdBcxOxVyXrNYjdYK5HLu8TM-wans4914MXi-FHSXA4ixHgcO_lfssHHtkoVzYLhc9m1j-A438aB4OkoRCN4ysDdywS1KJS3lDwL_yZEmLVxixhwqSiksIRqBAEUdwlwoJ9sBi-I9Ok84CDMx9loEb7G3DE7m5d4qnpQBr9uS5zh_Tbuah3y6m43f69pYd-mG9gzHbvqxr8OoTXfX9HT3MP307WTrs57u9Y9_7A02oO7wQ_p-_WRnSx_sH6a7R8dHB_rJu830a18fHGzog19rgy876famPljvK8ztg-Of-ze1-WZj3p-u5secVLsS06TINoYhoWkZsW13LBE6ppkYJotD1omZkcgOJuUMDd6hIQONSSekVuy0ZUe2cfntLW2it9RLbmu6iCCaonGbR5KyKA6jsM3ahgw5xEwmTcSkNqU0E_Tar18GM-6TOVQchECcOkLazJrUHoDKlMH_bHigUmg0eJXlxAlac_WGIXFDIHfuXITKXe0Kdp7NZt7TJlaWV5P74N-vRFPqgfoNnonE1A
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MFCC%EC%99%80+CNN%EC%9D%84+%EC%9D%B4%EC%9A%A9%ED%95%9C+%EC%A0%80%EA%B3%A0%EB%8F%84+%EC%B4%88%EC%86%8C%ED%98%95+%EB%AC%B4%EC%9D%B8%EA%B8%B0+%ED%83%90%EC%A7%80+%EB%B0%8F+%EB%B6%84%EB%A5%98%EC%97%90+%EB%8C%80%ED%95%9C+%EC%97%B0%EA%B5%AC&rft.jtitle=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C%EB%85%BC%EB%AC%B8%EC%A7%80%2C+24%283%29&rft.au=%EC%8B%A0%EA%B2%BD%EC%8B%9D&rft.au=%EC%9C%A0%EC%8B%A0%EC%9A%B0&rft.au=%EC%98%A4%ED%98%81%EC%A4%80&rft.date=2020&rft.pub=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C&rft.issn=2234-4772&rft.eissn=2288-4165&rft.spage=364&rft.epage=370&rft_id=info:doi/10.6109%2Fjkiice.2020.24.3.364&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_7490874
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-4772&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-4772&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-4772&client=summon