CNN기반 딥러닝을 이용한 Kuzushiji-MNIST/49 분류의 정확도 향상을 위한 학습 방안

In this paper, we propose a deep learning training method for accurately classifying Kuzushiji-MNIST and Kuzushiji-49 datasets for ancient and medieval Japanese characters. We analyze the latest convolutional neural network networks through experiments to select the most suitable network, and then u...

Full description

Saved in:
Bibliographic Details
Published in한국정보통신학회논문지 Vol. 24; no. 3; pp. 355 - 363
Main Authors 박병서(Byung-Seo Park), 이승영(Sungyoung Lee), 서영호(Young-Ho Seo)
Format Journal Article
LanguageKorean
Published 한국정보통신학회 2020
Subjects
Online AccessGet full text
ISSN2234-4772
2288-4165
DOI10.6109/jkiice.2020.24.3.349

Cover

Abstract In this paper, we propose a deep learning training method for accurately classifying Kuzushiji-MNIST and Kuzushiji-49 datasets for ancient and medieval Japanese characters. We analyze the latest convolutional neural network networks through experiments to select the most suitable network, and then use the networks to select the number of training to classify Kuzushiji-MNIST and Kuzushiji-49 datasets. In addition, the training is conducted with high accuracy by applying learning methods such as Mixup and Random Erase. As a result of the training, the accuracy of the proposed method can be shown to be high by 99.75% for MNIST, 99.07% for Kuzushiji-MNIST, and 97.56% for Kuzushiji-49. Through this deep learning-based technology, it is thought to provide a good research base for various researchers who study East Asian and Western history, literature, and culture. 본 논문에서는 고대 및 중세 시대의 일본 문자에 대한 데이터세트인 Kuzushiji-MNIST와 Kuzushiji-49를 정확하게 분류하기 위한 딥러닝 학습 방법에 대해서 제안한다. 최신의 합성곱 신경망 네트워크들을 분석하여 가장 적합한 네트워크를 선별하고, 이 네트워크를 이용하여 Kuzushiji-MNIST와 Kuzushiji-49 데이터세트를 분류하기 위한 학습 횟수를 선정한다. 또한 Mixup과 Random Erase 등의 학습 방법을 적용하여 높은 정확도를 갖도록 학습을 진행한다. 학습 결과를 살펴보면 MNIST에 대해서는 99.75%, K-MNIST에 대해서는 99.07%, 그리고 K-49에 대해서는 97.56%의 정확도를 보임으로써 제안한 학습 방법이 높은 성능을 보일 수 있음을 증명하였다. 이와 같은 딥러닝 기반의 기술을 통해 동아시아와 서양의 역사, 문학, 그리고 문화를 연구하는 다양한 연구자들에게 좋은 연구 기반을 제공할 것으로 사료된다.
AbstractList In this paper, we propose a deep learning training method for accurately classifying Kuzushiji-MNIST and Kuzushiji-49 datasets for ancient and medieval Japanese characters. We analyze the latest convolutional neural network networks through experiments to select the most suitable network, and then use the networks to select the number of training to classify Kuzushiji-MNIST and Kuzushiji-49 datasets. In addition, the training is conducted with high accuracy by applying learning methods such as Mixup and Random Erase. As a result of the training, the accuracy of the proposed method can be shown to be high by 99.75% for MNIST, 99.07% for Kuzushiji-MNIST, and 97.56% for Kuzushiji-49. Through this deep learning-based technology, it is thought to provide a good research base for various researchers who study East Asian and Western history, literature, and culture. 본 논문에서는 고대 및 중세 시대의 일본 문자에 대한 데이터세트인 Kuzushiji-MNIST와 Kuzushiji-49를 정확하게 분류하기 위한 딥러닝 학습 방법에 대해서 제안한다. 최신의 합성곱 신경망 네트워크들을 분석하여 가장 적합한 네트워크를 선별하고, 이 네트워크를 이용하여 Kuzushiji-MNIST와 Kuzushiji-49 데이터세트를 분류하기 위한 학습 횟수를 선정한다. 또한 Mixup과 Random Erase 등의 학습 방법을 적용하여 높은 정확도를 갖도록 학습을 진행한다. 학습 결과를 살펴보면 MNIST에 대해서는 99.75%, K-MNIST에 대해서는 99.07%, 그리고 K-49에 대해서는 97.56%의 정확도를 보임으로써 제안한 학습 방법이 높은 성능을 보일 수 있음을 증명하였다. 이와 같은 딥러닝 기반의 기술을 통해 동아시아와 서양의 역사, 문학, 그리고 문화를 연구하는 다양한 연구자들에게 좋은 연구 기반을 제공할 것으로 사료된다.
본 논문에서는 고대 및 중세 시대의 일본 문자에 대한 데이터세트인 Kuzushiji-MNIST와 Kuzushiji-49를 정확하게 분류하기 위한 딥러닝 학습 방법에 대해서 제안한다. 최신의 합성곱 신경망 네트워크들을 분석하여 가장 적합한 네트워크를 선별하고, 이 네트워크를 이용하여 Kuzushiji-MNIST와 Kuzushiji-49 데이터세트를 분류하기 위한 학습 횟수를 선정한다. 또한 Mixup과 Random Erase 등의 학습 방법을 적용하여 높은 정확도를 갖도록 학습을 진행한다. 학습 결과를 살펴보면 MNIST에 대해서는 99.75%, K-MNIST에 대해서는 99.07%, 그리고 K-49에 대해서는 97.56%의 정확도를 보임으로써 제안한 학습 방법이 높은 성능을 보일 수 있음을 증명하였다. 이와 같은 딥러닝 기반의 기술을 통해 동아시아와 서양의 역사, 문학, 그리고 문화를 연구하는 다양한 연구자들에게 좋은 연구 기반을 제공할 것으로 사료된다. In this paper, we propose a deep learning training method for accurately classifying Kuzushiji-MNIST and Kuzushiji-49 datasets for ancient and medieval Japanese characters. We analyze the latest convolutional neural network networks through experiments to select the most suitable network, and then use the networks to select the number of training to classify Kuzushiji-MNIST and Kuzushiji-49 datasets. In addition, the training is conducted with high accuracy by applying learning methods such as Mixup and Random Erase. As a result of the training, the accuracy of the proposed method can be shown to be high by 99.75% for MNIST, 99.07% for Kuzushiji-MNIST, and 97.56% for Kuzushiji-49. Through this deep learning-based technology, it is thought to provide a good research base for various researchers who study East Asian and Western history, literature, and culture. KCI Citation Count: 0
Author 서영호(Young-Ho Seo)
이승영(Sungyoung Lee)
박병서(Byung-Seo Park)
Author_xml – sequence: 1
  fullname: 박병서(Byung-Seo Park)
– sequence: 2
  fullname: 이승영(Sungyoung Lee)
– sequence: 3
  fullname: 서영호(Young-Ho Seo)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002571703$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNpFkDsvBFEAhW-EBMs_UEyjUMy4r7mPcrNe67GbsP3NPO5wDbOyYws6sYVQaIwssaHZQqLYAvGbzOx_YJGozim-7xRnGownzUQDMIegwxCUi_uxMYF2MMTQwdQhDqFyDExhLIRNEXPHR51Qm3KOJ8FsmhofEoa5RIRNgahSq31-DPJB18pv-vnjS37VK3odq-i9FvfPw-zB2mifttM9s2_srVp1p7FIpZW_d_J-t-h1reIpG95l-XXHGt72i_OzH_WhM_KG2V1x-Wblg-ciu5gBE5F3kOrZvyyBxspyo7Jmb9ZXq5Xyph1Lymzt-T4XIcECuhxFAmlJkGTMxZr4AgaRy4MQQz-EAXI1JjBE3JPYxUGkAxoxUgILv7NJK1JxYFTTMz-521RxS5W3G1XFqYRCjNj5XzY26bFRSZgeqPXyRn10JHSZS7iQjIh_Lmm3zKEOjaeOvovXOlG1-tIylASjb558AYxVi5c
ContentType Journal Article
DBID DBRKI
TDB
JDI
ACYCR
DEWEY 003.5
DOI 10.6109/jkiice.2020.24.3.349
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
KoreaScience
Korean Citation Index
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
DocumentTitleAlternate Training Method for Enhancing Classification Accuracy of Kuzushiji-MNIST/49 using Deep Learning based on CNN
DocumentTitle_FL Training Method for Enhancing Classification Accuracy of Kuzushiji-MNIST/49 using Deep Learning based on CNN
EISSN 2288-4165
EndPage 363
ExternalDocumentID oai_kci_go_kr_ARTI_7490886
JAKO202005653789638
NODE09321056
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
DBRKI
TDB
JDI
ACYCR
ID FETCH-LOGICAL-k946-eabb78d3280571f81e93196652e3b80cf57cd20bd0c15e230d17a9252cfec4f63
ISSN 2234-4772
IngestDate Sun Mar 09 07:51:22 EDT 2025
Fri Dec 22 12:03:57 EST 2023
Thu Feb 06 13:24:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords deep learning
분류
학습
convolutional neural network
딥러닝
training
Kuzushiji-MNIST
classification
합성곱 신경망
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k946-eabb78d3280571f81e93196652e3b80cf57cd20bd0c15e230d17a9252cfec4f63
Notes KISTI1.1003/JNL.JAKO202005653789638
http://jkiice.org
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202005653789638&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_7490886
kisti_ndsl_JAKO202005653789638
nurimedia_primary_NODE09321056
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle 한국정보통신학회논문지
PublicationTitleAlternate Journal of the Korea Institute of Information and Communication Engineering
PublicationYear 2020
Publisher 한국정보통신학회
Publisher_xml – name: 한국정보통신학회
SSID ssib036279136
ssib053377456
ssib044738262
ssib015937029
ssib023393675
ssib012146319
Score 2.1060655
Snippet In this paper, we propose a deep learning training method for accurately classifying Kuzushiji-MNIST and Kuzushiji-49 datasets for ancient and medieval...
본 논문에서는 고대 및 중세 시대의 일본 문자에 대한 데이터세트인 Kuzushiji-MNIST와 Kuzushiji-49를 정확하게 분류하기 위한 딥러닝 학습 방법에 대해서 제안한다....
SourceID nrf
kisti
nurimedia
SourceType Open Website
Open Access Repository
Publisher
StartPage 355
SubjectTerms 전자/정보통신공학
Title CNN기반 딥러닝을 이용한 Kuzushiji-MNIST/49 분류의 정확도 향상을 위한 학습 방안
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09321056
http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202005653789638&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002571703
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 한국정보통신학회논문지, 2020, 24(3), , pp.355-363
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2288-4165
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044738262
  issn: 2234-4772
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LbtNA0GrLAS4IBIhnZSH2FDl1vF5792gnqdqipkgNUm9W_AikQQlqm0N7QELkgODAhaAWNYJLD5U49ACI7-FInH9gZu24JqrEQ1w2k7VndmfWMztj784qyj0Oyuw3okjjQZNqZkAbAFFbY1GIG0EbjNq4wXm1Zi09NFc22MbM7PfcqqXejl8M9s7cV_Ivowp1MK64S_YvRjYjChUAw_hCCSMM5R-NcblWI1WHuJy4Oqm6WApeQEiYxGESWCROGQEOcIVUy1hys5BCrikBhziCVCtEMCJA8Xt7ve3Hrc2WtlpbXq_juUVCUnUtQEUAaAuekpAtlomjIzbSEBKAFheThqDKkr0pE07Bc53qRFnSnLQ9gYS8HXhjhZQzR1bBteSAvolHnaFKSTDiVHK9AUQqeYTmLLyKRF28etpMBdnniYwYcSUAInMlf45NePZBZyLiCWEhWYHeQ-MGd3fBbmrrUbfwQK4_F6doOVEjSwkjHEVh8HXA2kWTW5Bron7BSkhnN2NXOXbM4NJIa0tdsPXdCVL67sbQMz37X7I5nS3AzTM1007OQSpGaR0oDHjcLD_dJVvWU7WmubmLJvmSUzeIJvPO9AxrJQlqN9stTHmFPBUNs0iLNEk8O5W7vLZWqeoCt4kxa1Y5Z9jgDeLy2mfVic0v4cHy9DSlIHjX1M59KTYomIxcviHwt2xRopkLbZo25bmUlxC9QEAjD23OJJLsmMWeL5zVbwhLMVZrgXfZ2QKn9HynhydrgHnOeZr1S8rFNERUnUTfLysz7e4VpQm6_uPbyehkXx29PRp9-DR6PYyHfTUefo7fH48Hh-qU1i6YQh197Y-O9uPhvhp_HIwPBqM3fXX87ih-8VyiHvYRbzw4iF99UUcnx_Hg5VWlvlitl5e09IwUrS1MS4savm_zkBoc4q5Sk5cigXOqxYyI-lwPmswOQkP3Qz0oscigeliyG8JgRtCMArNp0WvKXKfbia4rKvyhjNuhbwe-GQpMWmrYYcPSrShinAU3lHkpJq8Tbj_xVpz7ayhFGFgw5xyn8RvKXZCf1w5aHuasx99HXa-95UFkvuzZckWlBVQy8XpPk4Q6Xv4xufm7G24pF7Dh5DXobWVuZ6sX3YHAYMefl0_WT-Y82Gg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN%EA%B8%B0%EB%B0%98+%EB%94%A5%EB%9F%AC%EB%8B%9D%EC%9D%84+%EC%9D%B4%EC%9A%A9%ED%95%9C+Kuzushiji-MNIST%2F49+%EB%B6%84%EB%A5%98%EC%9D%98+%EC%A0%95%ED%99%95%EB%8F%84+%ED%96%A5%EC%83%81%EC%9D%84+%EC%9C%84%ED%95%9C+%ED%95%99%EC%8A%B5+%EB%B0%A9%EC%95%88&rft.jtitle=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C%EB%85%BC%EB%AC%B8%EC%A7%80&rft.au=%EB%B0%95%EB%B3%91%EC%84%9C%28Byung-Seo+Park%29&rft.au=%EC%9D%B4%EC%8A%B9%EC%98%81%28Sungyoung+Lee%29&rft.au=%EC%84%9C%EC%98%81%ED%98%B8%28Young-Ho+Seo%29&rft.date=2020&rft.pub=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C&rft.issn=2234-4772&rft.eissn=2288-4165&rft.volume=24&rft.issue=3&rft.spage=355&rft.epage=363&rft_id=info:doi/10.6109%2Fjkiice.2020.24.3.349&rft.externalDocID=NODE09321056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-4772&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-4772&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-4772&client=summon