심층 전이 학습을 이용한 이미지 검색의 문화적 특성 분석
The cultural background of users utilizing image search engines has a significant impact on the satisfaction of the search results. Therefore, it is important to analyze and understand the cultural context of images for more accurate image search. In this paper, we investigate how the cultural conte...
Saved in:
Published in | 한국정보통신학회논문지 Vol. 24; no. 5; pp. 674 - 677 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Korean |
Published |
한국정보통신학회
2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2234-4772 2288-4165 |
DOI | 10.6109/jkiice.2020.24.5.674 |
Cover
Abstract | The cultural background of users utilizing image search engines has a significant impact on the satisfaction of the search results. Therefore, it is important to analyze and understand the cultural context of images for more accurate image search. In this paper, we investigate how the cultural context of images can affect the performance of image classification. To this end, we first collected various types of images (e.g,. food, temple, etc.) with various cultural contexts (e.g., Korea, Japan, etc.) from web search engines. Afterwards, a deep transfer learning approach using VGG19 and MobileNetV2 pre-trained with ImageNet was adopted to learn the cultural features of the collected images. Through various experiments we show the performance of image classification can be differently affected according to the cultural context of images. |
---|---|
AbstractList | The cultural background of users utilizing image search engines has a significant impact on the satisfaction of the search results. Therefore, it is important to analyze and understand the cultural context of images for more accurate image search. In this paper, we investigate how the cultural context of images can affect the performance of image classification. To this end, we first collected various types of images (e.g,. food, temple, etc.) with various cultural contexts (e.g., Korea, Japan, etc.) from web search engines. Afterwards, a deep transfer learning approach using VGG19 and MobileNetV2 pre-trained with ImageNet was adopted to learn the cultural features of the collected images. Through various experiments we show the performance of image classification can be differently affected according to the cultural context of images. The cultural background of users utilizing image search engines has a significant impact on the satisfaction of the search results. Therefore, it is important to analyze and understand the cultural context of images for more accurate image search. In this paper, we investigate how the cultural context of images can affect the performance of image classification. To this end, we first collected various types of images (e.g,. food, temple, etc.) with various cultural contexts (e.g., Korea, Japan, etc.) from web search engines. Afterwards, a deep transfer learning approach using VGG19 and MobileNetV2 pre-trained with ImageNet was adopted to learn the cultural features of the collected images. Through various experiments we show the performance of image classification can be differently affected according to the cultural context of images. KCI Citation Count: 0 |
Author | Hyeon-sik Kim(김현식) Jin-Woo Jeong(정진우) |
Author_xml | – sequence: 1 fullname: Kim, Hyeon-sik – sequence: 2 fullname: Jeong, Jin-Woo |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002589294$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNpFkD1Lw0Achw-poFa_gUMWB4fEy73fWGp9rRak-5HkUjlTU2l0cKuYRV0tWLHgJoIgikr9Svb6HWxVcHqePzz8hv8cKKStNAZg0Yce86FcOUiMiWIPQQQ9RDzqMU6mwCxCQrjEZ7QwcUxcwjmaAQtZZkKIGeLSx2wW7NirJzt4d-x9bvtvzqjbs5fvtp8748vePo66dxMbPg_sQ8f5eu3Y8wvbv3GGT4NR79renzmjy0-bvzjDj9zm_Xkw3QiaWbzwxyKor1Xq5Q23WlvfLJeqbiIJdCONmIAMC4KQRloK0tBsDEQkj8IwjKX2ZaxDqqMAwwaCvuAaSi4ZIpRChItg-Xc2bTdUEhnVCswP91sqaavSXn1TSewzSOm4XfptE5MdG5XqrKm2Stu1yb8gZRRzIQUX_1160jaHsTaBOhpL0D5Vu7XVCpSYSIwg_gbwOoJM |
ContentType | Journal Article |
DBID | DBRKI TDB JDI ACYCR |
DEWEY | 003.5 |
DOI | 10.6109/jkiice.2020.24.5.674 |
DatabaseName | DBPIA - 디비피아 Nurimedia DBPIA Journals KoreaScience Korean Citation Index |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
DocumentTitleAlternate | Analysis of Cultural Context of Image Search with Deep Transfer Learning |
DocumentTitle_FL | Analysis of Cultural Context of Image Search with Deep Transfer Learning |
EISSN | 2288-4165 |
EndPage | 677 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9316055 JAKO202005653789878 NODE09349320 |
GroupedDBID | .UV ALMA_UNASSIGNED_HOLDINGS DBRKI TDB JDI ACYCR |
ID | FETCH-LOGICAL-k940-cd2680638422d2d984fd6d982497cbbbe9d19edb5dca30f20187d097962455023 |
ISSN | 2234-4772 |
IngestDate | Sun Mar 09 07:53:44 EDT 2025 Fri Dec 22 12:02:23 EST 2023 Thu Feb 06 13:25:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Transfer Learning Cultural Difference Deep Learning Image Search |
Language | Korean |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-k940-cd2680638422d2d984fd6d982497cbbbe9d19edb5dca30f20187d097962455023 |
Notes | KISTI1.1003/JNL.JAKO202005653789878 http://jkiice.org |
OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202005653789878&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
PageCount | 4 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9316055 kisti_ndsl_JAKO202005653789878 nurimedia_primary_NODE09349320 |
PublicationCentury | 2000 |
PublicationDate | 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020 |
PublicationDecade | 2020 |
PublicationTitle | 한국정보통신학회논문지 |
PublicationTitleAlternate | Journal of the Korea Institute of Information and Communication Engineering |
PublicationYear | 2020 |
Publisher | 한국정보통신학회 |
Publisher_xml | – name: 한국정보통신학회 |
SSID | ssib036279136 ssib053377456 ssib044738262 ssib015937029 ssib023393675 ssib012146319 |
Score | 2.106284 |
Snippet | The cultural background of users utilizing image search engines has a significant impact on the satisfaction of the search results. Therefore, it is important... |
SourceID | nrf kisti nurimedia |
SourceType | Open Website Open Access Repository Publisher |
StartPage | 674 |
SubjectTerms | 전자/정보통신공학 |
Title | 심층 전이 학습을 이용한 이미지 검색의 문화적 특성 분석 |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09349320 http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202005653789878&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002589294 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 한국정보통신학회논문지, 2020, 24(5), , pp.674-677 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIvE48CggyqOKED5VWZLYcexj9lGVom0vRfQW5bVoWbSLuu0BDqiIvVCuVKKIlXpDSJUQiKLyl2j2PzCTZNNQVeJxcRx7PB57EvtzYs8QckfgnGFwX49EHOscpiA9aIVcD2yDRRE3Y-HjH93mklh4wBdX7dWJydOlXUsb60ElfH7iuZL_0SqkgV7xlOw_aLZgCgkQB_1CCBqG8K90TBs1KqvUrWGkKmnVnsOYa1DJMaLqtMohqU6VTZVKyV2gyvMknyuo0ohLXTWmrpXzoI55rACZO1QakAd80m0SyJNRqXJqJedS8lQeZKWo4mOhzFQWFCGThdOqmZJXRS4xhKpeBsyFOGmNNnXrOTNIxIIslQ-Yirxd2B9Gqcl1bJasIbG0abVWki5vzNE2hPTdWHgW97p6v10cYVqMx9uW2139Ya9X_lBiGUcjKUAgrnPH-W3Yz45u54-3XRrDReY2KIcDIvMyc3ymEZmh1sedNpp-wuoqFq_YlaJw2bD3sQm32Aa56N5fxqIAQm3mSCUdOUlOWY4Q6Iuj-aIxHhlNdL_OjgzvAQZlTul_qsWYYiWrPIBKHGWyAmhy7jBZMgwJGB9gf-rauOib7FwptuvuSa2CxRuuaNqAwbprAN3OdDfQ_wQMYiU8tnKRnM8XUpqbvRWXyESnN00u5IsqLZ-y-tPkXLMwTNy_TJrJm73kYF9LdgfJ8Js22t5JtvaT4UCDu-T9p9H2B4wdfj5IPm5qP79uJq9eJ8N32uHewWjnbbL7Uhtt_UgGX7TD74NkMLxCVuYbK7UFPfcooncUN_QwsoREjM4tK7IiJXkrEnCxuHLCIAhiFZkqjgI7Cn1mtCx0WBkZylHCwsP_FrtKprq9bnyNaGYAwD20eBjEEY98w_ftwI9l4DuyBbNma4bMpt3ldaP-E-8ERc-Q29CPXidse2jhHa-Pel5nzYN17D1PMVMYtg1cim72nmbmZ7yl5XrDUIzDysu4_qdqbpCzmJJ9NLxJptbXNuJbAKPXg9n0CfsFHBalGg |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%8B%AC%EC%B8%B5+%EC%A0%84%EC%9D%B4+%ED%95%99%EC%8A%B5%EC%9D%84+%EC%9D%B4%EC%9A%A9%ED%95%9C+%EC%9D%B4%EB%AF%B8%EC%A7%80+%EA%B2%80%EC%83%89%EC%9D%98+%EB%AC%B8%ED%99%94%EC%A0%81+%ED%8A%B9%EC%84%B1+%EB%B6%84%EC%84%9D&rft.jtitle=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C%EB%85%BC%EB%AC%B8%EC%A7%80&rft.au=Kim%2C+Hyeon-sik&rft.au=Jeong%2C+Jin-Woo&rft.date=2020&rft.issn=2234-4772&rft.volume=24&rft.issue=5&rft.spage=674&rft.epage=677&rft_id=info:doi/10.6109%2Fjkiice.2020.24.5.674&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO202005653789878 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-4772&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-4772&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-4772&client=summon |