초음파 주파수 및 반응조건 변화에 따른 나프탈렌 분해효율과 OH 라디칼의 발생량 비교

Naphthalene is a volatile, hydrophobic, and possibly carcinogenic compound that is known to have a severe detrimental effect to aquatic ecosystem. Our research examined the effects of various operating conditions (temperature, pH, initial concentration, and frequency and type of ultrasound) on the s...

Full description

Saved in:
Bibliographic Details
Published inDaehan hwan'gyeong gonghag hoeji Vol. 31; no. 2; pp. 79 - 89
Main Authors 박종성(Jong Sung Park), 박소영(So Young Park), 오재일(Jei Ll Oh), 정상조(Sang Jo Jeong), 이민주(Min Ju Lee), 허남국(Nam Guk Her)
Format Journal Article
LanguageKorean
Published 대한환경공학회 2009
Subjects
Online AccessGet full text
ISSN1225-5025
2383-7810

Cover

Abstract Naphthalene is a volatile, hydrophobic, and possibly carcinogenic compound that is known to have a severe detrimental effect to aquatic ecosystem. Our research examined the effects of various operating conditions (temperature, pH, initial concentration, and frequency and type of ultrasound) on the sonochemical degradation of naphthalene and OH radical production. The MDL (Method detection limit) determined by LC/FLD (1200 series, Agilient) using C-18 reversed column is measured up to 0.01 ppm. Naphthalene vapor produced from ultrasound irradiation was detected under 0.05 ppm. Comparison of naphthalene sonodegradion efficiency tested under open and closed reactor cover fell within less than 1% of difference. Increasing the reaction temperature from $15^{\circ}C$ to $40^{\circ}C$ resulted in reduction of naphthalene degradation efficiency ($15^{\circ}C$: 95% ${\rightarrow}$ $40^{\circ}C$: 85%), and altering pH from 12 to 3 increased the effect (pH 12: 84% ${\rightarrow}$pH 3: 95.6%). Pseudo first-order constants ($k_1$) of sonodegradation of naphthalene decreased as initial concentration of naphthalene increased (2.5 ppm: $27.3{\times}10^{-3}\;min^{-3}\;{\rightarrow}$ 10 ppm : $19.3{\times}10^{-3}\;min^{-3}$). Degradation efficiency of 2.5 ppm of naphthalene subjected to 28 kHz of ultrasonic irradiation was found to be 1.46 times as much as when exposed under 132 kHz (132 kHz: 56%, 28 kHz: 82.7%). Additionally, its $k_1$ constant was increased by 2.3 times (132 kHz: $2.4{\times}10^{-3}\;min^{-1}$, 28 kHz: $5.0{\times}10^{-3}\;min^{-1}$). $H_2O_2$ concentration measured 10 minutes after the exposure to 132 kHz of ultrasound, when compared with the measurement under frequency of 28 kHz, was 7.2 times as much. The concentration measured after 90 minutes, however, showed the difference of only 10%. (concentration of $H_2O_2$ under 28 kHz being 1.1 times greater than that under 132 kHz.) The $H_2O_2$ concentration resulting from 2.5 ppm naphthalene after 90 minutes of sonication at 24 kHz and 132 kHz were lower by 0.05 and 0.1 ppm, respectively, than the concentration measured from the irradiated M.Q. water (no naphthalene added.) Degradation efficiency of horn type (24 kHz) and bath type (28 kHz) ultrasound was found to be 87% and 82.7%, respectively, and $k_1$ was calculated into $22.8{\times}10^{-3}\;min^{-1}$ and $18.7{\times}10^{-3}\;min^{-1}$ respectively. Using the multi- frequency and mixed type of ultrasound system (28 kHz bath type + 24 kHz horn type) simultaneously resulted in combined efficiency of 88.1%, while $H_2O_2$ concentration increased 3.5 times (28 kHz + 24 kHz: 2.37 ppm, 24 kHz: 0.7 ppm.) Therefore, the multi-frequency and mixed type of ultrasound system procedure might be most effectively used for removing the substances that are easily oxidized by the OH radical. 나프탈렌은 휘발성이 있는 소수성 물질로 발암유발 가능성이 있고, 수생태계에 심각한 영향을 미친다. 본 연구는 초음파의 주파수 및 반응조건별 나프탈렌 분해효율과 OH 라디칼 변화량을 조사하였다. C-18 역상칼럼을 이용한 LC/FLD (1200 series, Agilent)로 나프탈렌을 분석한 결과 MDL (Method detection limit)은 0.01 ppm이었다. 초음파 조사동안 휘발된 나프탈렌은 거의 검출되지 않았고(0.05 ppm 이하), 반응조 덮개 개폐별 나프탈렌 분해효율은 거의 차이를 보이지 않았다(1% 이내). 초음파 반응온도가 증가할수록 나프탈렌 제거효율은 감소하는 경향($15^{\circ}C$: 95% ${\rightarrow}$ $40^{\circ}C$: 85%)을 보였고, pH가 낮을수록 나프탈렌 분해효율이 증가(pH 12: 84% ${\rightarrow}$ pH 3: 95.6%)하였다. 나프탈렌 초기농도의 감소에 따라 반응속도는 증가하는 경향을 보여주었다(2.5 ppm: $27.3{\times}10^{-3}\;min^{-1}$, 5 ppm: $27.3{\times}10^{-3}\;min^{-1}$, 10 ppm : $19.0{\times}10^{-3}\;min^{-1}$). 동일한 초음파 조건(2.5 ppm 나프탈렌, 0.075 W/mL, $20^{\circ}C$, pH 6.8)에서 28 kHz의 분해효율이 132 kHz보다 약 1.46배 높았고(132 kHz: 56%, 28 kHz: 82.7%), 유사 일차반응 속도상수($k_1$)도 약 2.3배 높게 나타났다(132 kHz: $2.4{\times}10^{-3}\;min^{-1}$, 28 kHz: $5.0{\times}10^{-3}\;min^{-1}$). 초음파 조사 10분 후 $H_2O_2$ 농도는 132 kHz가 28 kHz보다 약 7.2배 높았지만(132 kHz: 0.36 ppm, 28 kHz: 0.05 ppm), 조사 90분 후에는 28 kHz가 132 kHz보다 1.1배 높았다(28 kHz: 0.45 ppm, 132 kHz: 0.4 ppm). 2.5 ppm 나프탈렌 용액에 132 kHz와 28 kHz 초음파 조사시 발생된 $H_2O_2$ 농도는 초순수에 초음파 조사한 결과보다 각각 0.1 ppm과 0.05 ppm씩 낮게 나타났다. 혼형(24 kHz)과 배스형(28 kHz) 초음파의 나프탈렌 분해효율은 각각 87%와 82.7%였고, $k_1$은 $22.8{\times}10^{-3}\;min^{-1}$와 $18.7{\times}10^{-3}\;min^{-1}$로 산출되었다. 다주파 복합형 초음파 시스템(28 kHz 배스형 + 24 kHz 혼형 초음파)의 나프탈렌 분해효율은 단일주파수 24 kHz(혼형)와 비슷한 제거효율을 보였으나(88%), $H_2O_2$의 농도는 약 3.5배 높게 조사되었다(28 kHz + 24 kHz: 2.37 ppm, 24 kHz: 0.7 ppm). 이와 같은 다주파 복합형 초음파 시스템은 OH 라디칼에 의해 산화가 잘 일어나는 물질의 분해에 매우 효과적으로 적용될 수 있을 것으로 예상된다.
AbstractList 나프탈렌은 휘발성이 있는 소수성 물질로 발암유발 가능성이 있고, 수생태계에 심각한 영향을 미친다. 본 연구는 초음파의 주파수 및 반응조건별 나프탈렌 분해효율과 OH 라디칼 변화량을 조사하였다. C-18 역상칼럼을 이용한 LC/FLD (1200 series, Agilent)로 나프탈렌을 분석한 결과 MDL (Method detection limit)은 0.01 ppm이었다. 초음파 조사 동안 휘발된 나프탈렌은 거의 검출되지 않았고(0.05 ppm 이하), 반응조 덮개 개폐별 나프탈렌 분해효율은 거의 차이를 보이지 않았다(1% 이내). 초음파 반응온도가 증가할수록 나프탈렌 제거효율은 감소하는 경향(15℃: 95% → 40℃: 85%)을 보였고, pH가 낮을수록 나프탈렌 분해효율이 증가(pH 12: 84% → pH 3: 95.6%)하였다. 나프탈렌 초기농도의 감소에 따라 반응속도는 증가하는 경향을 보여주었다(2.5 ppm: 27.3× 10-3 min-1, 5 ppm: 22.7×10-3 min-1, 10 ppm : 19.0×10-3 min-1). 동일한 초음파 조건(2.5 ppm 나프탈렌, 0.075 W/mL, 20℃, pH 6.8)에서 28 kHz의 분해효율이 132 kHz보다 약 1.46배 높았고(132 kHz: 56%, 28 kHz: 82.7%), 유사 일차반응 속도상수(k1)도 약 2.3배 높게 나타났다(132 kHz: 2.4×10-3 min-1, 28 kHz: 5.0×10-3 min-1). 초음파 조사 10분 후 H2O2 농도는 132 kHz가 28 kHz보다 약 7.2배 높았지만(132 kHz: 0.36 ppm, 28 kHz: 0.05 ppm), 조사 90분 후에는 28 kHz가 132 kHz보다 1.1배 높았다(28 kHz: 0.45 ppm, 132 kHz: 0.4 ppm). 2.5 ppm 나프탈렌 용액에 132 kHz와 28 kHz 초음파 조사시 발생된 H2O2 농도는 초순수에 초음파 조사한 결과보다 각각 0.1 ppm과 0.05 ppm씩 낮게 나타났다. 혼형(24 kHz)과 배스형(28 kHz) 초음파의 나프탈렌 분해효율은 각각 87%와 82.7%였고, k1은 22.8×10-3 min-1와 18.7×10-3 min-1로 산출되었다. 다주파 복합형 초음파 시스템(28 kHz 배스형+24 kHz 혼형 초음파)의 나 프탈렌 분해효율은 단일주파수 24 kHz(혼형)와 비슷한 제거효율을 보였으나(88%), H2O2의 농도는 약 3.5배 높게 조사되었다(28 kHz + 24 kHz: 2.37 ppm, 24 kHz: 0.7 ppm). 이와 같은 다주파 복합형 초음파 시스템은 OH 라디칼에 의해 산화가 잘 일어나는 물질의 분해에 매우 효과적으로 적용될 수 있을 것으로 예상된다. Naphthalene is a volatile, hydrophobic, and possibly carcinogenic compound that is known to have a severe detrimental effect to aquatic ecosystem. Our research examined the effects of various operating conditions (temperature, pH, initial concentration, and frequency and type of ultrasound) on the sonochemical degradation of naphthalene and OH radical production. The MDL (Method detection limit) determined by LC/FLD (1200 series, Agilient) using C-18 reversed column is measured up to 0.01 ppm. Naphthalene vapor produced from ultrasound irradiation was detected under 0.05 ppm. Comparison of naphthalene sonodegradion efficiency tested under open and closed reactor cover fell within less than 1% of difference. Increasing the reaction temperature from 15℃ to 40℃ resulted in reduction of naphthalene degradation efficiency (15℃: 95% → 40℃: 85%), and altering pH from 12 to 3 increased the effect (pH 12: 84% → pH 3: 95.6%). Pseudo first-order constants (k1) of sonodegradation of naphthalene decreased as initial concentration of naphthalene increased (2.5 ppm: 27.3×10-3 min-3 → 10 ppm : 19.0×10-3 min-3). Degradation efficiency of 2.5 ppm of naphthalene subjected to 28 kHz of ultrasonic irradiation was found to be 1.46 times as much as when exposed under 132 kHz (132 kHz: 56%, 28 kHz: 82.7%). Additionally, its k1 constant was increased by 2.3 times (132 kHz: 2.4×10-3 min-1, 28 kHz: 5.0×10-3 min-1). H2O2 concentration measured 10 minutes after the exposure to 132 kHz of ultrasound, when compared with the measurement under frequency of 28 kHz, was 7.2 times as much. The concentration measured after 90 minutes, however, showed the difference of only 10%. (concentration of H2O2 under 28 kHz being 1.1 times greater than that under 132 kHz.) The H2O2 concentration resulting from 2.5 ppm naphthalene after 90 minutes of sonication at 24 kHz and 132 kHz were lower by 0.05 and 0.1 ppm, respectively, than the concentration measured from the irradiated M.Q. water (no naphthalene added.) Degradation efficiency of horn type (24 kHz) and bath type (28 kHz) ultrasound was found to be 87% and 82.7%, respectively, and k1 was calculated into 22.8×10-3 min-1 and 18.7×10-3 min-1, respectively. Using the multi- frequency and mixed type of ultrasound system (28 kHz bath type + 24 kHz horn type) simultaneously resulted in combined efficiency of 88.1%, while H2O2 concentration increased 3.5 times (28 kHz + 24 kHz: 2.37 ppm, 24 kHz: 0.7 ppm.) Therefore, the multi-frequency and mixed type of ultrasound system procedure might be most effectively used for removing the substances that are easily oxidized by the OH radical. KCI Citation Count: 6
Naphthalene is a volatile, hydrophobic, and possibly carcinogenic compound that is known to have a severe detrimental effect to aquatic ecosystem. Our research examined the effects of various operating conditions (temperature, pH, initial concentration, and frequency and type of ultrasound) on the sonochemical degradation of naphthalene and OH radical production. The MDL (Method detection limit) determined by LC/FLD (1200 series, Agilient) using C-18 reversed column is measured up to 0.01 ppm. Naphthalene vapor produced from ultrasound irradiation was detected under 0.05 ppm. Comparison of naphthalene sonodegradion efficiency tested under open and closed reactor cover fell within less than 1% of difference. Increasing the reaction temperature from $15^{\circ}C$ to $40^{\circ}C$ resulted in reduction of naphthalene degradation efficiency ($15^{\circ}C$: 95% ${\rightarrow}$ $40^{\circ}C$: 85%), and altering pH from 12 to 3 increased the effect (pH 12: 84% ${\rightarrow}$pH 3: 95.6%). Pseudo first-order constants ($k_1$) of sonodegradation of naphthalene decreased as initial concentration of naphthalene increased (2.5 ppm: $27.3{\times}10^{-3}\;min^{-3}\;{\rightarrow}$ 10 ppm : $19.3{\times}10^{-3}\;min^{-3}$). Degradation efficiency of 2.5 ppm of naphthalene subjected to 28 kHz of ultrasonic irradiation was found to be 1.46 times as much as when exposed under 132 kHz (132 kHz: 56%, 28 kHz: 82.7%). Additionally, its $k_1$ constant was increased by 2.3 times (132 kHz: $2.4{\times}10^{-3}\;min^{-1}$, 28 kHz: $5.0{\times}10^{-3}\;min^{-1}$). $H_2O_2$ concentration measured 10 minutes after the exposure to 132 kHz of ultrasound, when compared with the measurement under frequency of 28 kHz, was 7.2 times as much. The concentration measured after 90 minutes, however, showed the difference of only 10%. (concentration of $H_2O_2$ under 28 kHz being 1.1 times greater than that under 132 kHz.) The $H_2O_2$ concentration resulting from 2.5 ppm naphthalene after 90 minutes of sonication at 24 kHz and 132 kHz were lower by 0.05 and 0.1 ppm, respectively, than the concentration measured from the irradiated M.Q. water (no naphthalene added.) Degradation efficiency of horn type (24 kHz) and bath type (28 kHz) ultrasound was found to be 87% and 82.7%, respectively, and $k_1$ was calculated into $22.8{\times}10^{-3}\;min^{-1}$ and $18.7{\times}10^{-3}\;min^{-1}$ respectively. Using the multi- frequency and mixed type of ultrasound system (28 kHz bath type + 24 kHz horn type) simultaneously resulted in combined efficiency of 88.1%, while $H_2O_2$ concentration increased 3.5 times (28 kHz + 24 kHz: 2.37 ppm, 24 kHz: 0.7 ppm.) Therefore, the multi-frequency and mixed type of ultrasound system procedure might be most effectively used for removing the substances that are easily oxidized by the OH radical. 나프탈렌은 휘발성이 있는 소수성 물질로 발암유발 가능성이 있고, 수생태계에 심각한 영향을 미친다. 본 연구는 초음파의 주파수 및 반응조건별 나프탈렌 분해효율과 OH 라디칼 변화량을 조사하였다. C-18 역상칼럼을 이용한 LC/FLD (1200 series, Agilent)로 나프탈렌을 분석한 결과 MDL (Method detection limit)은 0.01 ppm이었다. 초음파 조사동안 휘발된 나프탈렌은 거의 검출되지 않았고(0.05 ppm 이하), 반응조 덮개 개폐별 나프탈렌 분해효율은 거의 차이를 보이지 않았다(1% 이내). 초음파 반응온도가 증가할수록 나프탈렌 제거효율은 감소하는 경향($15^{\circ}C$: 95% ${\rightarrow}$ $40^{\circ}C$: 85%)을 보였고, pH가 낮을수록 나프탈렌 분해효율이 증가(pH 12: 84% ${\rightarrow}$ pH 3: 95.6%)하였다. 나프탈렌 초기농도의 감소에 따라 반응속도는 증가하는 경향을 보여주었다(2.5 ppm: $27.3{\times}10^{-3}\;min^{-1}$, 5 ppm: $27.3{\times}10^{-3}\;min^{-1}$, 10 ppm : $19.0{\times}10^{-3}\;min^{-1}$). 동일한 초음파 조건(2.5 ppm 나프탈렌, 0.075 W/mL, $20^{\circ}C$, pH 6.8)에서 28 kHz의 분해효율이 132 kHz보다 약 1.46배 높았고(132 kHz: 56%, 28 kHz: 82.7%), 유사 일차반응 속도상수($k_1$)도 약 2.3배 높게 나타났다(132 kHz: $2.4{\times}10^{-3}\;min^{-1}$, 28 kHz: $5.0{\times}10^{-3}\;min^{-1}$). 초음파 조사 10분 후 $H_2O_2$ 농도는 132 kHz가 28 kHz보다 약 7.2배 높았지만(132 kHz: 0.36 ppm, 28 kHz: 0.05 ppm), 조사 90분 후에는 28 kHz가 132 kHz보다 1.1배 높았다(28 kHz: 0.45 ppm, 132 kHz: 0.4 ppm). 2.5 ppm 나프탈렌 용액에 132 kHz와 28 kHz 초음파 조사시 발생된 $H_2O_2$ 농도는 초순수에 초음파 조사한 결과보다 각각 0.1 ppm과 0.05 ppm씩 낮게 나타났다. 혼형(24 kHz)과 배스형(28 kHz) 초음파의 나프탈렌 분해효율은 각각 87%와 82.7%였고, $k_1$은 $22.8{\times}10^{-3}\;min^{-1}$와 $18.7{\times}10^{-3}\;min^{-1}$로 산출되었다. 다주파 복합형 초음파 시스템(28 kHz 배스형 + 24 kHz 혼형 초음파)의 나프탈렌 분해효율은 단일주파수 24 kHz(혼형)와 비슷한 제거효율을 보였으나(88%), $H_2O_2$의 농도는 약 3.5배 높게 조사되었다(28 kHz + 24 kHz: 2.37 ppm, 24 kHz: 0.7 ppm). 이와 같은 다주파 복합형 초음파 시스템은 OH 라디칼에 의해 산화가 잘 일어나는 물질의 분해에 매우 효과적으로 적용될 수 있을 것으로 예상된다.
Author 이민주(Min Ju Lee)
박소영(So Young Park)
오재일(Jei Ll Oh)
정상조(Sang Jo Jeong)
박종성(Jong Sung Park)
허남국(Nam Guk Her)
Author_xml – sequence: 1
  fullname: 박종성(Jong Sung Park)
– sequence: 2
  fullname: 박소영(So Young Park)
– sequence: 3
  fullname: 오재일(Jei Ll Oh)
– sequence: 4
  fullname: 정상조(Sang Jo Jeong)
– sequence: 5
  fullname: 이민주(Min Ju Lee)
– sequence: 6
  fullname: 허남국(Nam Guk Her)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001327276$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNpFkMtKw0AYhYMoWC_vMBvBTWAyM8kky1KrVosF6X6Y3CREU2l04U60iwoFFSJWaVARoctKqyjkiTqTdzBewMXPdxYfh8O_oMxGrcibUUoIm1ilpgZnlZKGkK7qEOnzynIcBzYkhGICTVJSYjnpyrSX93pAPmcFZLcPxOiyuL5Mr-XTaPo6AWJ8mt8l8vYKiGQkXj6AOOvnSSc_74rHHhDvnfxmkt8P5WA4HWegsQlEmokkkZ-ZTL_rBvI8FQ8XQHx2pm9XS8qcz_djb_mPi0pzvdqsbKr1xkatUq6roYVN1cMWslxMqOd73EDYpgYl1NSL4Y5DIYGubRm25dmUmAT6PvcMzB3N0TTKOdJcvKis_tZGbZ-FTsBaPPjhXouFbVbebdYYgliHtFBXftUwiI8CFrnxPtsqbzcQhJZmQWwahFiY_HvRcTs48NyAs8Mi8PYJ22msVaFBdYSLx38BWTWUaQ
ContentType Journal Article
DBID DBRKI
TDB
JDI
ACYCR
DEWEY 628
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
KoreaScience
Korean Citation Index
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Comparison of Naphthalene Degradation Efficiency and OH Radical Production by the Change of Frequency and Reaction Conditions of Ultrasound
DocumentTitle_FL Comparison of Naphthalene Degradation Efficiency and OH Radical Production by the Change of Frequency and Reaction Conditions of Ultrasound
EISSN 2383-7810
EndPage 89
ExternalDocumentID oai_kci_go_kr_ARTI_203507
JAKO200919038644934
NODE06752338
GroupedDBID 9ZL
ALMA_UNASSIGNED_HOLDINGS
DBRKI
GROUPED_DOAJ
GW5
JDI
MZR
TDB
ZZE
.UV
85H
ACYCR
ID FETCH-LOGICAL-k938-e3929d347efea623b7674785340cc7040db96b9eb74840ffae63ac1c117aa21d3
ISSN 1225-5025
IngestDate Tue Nov 21 21:25:59 EST 2023
Fri Dec 22 12:04:02 EST 2023
Thu Mar 13 19:38:44 EDT 2025
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 나프탈렌
초음파
Temperature
Naphthalene
온도
주파수
OH Radical
OH 라디칼
pH
Frequency
Ultrasound
OH
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k938-e3929d347efea623b7674785340cc7040db96b9eb74840ffae63ac1c117aa21d3
Notes KISTI1.1003/JNL.JAKO200919038644934
G704-000098.2009.31.2.003
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO200919038644934&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_203507
kisti_ndsl_JAKO200919038644934
nurimedia_primary_NODE06752338
PublicationCentury 2000
PublicationDate 2009
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – year: 2009
  text: 2009
PublicationDecade 2000
PublicationTitle Daehan hwan'gyeong gonghag hoeji
PublicationTitleAlternate Journal of Korean Society of Environmental Engineers
PublicationYear 2009
Publisher 대한환경공학회
Publisher_xml – name: 대한환경공학회
SSID ssib044734084
ssib053377094
ssj0002782626
ssib022229522
Score 1.6934144
Snippet Naphthalene is a volatile, hydrophobic, and possibly carcinogenic compound that is known to have a severe detrimental effect to aquatic ecosystem. Our research...
나프탈렌은 휘발성이 있는 소수성 물질로 발암유발 가능성이 있고, 수생태계에 심각한 영향을 미친다. 본 연구는 초음파의 주파수 및 반응조건별 나프탈렌 분해효율과 OH...
SourceID nrf
kisti
nurimedia
SourceType Open Website
Open Access Repository
Publisher
StartPage 79
SubjectTerms 환경공학
Title 초음파 주파수 및 반응조건 변화에 따른 나프탈렌 분해효율과 OH 라디칼의 발생량 비교
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE06752338
http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO200919038644934&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001327276
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 대한환경공학회지, 2009, 31(2), , pp.79-89
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2383-7810
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002782626
  issn: 1225-5025
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1daxNB8Kh9UR_ET_wsJ7hPJeXu9j52H-8uKbFi81Khb8ddcknaSiL9QPRJbB8qBKwQsUqDXwh9rLSKhfyi3uU_OLObS1KpUH3IZjo7nZ2duezO7O3uKMq9mBowNho0V6kyDQOUag4mPZZzbNvkYZmG5RgPJz-ctYuPzJl5a37szJeRXUtrq9FU-fmJ50r-x6qAA7viKdl_sOyAKSAABvtCCRaG8lQ2JgWfeOAMMgR4njCfFETJ_ElEuZR4QxRigJQzqPOIpxE2nUE848B18X86Igsu8QAwJRHFPRHAinPCTUHtEK6JOvgbyT3iWsST3JkheOaxjplCBCrkBCJNigc87X4dt7AbCLjElaL4AnCxXc-fLBVlQ3nRH9GiFMLjAiNlH3SMy75SxCL1NGFc1nHRIrC1iMwfmjnm-TCuw1BXf4oLwk7tWYw5mGpQ1MPaZL0ZLy5kj2bWhiU0ZRAmAGDr6SeSMLuve1AIGyERCFeqskDcrBeeP0riDriA-oa2ObZWM5wLhOb9zFCW0IO0mNSlQbx8plQro-F9xTN_ZIKC8TdnafKw-FQscOB10ZzD-tuD5UQkM_RkLg0fzvbZDoc_nIBj140vlReCWjNYWg4gqLofGPj2GS9sAGdWG1m1gCHbNB1qav2jzovyPbZhiySHA0kh7MNYaAG8t8YyOH1nG2uYuQKGvxFPbu6icqEfgqmu_D1dUsaWmpeV8yMXc15RVtKDzbTT6rVaavq1C1_p5raa7L2Gz3baeZN-3jv6fqAm-y9679vpuy01ae8l336pycvtXnujt76ZfGqpyc-N3tuD3ofddGf3aL-rlopq0ukm7XZ62E07yG4nXe8kH1-pyeHG0Y-tq8rcdGHOL-b66UlySxy8hBgjiwo1nbgahxBERHgtlgPer6mVyw7MjZWI2xGPI7ytV6tWw9iGkU8v67oThoZeodeU8UazEV9X1Kiqa2GVW0aFmabFKqEdheA4OxEmi9Bt84YyITQYNCorj4MZ90EJHy5w5SmDcIZTILgLqhV2-6v9gMlA8cETeZVNMFvKF3DNwKCU3TwFk1vKOfk6Fdcgbyvjq8tr8R3wylejCfFc_AbkG8WE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%B4%88%EC%9D%8C%ED%8C%8C+%EC%A3%BC%ED%8C%8C%EC%88%98+%EB%B0%8F+%EB%B0%98%EC%9D%91%EC%A1%B0%EA%B1%B4+%EB%B3%80%ED%99%94%EC%97%90+%EB%94%B0%EB%A5%B8+%EB%82%98%ED%94%84%ED%83%88%EB%A0%8C+%EB%B6%84%ED%95%B4%ED%9A%A8%EC%9C%A8%EA%B3%BC+OH+%EB%9D%BC%EB%94%94%EC%B9%BC%EC%9D%98+%EB%B0%9C%EC%83%9D%EB%9F%89+%EB%B9%84%EA%B5%90&rft.jtitle=Daehan+hwan%27gyeong+gonghag+hoeji&rft.au=%EB%B0%95%EC%A2%85%EC%84%B1&rft.au=%EB%B0%95%EC%86%8C%EC%98%81&rft.au=%EC%98%A4%EC%9E%AC%EC%9D%BC&rft.au=%EC%A0%95%EC%83%81%EC%A1%B0&rft.date=2009&rft.pub=%EB%8C%80%ED%95%9C%ED%99%98%EA%B2%BD%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=1225-5025&rft.eissn=2383-7810&rft.spage=79&rft.epage=89&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_203507
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-5025&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-5025&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-5025&client=summon