컨볼루션 뉴럴 네트워크 기반의 딥러닝을 이용한 흉부 X-ray 영상의 분류 및 정확도 평가

본 연구에서는 CNN과 빅데이터 기술을 이용한 Deep Learning을 통해 흉부 X-ray 영상 분류 및 정확성 연구에 대하여 알아보고자 한다. 총 5, 873장의 흉부 X-ray 영상에서 Normal 1, 583장, Pneumonia 4, 289장을 사용하였다. 데이터 분류는 train(88.8%), validation(0.2%), test(ll%)로 분류하였다. Convolution Layer, Max pooling layer pool size 2x2, Flatten layer, Image Data Generator로 구성하...

Full description

Saved in:
Bibliographic Details
Published in한국방사선학회 논문지 Vol. 14; no. 1; pp. 39 - 44
Main Authors 송호준, Ho-jun Song, 이은별, Eun-byeol Lee, 조흥준, Heung-joon Jo, 박세영, Se-young Park, 김소영, So-young Kim, 김현정, Hyeon-jeong Kim, 흥주완, Joo-wan Hong
Format Journal Article
LanguageKorean
Published 한국방사선학회 28.02.2020
Subjects
Online AccessGet full text
ISSN1976-0620
2384-0633
DOI10.7742/jksr.2020.14.1.39

Cover

Abstract 본 연구에서는 CNN과 빅데이터 기술을 이용한 Deep Learning을 통해 흉부 X-ray 영상 분류 및 정확성 연구에 대하여 알아보고자 한다. 총 5, 873장의 흉부 X-ray 영상에서 Normal 1, 583장, Pneumonia 4, 289장을 사용하였다. 데이터 분류는 train(88.8%), validation(0.2%), test(ll%)로 분류하였다. Convolution Layer, Max pooling layer pool size 2x2, Flatten layer, Image Data Generator로 구성하였다. Convolution layer가 3일 때와 4일 때 각각 filter 수, filter size, drop out, epoch, batch size, 손실함수 값을 설정하였다. test 데이터로 Convolution layer가 4일 때, filter 수 64-128-128-128, filter size 3x3, drop out 0.25, epoch 5, batch size 15, 손실함수 RMSprop으로 설정 시 정확도가 94.67%였다. 본 연구를 통해 높은 정확성으로 분류가 가능하였으며, 흉부 X-ray 영상뿐만 아니라 다른 의료영상에서도 많은 도움이 될 것으로 사료된다. The purpose of this study was learning about chest X-ray image classification and accuracy research through Deep Learning using big data technology with Convolution Neural Network. Normal 1,583 and Pneumonia 4,289 were used in chest X-ray images. The data were classified as train (88.8%), validation (0.2%) and test (11%). Constructed as Convolution Layer, Max pooling layer size 2x2, Flatten layer, and Image Data Generator. The number of filters, filter size, drop out, epoch, batch size, and loss function values were set when the Convolution layer were 3 and 4 respectively. The test data verification results showed that the predicted accuracy was 94.67% when the number of filters was 64-128-128-128, filter size 3x3, drop out 0.25, epoch 5, batch size 15, and loss function RMSprop was 4. In this study, the classification of chest X-ray Normal and Pneumonia was predictable with high accuracy, and it is believed to be of great help not only to chest X-ray images but also to other medical images.
AbstractList 본 연구에서는 CNN과 빅데이터 기술을 이용한 Deep Learning을 통해 흉부 X-ray 영상 분류 및 정확성 연구에 대하여 알아보고자 한다. 총 5, 873장의 흉부 X-ray 영상에서 Normal 1, 583장, Pneumonia 4, 289장을 사용하였다. 데이터 분류는 train(88.8%), validation(0.2%), test(ll%)로 분류하였다. Convolution Layer, Max pooling layer pool size 2x2, Flatten layer, Image Data Generator로 구성하였다. Convolution layer가 3일 때와 4일 때 각각 filter 수, filter size, drop out, epoch, batch size, 손실함수 값을 설정하였다. test 데이터로 Convolution layer가 4일 때, filter 수 64-128-128-128, filter size 3x3, drop out 0.25, epoch 5, batch size 15, 손실함수 RMSprop으로 설정 시 정확도가 94.67%였다. 본 연구를 통해 높은 정확성으로 분류가 가능하였으며, 흉부 X-ray 영상뿐만 아니라 다른 의료영상에서도 많은 도움이 될 것으로 사료된다. The purpose of this study was learning about chest X-ray image classification and accuracy research through Deep Learning using big data technology with Convolution Neural Network. Normal 1,583 and Pneumonia 4,289 were used in chest X-ray images. The data were classified as train (88.8%), validation (0.2%) and test (11%). Constructed as Convolution Layer, Max pooling layer size 2x2, Flatten layer, and Image Data Generator. The number of filters, filter size, drop out, epoch, batch size, and loss function values were set when the Convolution layer were 3 and 4 respectively. The test data verification results showed that the predicted accuracy was 94.67% when the number of filters was 64-128-128-128, filter size 3x3, drop out 0.25, epoch 5, batch size 15, and loss function RMSprop was 4. In this study, the classification of chest X-ray Normal and Pneumonia was predictable with high accuracy, and it is believed to be of great help not only to chest X-ray images but also to other medical images.
본 연구에서는 CNN과 빅데이터 기술을 이용한 Deep Learning을 통해 흉부 X-ray 영상 분류 및 정확성 연구에 대하여 알아보고자 한다. 총 5,873장의 흉부 X-ray 영상에서 Normal 1,583장, Pneumonia 4,289장을 사용하였다. 데이터 분류는 train(88.8%), validation(0.2%), test(11%)로 분류하였다. Convolution Layer, Max pooling layer pool size 22, Flatten layer, Image Data Generator로 구성하였다. Convolution layer가 3일 때와 4일 때 각각 filter 수, filter size, drop out, epoch, batch size, 손실함수 값을 설정하였다. test 데이터로 Convolution layer가 4일 때, filter 수 64-128-128-128, filter size 33, drop out 0.25, epoch 5, batch size 15, 손실함수 rmsprop으로 설정 시 정확도가 94.67%였다. 본 연구를 통해 높은 정확성으로 분류가 가능하였으며, 흉부 X-ray 영상 뿐만 아니라 다른 의료영상에서도 많은 도움이 될 것으로 사료된다. The purpose of this study was learning about chest X-ray image classification and accuracy research through Deep Learning using big data technology with Convolution Neural Network. Normal 1,583 and Pneumonia 4,289 were used in chest X-ray images. The data were classified as train(88.8%), validation(0.2%) and test(11%). Constructed as Convolution Layer, Max pooling layer size 22, Flatten layer, and Image Data Generator. The number of filters, filter size, drop out, epoch, batch size, and loss function values were set when the Convolution layer were 3 and 4 respectively. The test data verification results showed that the predicted accuracy was 94.67% when the number of filters was 64-128-128-128, filter size 33, drop out 0.25, epoch 5, batch size 15, and loss function rmsprop was 4. In this study, the classification of chest X-ray Normal and Pneumonia was predictable with high accuracy, and it is believed to be of great help not only to chest X-ray images but also to other medical images. KCI Citation Count: 0
The purpose of this study was learning about chest X-ray image classification and accuracy research through Deep Learning using big data technology with Convolution Neural Network. Normal 1,583 and Pneumonia 4,289 were used in chest X-ray images. The data were classified as train (88.8%), validation (0.2%) and test (11%). Constructed as Convolution Layer, Max pooling layer size 2×2, Flatten layer, and Image Data Generator. The number of filters, filter size, drop out, epoch, batch size, and loss function values were set when the Convolution layer were 3 and 4 respectively. The test data verification results showed that the predicted accuracy was 94.67% when the number of filters was 64-128-128-128, filter size 3×3, drop out 0.25, epoch 5, batch size 15, and loss function RMSprop was 4. In this study, the classification of chest X-ray Normal and Pneumonia was predictable with high accuracy, and it is believed to be of great help not only to chest X-ray images but also to other medical images. 본 연구에서는 CNN과 빅데이터 기술을 이용한 Deep Learning을 통해 흉부 X-ray 영상 분류 및 정확성 연구에 대하여 알아보고자 한다. 총 5,873장의 흉부 X-ray 영상에서 Normal 1,583장, Pneumonia 4,289장을 사용하였다. 데이터 분류는 train(88.8%), validation(0.2%), test(11%)로 분류하였다. Convolution Layer, Max pooling layer pool size 2×2, Flatten layer, Image Data Generator로 구성하였다. Convolution layer가 3일 때와 4일 때 각각 filter 수, filter size, drop out, epoch, batch size, 손실함수 값을 설정하였다. test 데이터로 Convolution layer가 4일 때, filter 수 64-128-128-128, filter size 3×3, drop out 0.25, epoch 5, batch size 15, 손실함수 RMSprop으로 설정 시 정확도가 94.67%였다. 본 연구를 통해 높은 정확성으로 분류가 가능하였으며, 흉부 X-ray 영상뿐만 아니라 다른 의료영상에서도 많은 도움이 될 것으로 사료된다.
Author 조흥준
Hyeon-jeong Kim
박세영
Se-young Park
Heung-joon Jo
흥주완
김소영
송호준
Eun-byeol Lee
So-young Kim
김현정
Joo-wan Hong
이은별
Ho-jun Song
Author_xml – sequence: 1
  fullname: 송호준
– sequence: 2
  fullname: Ho-jun Song
– sequence: 3
  fullname: 이은별
– sequence: 4
  fullname: Eun-byeol Lee
– sequence: 5
  fullname: 조흥준
– sequence: 6
  fullname: Heung-joon Jo
– sequence: 7
  fullname: 박세영
– sequence: 8
  fullname: Se-young Park
– sequence: 9
  fullname: 김소영
– sequence: 10
  fullname: So-young Kim
– sequence: 11
  fullname: 김현정
– sequence: 12
  fullname: Hyeon-jeong Kim
– sequence: 13
  fullname: 흥주완
– sequence: 14
  fullname: Joo-wan Hong
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002564436$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNo9kMtKI0EYhQtRMKM-gMymNi5m0W3duqp6GcTRqCBIFu6KTl-kbScZut24M0xcRIVsDMRLo6CCgouAQQR9Iqv6HWx1cPUd-D8Oh_8HGG-2miEAsxjZQjAyv51kqU0QQTZmNrapOwYqhEpmIU7pOKhgV_AyEzQJZrIsbiDKGedCsgrYNS93-vFVX9-ZgwHU3ZG-HEHduSkOn835cdF-gG_PQz0cmLy8ntzqywd9lJu8A00-Mmf3Rf8CFnlXP-3DTSv19qAZtM2_9qf91NG3JYY9aK76xWlf9zqw6HXfhvvTYCLydrJw5j-nQP33Yn1h2VpbX6otVNesRDJpBVL4LkENGmLfIQHHjsMl833Xc73AD0m53xVBhIUMiMdlJBgKuQxc3JBYNiJJp8Cvr9pmGqnEj1XLiz-51VJJqqob9ZriLqWUfbhzX24SZ7uxagbZjlqprq5_fBUJyYnDKeFO6f389jL1N43_eOmeokIgRhh9B7mXle0
ContentType Journal Article
DBID HZB
Q5X
JDI
ACYCR
DEWEY 610
DOI 10.7742/jksr.2020.14.1.39
DatabaseName 한국학술정보 KISS
Korean Studies Information Service System (KISS) B-Type
KoreaScience
Korean Citation Index
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate 컨볼루션 뉴럴 네트워크 기반의 딥러닝을 이용한 흉부 X-ray 영상의 분류 및 정확도 평가
Evaluation of Classification and Accuracy in Chest X-ray Images using Deep Learning with Convolution Neural Network
EISSN 2384-0633
EndPage 44
ExternalDocumentID oai_kci_go_kr_ARTI_6933348
JAKO202007862563265
3770424
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
HZB
Q5X
.UV
JDI
P5Y
ACYCR
KROLR
ID FETCH-LOGICAL-k848-d87c920b3e1c52d6155684cc9a9adce278497df178d2a68f740e68d91b818bf83
ISSN 1976-0620
IngestDate Tue Nov 21 21:35:12 EST 2023
Fri Dec 22 12:03:55 EST 2023
Wed Feb 19 02:12:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 1
Keywords X-ray
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k848-d87c920b3e1c52d6155684cc9a9adce278497df178d2a68f740e68d91b818bf83
Notes The Korean Society of Radiology
KISTI1.1003/JNL.JAKO202007862563265
http://data.doi.or.kr/10.7742/jksr.2020.14.1.39
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202007862563265&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 6
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_6933348
kisti_ndsl_JAKO202007862563265
kiss_primary_3770424
PublicationCentury 2000
PublicationDate 20200228
PublicationDateYYYYMMDD 2020-02-28
PublicationDate_xml – month: 02
  year: 2020
  text: 20200228
  day: 28
PublicationDecade 2020
PublicationTitle 한국방사선학회 논문지
PublicationTitleAlternate 한국방사선학회논문지
PublicationYear 2020
Publisher 한국방사선학회
Publisher_xml – name: 한국방사선학회
SSID ssib036466784
ssib010494110
ssib051116959
ssib012146256
ssib036279067
ssib039546180
Score 1.7271353
Snippet 본 연구에서는 CNN과 빅데이터 기술을 이용한 Deep Learning을 통해 흉부 X-ray 영상 분류 및 정확성 연구에 대하여 알아보고자 한다. 총 5, 873장의 흉부 X-ray 영상에서...
The purpose of this study was learning about chest X-ray image classification and accuracy research through Deep Learning using big data technology with...
본 연구에서는 CNN과 빅데이터 기술을 이용한 Deep Learning을 통해 흉부 X-ray 영상 분류 및 정확성 연구에 대하여 알아보고자 한다. 총 5,873장의 흉부 X-ray 영상에서...
SourceID nrf
kisti
kiss
SourceType Open Website
Open Access Repository
Publisher
StartPage 39
SubjectTerms Chest X-Ray
CNN
Deep Learning
Pneumonia
딥러닝
원자력공학
폐렴
합성곱 신경망 네트워크
흉부 X-ray
Title 컨볼루션 뉴럴 네트워크 기반의 딥러닝을 이용한 흉부 X-ray 영상의 분류 및 정확도 평가
URI https://kiss.kstudy.com/ExternalLink/Ar?key=3770424
http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202007862563265&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002564436
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 한국방사선학회논문지, 2020, 14(1), 77, pp.39-44
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2384-0633
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib010494110
  issn: 1976-0620
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1daxNBcKkVxBdRq1g_yiHuU0m979t93Lsk1Er1pULfjrtcIjWSSpo-6IO0GB-qQl8s1I9QQQsV-hCwlII--Ht6l__gzN4lOduCHy-5YXZ2dnbm7mbmsjtLyC0WajZE0U7BCjX8WsV5IcD_XC0rAP-EDtLAvcOz9-zpB-bMvDU_cupnbtXSciucqjw7cV_J_1gVcGBX3CX7D5YdMAUEwGBf-AULw-9f2ZiWPOq6VDBacqlrUNdDQBgS41FmUc4mEcU4dU0EeBmAFGVSAagiZYK6kpwD0pMYjQoPiGSDq0rmKrCSRMU-Tw4MrIynkAMzF5tTIoajSAgHBkBQwZE5B6GQeVFSccncpkydnC80g6dpJ4Yi4ASMDBiOirRyJmIwOZCNlWVHoSJ7ZM0lACKVU0mKEuJyTkCu5mPygVSy1aKimHFFgUEIXU7PkxpT-8TpXARoLNWm1Ve-l2lTOP1h4HaW3W0qNNmL9UnMIyRDbRVxBUpqVGbmSYCFq2baQ_Uf45LaysoEziyLCs1_34FkfrhfPnVJEDAWVFtXf_NZ5rFnM3VAaWWoLJRJK2sedZIQ8GPR3Uf1JayHq4PXNKe0qX7HfEHyI4HCYPnmjLh7H3tCeAnpsw0ZgHWKnNbBr-LhKbPPS_03uobVh3IBpobHyOvD6k0QPTk8d36AYZvw3hjunDa4Zdra0MNAdgCvFnkC4kAt6VIFnNTtY1OCOAvSsCVIPDEbW4D4sdGs5eLHufPkXJb4KSJ9ii-QkfriRXJmNlvaMkZayfed-NuP-PNO8nJTidf24q09JW5_6b06SD686a3uKocH3bi7mXSg9e12vLUbv-4knbaSdPaS9197Gx-VXmct3l9R5IOkJJuryYtVSb3fjrfh0l1Xkk8bvXcb8Xpb6a2vHXZXLpG5cmnOmy5kR6IU6sxkhYg5Fa6roVHVKpYe4ZoCm5mVCg94EFWquIiAO1FNc1ikBzarOaZatVnEtRDi8rDGjMtktLHYqF4hihUZeg0sEvJAM3moBoHJnGpkhTXd0UM9GCdjqDr_SVr0xjccB1dJjJMJqUq_ES099k-4EcbJTdCxX68s-Fi5Hq8PF_1604f8_I5vcwO3_l_9E5dr5OzwWbhORlvN5eoNiP5b4YS8wX4BvWnSYw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%BB%A8%EB%B3%BC%EB%A3%A8%EC%85%98+%EB%89%B4%EB%9F%B4+%EB%84%A4%ED%8A%B8%EC%9B%8C%ED%81%AC+%EA%B8%B0%EB%B0%98%EC%9D%98+%EB%94%A5%EB%9F%AC%EB%8B%9D%EC%9D%84+%EC%9D%B4%EC%9A%A9%ED%95%9C+%ED%9D%89%EB%B6%80+X-ray+%EC%98%81%EC%83%81%EC%9D%98+%EB%B6%84%EB%A5%98+%EB%B0%8F+%EC%A0%95%ED%99%95%EB%8F%84+%ED%8F%89%EA%B0%80&rft.jtitle=%ED%95%9C%EA%B5%AD%EB%B0%A9%EC%82%AC%EC%84%A0%ED%95%99%ED%9A%8C+%EB%85%BC%EB%AC%B8%EC%A7%80&rft.au=%EC%86%A1%ED%98%B8%EC%A4%80&rft.au=%EC%9D%B4%EC%9D%80%EB%B3%84&rft.au=%EC%A1%B0%ED%9D%A5%EC%A4%80&rft.au=%EB%B0%95%EC%84%B8%EC%98%81&rft.date=2020-02-28&rft.issn=1976-0620&rft.volume=14&rft.issue=1&rft.spage=39&rft.epage=44&rft_id=info:doi/10.7742%2Fjksr.2020.14.1.39&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO202007862563265
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1976-0620&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1976-0620&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1976-0620&client=summon