콘크리트 교량 상태평가를 위한 딥러닝 기반 손상 탐지 프로토타입 개발
Recently, research has been actively conducted on the technology of inspection facilities through image-based analysis assessment of human-inaccessible facilities. This research was conducted to study the conditions of deep learning-based imaging data on bridges and to develop an evaluation prototyp...
Saved in:
| Published in | KSCE Journal of Civil and Environmental Engineering Research Vol. 42; no. 1; pp. 107 - 116 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | Korean |
| Published |
대한토목학회
01.02.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1015-6348 2799-9629 |
| DOI | 10.12652/Ksce.2022.42.1.0107 |
Cover
| Abstract | Recently, research has been actively conducted on the technology of inspection facilities through image-based analysis assessment of human-inaccessible facilities. This research was conducted to study the conditions of deep learning-based imaging data on bridges and to develop an evaluation prototype program for bridges. To develop a deep learning-based bridge damage detection prototype, the Semantic Segmentation model, which enables damage detection and quantification among deep learning models, applied Mask-RCNN and constructed learning data 5,140 (including open-data) and labeling suitable for damage types. As a result of performance modeling verification, precision and reproduction rate analysis of concrete cracks, stripping/slapping, rebar exposure and paint stripping showed that the precision was 95.2 %, and the recall was 93.8 %. A 2nd performance verification was performed on onsite data of crack concrete using damage rate of bridge members. 최근 안전점검자가 접근성 문제로 점검이 어려운 교량 부재의 상태평가를 위해 영상분석 기반의 시설물 점검 기법연구가 활발히 진행 중이다. 본 논문은 교량을 대상으로 딥러닝 기반 영상정보에 대해서 상태평가 연구를 진행하였고 이에 대한 평가 프로그램(프로토타입)을 개발하였다. 딥러닝 기반 교량 손상탐지 프로토타입을 개발하기 위해 딥러닝 모델 중 손상 검출 및 정량화가 가능한 의미론적 분할 모델인 Mask-RCNN를 적용하였고 학습데이터 6,540장(오픈 데이터 포함)과 손상유형에 적합한 레이블링을 구성하였다. 모델링에 대한 성능검증한 결과, 콘크리트 균열, 박리/박락, 철근노출과 도장 박리에 대한 정밀도(precision)는 95.2 %, 재현율(recall)은 93.8 % 나타내었다. 또한, 교량 콘크리트 부재 손상율을 이용하여 콘크리트 균열 실 데이터를 2차 성능검증 하였다. |
|---|---|
| AbstractList | 최근 안전점검자가 접근성 문제로 점검이 어려운 교량 부재의 상태평가를 위해 영상분석 기반의 시설물 점검 기법연구가 활발히 진행 중이다. 본 논문은 교량을 대상으로 딥러닝 기반 영상정보에 대해서 상태평가 연구를 진행하였고 이에 대한 평가 프로그램(프로토타입)을 개발하였다. 딥러닝 기반 교량 손상탐지 프로토타입을 개발하기 위해 딥러닝 모델 중 손상 검출 및 정량화가 가능한 의미론적 분할 모델인 Mask-RCNN를 적용하였고 학습데이터 6,540장(오픈 데이터 포함)과 손상유형에 적합한 레이블링을 구성하였다. 모델링에 대한 성능검증한 결과, 콘크리트 균열, 박리/박락, 철근노출과 도장 박리에 대한 정밀도(precision)는 95.2 %, 재현율(recall)은 93.8 % 나타내었다. 또한, 교량 콘크리트 부재 손상율을 이용하여 콘크리트 균열 실 데이터를 2차 성능검증 하였다. Recently, research has been actively conducted on the technology of inspection facilities through image-based analysis assessment ofhuman-inaccessible facilities. This research was conducted to study the conditions of deep learning-based imaging data on bridges and to develop an evaluation prototype program for bridges. To develop a deep learning-based bridge damage detection prototype, the Semantic Segmentation model, which enables damage detection and quantification among deep learning models, applied Mask-RCNN and constructed learning data 5,140 (including open-data) and labeling suitable for damage types. As a result of performance modeling verification, precision and reproduction rate analysis of concrete cracks, stripping/slapping, rebar exposure and paint stripping showed that the precision was 95.2 %, and the recall was 93.8 %. A 2nd performance verification was performed on onsite data of crack concrete using damage rate of bridge members. KCI Citation Count: 1 Recently, research has been actively conducted on the technology of inspection facilities through image-based analysis assessment of human-inaccessible facilities. This research was conducted to study the conditions of deep learning-based imaging data on bridges and to develop an evaluation prototype program for bridges. To develop a deep learning-based bridge damage detection prototype, the Semantic Segmentation model, which enables damage detection and quantification among deep learning models, applied Mask-RCNN and constructed learning data 5,140 (including open-data) and labeling suitable for damage types. As a result of performance modeling verification, precision and reproduction rate analysis of concrete cracks, stripping/slapping, rebar exposure and paint stripping showed that the precision was 95.2 %, and the recall was 93.8 %. A 2nd performance verification was performed on onsite data of crack concrete using damage rate of bridge members. 최근 안전점검자가 접근성 문제로 점검이 어려운 교량 부재의 상태평가를 위해 영상분석 기반의 시설물 점검 기법연구가 활발히 진행 중이다. 본 논문은 교량을 대상으로 딥러닝 기반 영상정보에 대해서 상태평가 연구를 진행하였고 이에 대한 평가 프로그램(프로토타입)을 개발하였다. 딥러닝 기반 교량 손상탐지 프로토타입을 개발하기 위해 딥러닝 모델 중 손상 검출 및 정량화가 가능한 의미론적 분할 모델인 Mask-RCNN를 적용하였고 학습데이터 6,540장(오픈 데이터 포함)과 손상유형에 적합한 레이블링을 구성하였다. 모델링에 대한 성능검증한 결과, 콘크리트 균열, 박리/박락, 철근노출과 도장 박리에 대한 정밀도(precision)는 95.2 %, 재현율(recall)은 93.8 % 나타내었다. 또한, 교량 콘크리트 부재 손상율을 이용하여 콘크리트 균열 실 데이터를 2차 성능검증 하였다. |
| Author | Park, Kyung-Han 박경한 Kim, Gyu-Seon 김규선 정현준 Jung, Hyunjun 남우석 Nam, Woo-Suk 김철민 Kim, Cheol-Min |
| Author_xml | – sequence: 1 fullname: 남우석 – sequence: 2 fullname: 정현준 – sequence: 3 fullname: 박경한 – sequence: 4 fullname: 김철민 – sequence: 5 fullname: 김규선 – sequence: 6 fullname: Nam, Woo-Suk – sequence: 7 fullname: Jung, Hyunjun – sequence: 8 fullname: Park, Kyung-Han – sequence: 9 fullname: Kim, Cheol-Min – sequence: 10 fullname: Kim, Gyu-Seon |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002807812$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNot0D1PwkAAxvGLwUREvoHDLQ4OrffSHr2REF8QEhLDXq_lahoIJNQPAAFJ0EEGTBiq6IAuDF1MGPQLcb3vIIrTf_nlGZ59kGl32hKAQ4xMTJhNTiqRL02CCDEtYmITYVTYAVlS4NzgjPAMyGKEbYNRy9kD-SgKPYQwthyOeRZcp98z3V-q96W-X8H150TNxzAd9PUg1o_jddJTiy-YxkP9FEM1Xaj5Uj08w_UqUckMpqPJhkI9mKQfPainQ_UW69GrHvTSlzu4TmKVxAdgNxCtSOb_mwP1s9N66cKo1s7LpWLVaDKLGyKgFivYHpMN4RDpWwj7jQBJj0gpBAoww0yiBncEJtRzAuL5wvZtKqlNRSEQNAeOt7PtbuA2_dDtiPCvNx232XWLV_WyyzlhDuUbe7S1zTC6Dd12I2q5l8VK7fdD5HBKKUaMUPoDuDiDKw |
| ContentType | Journal Article |
| DBID | JDI ACYCR |
| DEWEY | 624 |
| DOI | 10.12652/Ksce.2022.42.1.0107 |
| DatabaseName | [Open Access] KoreaScience Korean Citation Index |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Development of Deep Learning-Based Damage Detection Prototype for Concrete Bridge Condition Evaluation |
| EISSN | 2799-9629 |
| EndPage | 116 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_9926839 JAKO202208933310623 |
| GroupedDBID | .UV ALMA_UNASSIGNED_HOLDINGS JDI ACYCR M~E |
| ID | FETCH-LOGICAL-k649-af34675b6eda82ec401cdf0eb2eeaa0f1616e0d98a123b8f2bca5c53e353a7fa3 |
| ISSN | 1015-6348 |
| IngestDate | Tue Nov 21 21:41:52 EST 2023 Fri Dec 22 11:58:46 EST 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 1 |
| Language | Korean |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-k649-af34675b6eda82ec401cdf0eb2eeaa0f1616e0d98a123b8f2bca5c53e353a7fa3 |
| Notes | KISTI1.1003/JNL.JAKO202208933310623 http://kscejournal.or.kr/jksce/XmlViewer/f411908 |
| OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202208933310623&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
| PageCount | 10 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9926839 kisti_ndsl_JAKO202208933310623 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02 |
| PublicationDecade | 2020 |
| PublicationTitle | KSCE Journal of Civil and Environmental Engineering Research |
| PublicationTitleAlternate | 대한토목학회논문집 |
| PublicationYear | 2022 |
| Publisher | 대한토목학회 |
| Publisher_xml | – name: 대한토목학회 |
| SSID | ssib001148919 ssib053377074 ssib023393606 ssib050734827 ssib001148918 ssib023393609 ssib023393608 ssib023393607 ssib036278542 ssib005299834 ssib005299833 ssib001148922 ssib001148920 ssib001148921 ssib005299836 ssib005299835 ssib008451731 |
| Score | 1.7963374 |
| Snippet | Recently, research has been actively conducted on the technology of inspection facilities through image-based analysis assessment of human-inaccessible... 최근 안전점검자가 접근성 문제로 점검이 어려운 교량 부재의 상태평가를 위해 영상분석 기반의 시설물 점검 기법연구가 활발히 진행 중이다. 본 논문은 교량을 대상으로... |
| SourceID | nrf kisti |
| SourceType | Open Website Open Access Repository |
| StartPage | 107 |
| SubjectTerms | 토목공학 |
| Title | 콘크리트 교량 상태평가를 위한 딥러닝 기반 손상 탐지 프로토타입 개발 |
| URI | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202208933310623&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002807812 |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | 대한토목학회논문집(국문), 2022, 42(1), 220, pp.107-116 |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 2799-9629 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib050734827 issn: 1015-6348 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNA0CrlAgfEU5RHZSH2FKXYu37sHh3HVWlVOFCk3oLt2CgKSqW2cOgBtUqpVDjQQ5F6CBQOhUsPuSD1AD8Ux__A7K5jm7QSj4vtmZ2d2d3Zx0yyO6so90MaR9SHgWSRJjgolh1UYRFm1TgMTWLbBIciWPXiI2vuqTG_bC5PnNsony5ZD2bCjTPPlfyPVgEHeuWnZP9BszlTQMA36BeeoGF4_pWOkeeiWh0xirw6mITIcZFXQ44lPgDjoBqtIA9eJmIaT2OziLIKz0cJz8GpCGKSnKcJao3vf-CcTFRzBTVQUIMTMeDEUcDK4OmSpxRM4bsu5VHOBFDwZFTKs0QRMsGVkWSBcmwQKFDAlMsB0fqoVFAbLaOmgpp5iJqVrKDMHYlxy3b2whPXq5SMbbf1qiWDInjFyT4eUrkIx5hvQhz1QVEljBwqhAppnmgGVi9IXF46aBRPqIGXHTBQCa3MpSZJgAXm-ho1Y0ECKSyrHZA4svFnUXbtePajDPjzWr7BRa4jYGVB95dBREcLjYFPDSi5amQX_2YGiC4Pn55a27Bl8mC5C2shD--K8YyBZ_QZLc9cDiU-tsTnGy_nnYXHPK8GZioByx6M33PKeQwrIr_2ZPG1V5jS4Cezkt0iYfY7XHI1JKyPwaVQcDAD0JJrIWFjDDbH4MJUpoap28U_1pgQRqxih0AG22MwHYPz8oPdZtPR5c8Ag1tE8oi4HCYwU2kiiHuuy-zkLdfDgzO0AO4t9_laYKV2VuOSlbp0WbmU9XjVkXPFFWWivXJVuVjq5deUZ8OfB-nWcfL1OH17og6-7yWHu-qwu5V2e-n73UF_Mzn6oQ572-mHnprsHyWHx8m7j-rgpJ_0D9Thzh6Qqml3b_htU033t5MvvXTnc9rdHH56ow76vaTfu64szXpL7lw1u2el2rYMVvVjAnO0GVhR06c4Cg1ND5uxFgU4inxfi8EntCKtyagPVm5AYxyEvgkzeURM4tuxT24ok52VTnRTUbHhM50H0bMDZjQNjUFD-2Ggx5oZNG2LTSnTookanebai8YZnXFKuQdt12iHrQaPe8_fz1ca7dUGePcPG4xhCxy6W3_iclu5UAzKO8rk-urL6C74DuvBtOjkvwDk6-Hx |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%BD%98%ED%81%AC%EB%A6%AC%ED%8A%B8+%EA%B5%90%EB%9F%89+%EC%83%81%ED%83%9C%ED%8F%89%EA%B0%80%EB%A5%BC+%EC%9C%84%ED%95%9C+%EB%94%A5%EB%9F%AC%EB%8B%9D+%EA%B8%B0%EB%B0%98+%EC%86%90%EC%83%81+%ED%83%90%EC%A7%80+%ED%94%84%EB%A1%9C%ED%86%A0%ED%83%80%EC%9E%85+%EA%B0%9C%EB%B0%9C&rft.jtitle=KSCE+Journal+of+Civil+and+Environmental+Engineering+Research&rft.au=%EB%82%A8%EC%9A%B0%EC%84%9D&rft.au=%EC%A0%95%ED%98%84%EC%A4%80&rft.au=%EB%B0%95%EA%B2%BD%ED%95%9C&rft.au=%EA%B9%80%EC%B2%A0%EB%AF%BC&rft.date=2022-02-01&rft.issn=1015-6348&rft.volume=42&rft.issue=1&rft.spage=107&rft.epage=116&rft_id=info:doi/10.12652%2FKsce.2022.42.1.0107&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO202208933310623 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1015-6348&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1015-6348&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1015-6348&client=summon |