비선형 회귀분석을 이용한 Generic 데이터 기반의 누출빈도함수 추정

Quantitative risk assessment (QRA) is used as a legal or voluntary safety management tool for the hazardous material industry and the utilization of the method is gradually increasing. Therefore, a leak frequency analysis based on reliable generic data is a critical element in the evolution of QRA a...

Full description

Saved in:
Bibliographic Details
Published in한국안전학회지 Vol. 35; no. 5; pp. 15 - 21
Main Authors 윤익근, 단승규, 정호진, 홍성경, Yoon, Ik Keun, Dan, Seung Kyu, Jung, Ho Jin, Hong, Seong Kyeong
Format Journal Article
LanguageKorean
Published 한국안전학회 01.10.2020
Subjects
Online AccessGet full text
ISSN1738-3803
2383-9953
DOI10.14346/JKOSOS.2020.35.5.15

Cover

Abstract Quantitative risk assessment (QRA) is used as a legal or voluntary safety management tool for the hazardous material industry and the utilization of the method is gradually increasing. Therefore, a leak frequency analysis based on reliable generic data is a critical element in the evolution of QRA and safety technologies. The aim of this paper is to derive the leak frequency function that can be applied more flexibly in QRA based on OGP report with high reliability and global utilization. For the purpose, we first reviewed the data on the 16 equipments included in the OGP report and selected the predictors. And then we found good equations to fit the OGP data using non-linear regression analysis. The various expectation functions were applied to search for suitable parameter to serve as a meaningful reference in the future. The results of this analysis show that the best fitting parameter is found in the form of DNV function and connection function in natural logarithm. In conclusion, the average percentage error between the fitted and the original value is very small as 3 %, so the derived prediction function can be applicable in the quantitative frequency analysis. This study is to contribute to expand the applicability of QRA and advance safety engineering as providing the generic equations for practical leak frequency analysis.
AbstractList Quantitative risk assessment (QRA) is used as a legal or voluntary safety management tool for the hazardous material industry and the utilization of the method is gradually increasing. Therefore, a leak frequency analysis based on reliable generic data is a critical element in the evolution of QRA and safety technologies. The aim of this paper is to derive the leak frequency function that can be applied more flexibly in QRA based on OGP report with high reliability and global utilization. For the purpose, we first reviewed the data on the 16 equipments included in the OGP report and selected the predictors. And then we found good equations to fit the OGP data using non-linear regression analysis. The various expectation functions were applied to search for suitable parameter to serve as a meaningful reference in the future. The results of this analysis show that the best fitting parameter is found in the form of DNV function and connection function in natural logarithm. In conclusion, the average percentage error between the fitted and the original value is very small as 3 %, so the derived prediction function can be applicable in the quantitative frequency analysis. This study is to contribute to expand the applicability of QRA and advance safety engineering as providing the generic equations for practical leak frequency analysis. KCI Citation Count: 0
Quantitative risk assessment (QRA) is used as a legal or voluntary safety management tool for the hazardous material industry and the utilization of the method is gradually increasing. Therefore, a leak frequency analysis based on reliable generic data is a critical element in the evolution of QRA and safety technologies. The aim of this paper is to derive the leak frequency function that can be applied more flexibly in QRA based on OGP report with high reliability and global utilization. For the purpose, we first reviewed the data on the 16 equipments included in the OGP report and selected the predictors. And then we found good equations to fit the OGP data using non-linear regression analysis. The various expectation functions were applied to search for suitable parameter to serve as a meaningful reference in the future. The results of this analysis show that the best fitting parameter is found in the form of DNV function and connection function in natural logarithm. In conclusion, the average percentage error between the fitted and the original value is very small as 3 %, so the derived prediction function can be applicable in the quantitative frequency analysis. This study is to contribute to expand the applicability of QRA and advance safety engineering as providing the generic equations for practical leak frequency analysis.
Author Yoon, Ik Keun
Jung, Ho Jin
홍성경
Hong, Seong Kyeong
정호진
단승규
Dan, Seung Kyu
윤익근
Author_xml – sequence: 1
  fullname: 윤익근
– sequence: 2
  fullname: 단승규
– sequence: 3
  fullname: 정호진
– sequence: 4
  fullname: 홍성경
– sequence: 5
  fullname: Yoon, Ik Keun
– sequence: 6
  fullname: Dan, Seung Kyu
– sequence: 7
  fullname: Jung, Ho Jin
– sequence: 8
  fullname: Hong, Seong Kyeong
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002642260$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotkL9Kw1AchS9SwVr7Bg5ZHBwSc-8v9yZ3LEVr_0DAdnEKaZMrISWFxgdwyNBBcTEQSgMddcsg1b5Sc_MOVuv0cQ6HbzinqBbNIh-hc6xr2ACDXfX69tAeakQnugZUoxqmR6hOwAKVcwo1VMcmWCpYOpygZhwHY50CmCYAqaP7cpvIZF1lqVItn3dfT-Vmn3OZJ4rMP-Xyo0pXSseP_HkwUcqXYl9WSaHsvouyyGSeKeUikZtVuV2Ur0mVvstFpsjNm1ynZ-hYuNPYb_6zgUY316P2rTqwO912a6CGzOAqJS4HbOoG8zBnpsFdRgkhlHCBPQMweEA5jF3mW1zHwhUmFVhY1KK6JThxoYEuD9poLpxwEjgzN_jjw8wJ507rbtR1OOUW2Wsa6OKwDYP4MXAiL546vVbf_r0ODM6oCRyAwQ8EC3sw
ContentType Journal Article
DBID JDI
ACYCR
DEWEY 363.11
DOI 10.14346/JKOSOS.2020.35.5.15
DatabaseName KoreaScience
Korean Citation Index
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Social Welfare & Social Work
DocumentTitleAlternate Estimation of Leak Frequency Function by Application of Non-linear Regression Analysis to Generic Data
EISSN 2383-9953
EndPage 21
ExternalDocumentID oai_kci_go_kr_ARTI_9598259
JAKO202034965739336
GroupedDBID .UV
JDI
ACYCR
HZB
ID FETCH-LOGICAL-k649-52a9317046d196749a65222529f1d4313d3593ba6e8901faf75f1f858508f92a3
ISSN 1738-3803
IngestDate Tue Nov 21 21:45:21 EST 2023
Fri Dec 22 12:01:15 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 5
Keywords leak frequency function
non-linear regression
OGP report
quantitative risk assessment(QRA)
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k649-52a9317046d196749a65222529f1d4313d3593ba6e8901faf75f1f858508f92a3
Notes KISTI1.1003/JNL.JAKO202034965739336
http://nas1kosos.superscholar.kr/jkss/2020355015.pdf
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202034965739336&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 7
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9598259
kisti_ndsl_JAKO202034965739336
PublicationCentury 2000
PublicationDate 2020-10
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10
PublicationDecade 2020
PublicationTitle 한국안전학회지
PublicationTitleAlternate Journal of the Korean Society of Safety
PublicationYear 2020
Publisher 한국안전학회
Publisher_xml – name: 한국안전학회
SSID ssib053377332
ssib012146287
ssib016108132
ssib001535083
ssib008451743
Score 1.7493645
Snippet Quantitative risk assessment (QRA) is used as a legal or voluntary safety management tool for the hazardous material industry and the utilization of the method...
SourceID nrf
kisti
SourceType Open Website
Open Access Repository
StartPage 15
SubjectTerms 안전공학
Title 비선형 회귀분석을 이용한 Generic 데이터 기반의 누출빈도함수 추정
URI http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202034965739336&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002642260
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 한국안전학회지, 2020, 35(5), 163, pp.15-21
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2383-9953
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib008451743
  issn: 1738-3803
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLe2ceGCQIAYf6YIkVOV0sZ26ndM0k5j0-hhRRqnKmkTVHVqpbJdOCAOPewA4kKlalqlHdmtBzTYV1rS78Czk7QZDGnsYjn2e_azX1L_nmu_R8gLi_u-ReXJVtP3DMZbpoEowzNM8Hg54NwHS15w3n5tbbxhm7t8d2n5NHdq6WDfL7Y-XHmv5CZaxTLUq7wl-x-anTeKBZhH_WKKGsb0WjrWa47ugC6YXnNlapf0WlUHoQMvqJytC1ev2bpTkScaJLW1oIaqzGAqWCHNOaoO2WxQ_FwHN_FM3WkVJL9AmlKOWDJjSUF1IlSdI1OUISECkfCJtF8UANxMbqGq1lWV6s1WbFiu2BJqxYYjS6JkZkB6Lp7qGTmTwXDVqKKfNwqQmwusUnOBbxbliK55bitEtYAELBsgT-fOcRckKLCTyWnLUSQk4OZbUeKmunBE1itbkFSlVKKaasIpq1ZM3anmd2HQ5M7O8yXfzc0GnVt3KrjuUFFKfusDVYZgihoAnObWl-Tqa4pUkqvlf62BjCrvz5tb9Z36TlEKW6S8yIsZb97l-B9Q4JLT8W6r03zXb3YHTTStXjVBunrksExumRXLksFCtj_WcsibXgosIJh0gT5_Lsv48ebCEkA7A7GoCh84H3p6sVWK__IK4dF6lCZVB0FgbxDmQGDjLrmTWm-anXyK98hSt3-fvI3Oh_HwZDYeabOjzxc_P0Vn-DyJJ0MtnvyIj05no2Mt_Yi06MsUC2fDqXbxaxpNx_FkrEWHw_jsODo_jL4OZ6Pv8eFYi8--xSejB6SxXmu4G0YascToWgwMbnqAeLzErDYubBUGnsXlfooJYbmNSJ22KQfqe1YgEIaHXljhYTmU_8yXRAimRx-SlV6_FzwimpCGAto-oecxFoaIBWgQtADaJoUWDSqrZE3NRrPXfr_X3LS36nKuVPQH6eOSWqvkOU6TUuK_lfn4OkRPyO3FG_-UrOwPDoJniMT3_TX1DvwGoNGuYA
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EB%B9%84%EC%84%A0%ED%98%95+%ED%9A%8C%EA%B7%80%EB%B6%84%EC%84%9D%EC%9D%84+%EC%9D%B4%EC%9A%A9%ED%95%9C+Generic+%EB%8D%B0%EC%9D%B4%ED%84%B0+%EA%B8%B0%EB%B0%98%EC%9D%98+%EB%88%84%EC%B6%9C%EB%B9%88%EB%8F%84%ED%95%A8%EC%88%98+%EC%B6%94%EC%A0%95&rft.jtitle=%ED%95%9C%EA%B5%AD%EC%95%88%EC%A0%84%ED%95%99%ED%9A%8C%EC%A7%80%2C+35%285%29&rft.au=%EC%9C%A4%EC%9D%B5%EA%B7%BC&rft.au=%EB%8B%A8%EC%8A%B9%EA%B7%9C&rft.au=%EC%A0%95%ED%98%B8%EC%A7%84&rft.au=%ED%99%8D%EC%84%B1%EA%B2%BD&rft.date=2020-10-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%95%88%EC%A0%84%ED%95%99%ED%9A%8C&rft.issn=1738-3803&rft.eissn=2383-9953&rft.spage=15&rft.epage=21&rft_id=info:doi/10.14346%2FJKOSOS.2020.35.5.15&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9598259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-3803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-3803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-3803&client=summon