심층신경망으로 가는 통계 여행, 첫 번째 여행: 회귀모형에서 심층신경망으로

It has become difficult to discuss statistics without mentioning recent advancements in artificial intelligence and deep neural networks. While the progress in artificial intelligence and deep neural networks is also a result of major research achievements in statistics, modern statistics and artifi...

Full description

Saved in:
Bibliographic Details
Published inŬngyong tʻonggye yŏnʼgu Vol. 37; no. 5; pp. 541 - 551
Main Authors 김희주(Hee Ju Kim), 황인준(In Jun Hwang), 김유진(Yu Jin Kim), 이윤동(Yoon Dong Lee)
Format Journal Article
LanguageKorean
Published 한국통계학회 2024
Subjects
Online AccessGet full text
ISSN1225-066X
2383-5818

Cover

Abstract It has become difficult to discuss statistics without mentioning recent advancements in artificial intelligence and deep neural networks. While the progress in artificial intelligence and deep neural networks is also a result of major research achievements in statistics, modern statistics and artificial intelligence are often perceived as distinctly different approaches. The primary reason for this seems to be that the statistics education curriculum has not evolved to keep pace with the times. In this paper, to establish a framework for the expansion and development of statistics education, we examine the relationship between deep neural networks, specifically multi-layer perceptrons, and regression analysis from a statistical perspective, and explore their similarities and differences. 최근 인공지능과 심층신경망에 대한 언급 없이 통계학을 이야기하기 어려운 시대가 되었다. 인공지능과 심층신경망의 발전은 통계학의 주요 연구 성과가 이루어 낸 결과이기도 하지만, 현대의 통계학과 인공지능은 사뭇 다른 방법인 것처럼 생각되기도 한다. 그 주요 원인은 통계학 교육과정이 시대에 맞게 변화하지 못한데 따른 것으로 보인다. 본 논문에서는 통계학 교육의 확장과 발전의 틀을 마련하기 위하여, 심층신경망 그중에서도 다층퍼셉트론과 회귀분석의 관계를 통계학의 관점에서 살펴보고, 그 공통점과 차이점을 살펴본다.
AbstractList It has become difficult to discuss statistics without mentioning recent advancements in artificial intelligence and deep neural networks. While the progress in artificial intelligence and deep neural networks is also a result of major research achievements in statistics, modern statistics and artificial intelligence are often perceived as distinctly different approaches. The primary reason for this seems to be that the statistics education curriculum has not evolved to keep pace with the times. In this paper, to establish a framework for the expansion and development of statistics education, we examine the relationship between deep neural networks, specifically multi-layer perceptrons, and regression analysis from a statistical perspective, and explore their similarities and differences. 최근 인공지능과 심층신경망에 대한 언급 없이 통계학을 이야기하기 어려운 시대가 되었다. 인공지능과 심층신경망의 발전은 통계학의 주요 연구 성과가 이루어 낸 결과이기도 하지만, 현대의 통계학과 인공지능은 사뭇 다른 방법인 것처럼 생각되기도 한다. 그 주요 원인은 통계학 교육과정이 시대에 맞게 변화하지 못한데 따른 것으로 보인다. 본 논문에서는 통계학 교육의 확장과 발전의 틀을 마련하기 위하여, 심층신경망 그중에서도 다층퍼셉트론과 회귀분석의 관계를 통계학의 관점에서 살펴보고, 그 공통점과 차이점을 살펴본다.
Author 황인준(In Jun Hwang)
김희주(Hee Ju Kim)
김유진(Yu Jin Kim)
이윤동(Yoon Dong Lee)
Author_xml – sequence: 1
  fullname: 김희주(Hee Ju Kim)
– sequence: 2
  fullname: 황인준(In Jun Hwang)
– sequence: 3
  fullname: 김유진(Yu Jin Kim)
– sequence: 4
  fullname: 이윤동(Yoon Dong Lee)
BookMark eNptjL9Lw0AcxQ-pYK39H25xM3B33-aScyu1_ix26eAWLs1FYmuURge3DiJqHRzUilTQqaIdpFLsoP9QcvkfLFhw8S3v8d7jM48y4UGoZlCWgQ2GaVM7g7KUMdMgnO_MoXwU7ZGJOGUFW2TRru4M9HikO0_x8DvpP-reV_Lcw_F7O7m8wenZKP44xbo7SO8ulrAevuFkeK7742m1jNOHq_iznby-pPe3unutT3v4X-ICmvVlM1L5qedQbbVcK60bleraRqlYMRqcgKEEo0IKD4jLTaiDEIpT31J1zlwJxAfX4tSWvu1aXp0QJaWYTBIU5ZwULAo5tPiLbQTRUeCEXtR0NotbVUZYAcDmlINpWuTvFx63gn3lBdI5nATZOnG2qytlSoVJOQP4AfvcgFA
ContentType Journal Article
DBID DBRKI
TDB
JDI
DEWEY 519.5
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
KoreaScience
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Applied Sciences
Mathematics
DocumentTitle_FL A statistical journey to DNN, the first trip: From regression to deep neural network
EISSN 2383-5818
EndPage 551
ExternalDocumentID JAKO202433861635570
NODE11951623
GroupedDBID 9ZL
ALMA_UNASSIGNED_HOLDINGS
DBRKI
JDI
OK1
TDB
ID FETCH-LOGICAL-k603-e9219a9d30b653c399e61f7ec62ba30f3b7618af8b7dc00eaa9c62a3e16604713
ISSN 1225-066X
IngestDate Thu Dec 12 02:21:50 EST 2024
Thu Feb 06 13:29:46 EST 2025
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords generalized linear model
다층퍼셉트론
일반화선형모형
분류
multi-layer perceptron
regression
회귀분석
deep neural net
classification
심층신경망
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k603-e9219a9d30b653c399e61f7ec62ba30f3b7618af8b7dc00eaa9c62a3e16604713
Notes KISTI1.1003/JNL.JAKO202433861635570
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202433861635570&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 11
ParticipantIDs kisti_ndsl_JAKO202433861635570
nurimedia_primary_NODE11951623
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle Ŭngyong tʻonggye yŏnʼgu
PublicationTitleAlternate The Korean journal of applied statistics
PublicationYear 2024
Publisher 한국통계학회
Publisher_xml – name: 한국통계학회
SSID ssj0000612489
ssib053377530
ssib001150021
ssib044750966
ssib022238561
Score 2.2585096
Snippet It has become difficult to discuss statistics without mentioning recent advancements in artificial intelligence and deep neural networks. While the progress in...
SourceID kisti
nurimedia
SourceType Open Access Repository
Publisher
StartPage 541
Title 심층신경망으로 가는 통계 여행, 첫 번째 여행: 회귀모형에서 심층신경망으로
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11951623
http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202433861635570&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2383-5818
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044750966
  issn: 1225-066X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9NAFLZKL5QDYhVr5QNzMkaOx8sMNy-poqC2lyKVU-QtUVXkIEiEygH1UCGgHDgARahIcCqCHlBRRQ9w5M8kzn_gvbGTGDUS28Uav5m3zLyx53sj-40kXYkjK4gSFqg8ihPV4M1IDWhgqSY1aciDIDHEZs78glW7adSXzeWpIz9KXy11O-G16MHE_0r-xatAA7_iX7J_4dmRUCBAGfwLV_AwXP_Ix6TqEeYSx8OCy4hrDikaqTrE1Ynrkyrc2oT7WMWhmScoFSgropGGHzsAiTmEG0DyCbOEJKijhCEJGG2hxSfcIoyjX4RKnTiugsxQYgxJoMplk1ioI2RzhzBPyLYLvY5DHCaqGOFmwck10RMjt_K_elmG38QzQU7aWsMTljrEA24Xiq21RFnDOjaXCqLX6g5nolDBha0-ys_NcCiq0FktSZR6VxFnUvMxC7TkxOHCGB9tRhYDhQCeT4EjVWr3xU49n6BH9MDRiuGEQdDZra5SX0kP6cnFG0MWQ_hxDpUDSxsebB87Kj624uX9HX28syuMNZEdDYDh8Q9PgWEbPvJgaS2DV_XwoEhY6gUNABpVTVYsecUCmGfdKR50s7SamXlOsgIYmUVm4F_Tky8s-lVMG1gBHA1ICPAuHqAy_7A6BuUQc2hjkIiAlJX-psaMk1op6Ib4w4YYWhvtlCIIN8RZlqMeQSSJ4dXKMelo2sVjMOBdWoKFSyek40U8Jzv5w3lSmlptn5JmMITLM6CfllrZ5m52sJ9tvuvtfe_vvM22v_Xfb8u9z-v9py_kwaP93pcNOdvaHbx6clXO9j7J_b3H2c5BQbouD948631d73_8MHj9Mtt6nm1syxMlnpGW5qpLXk0tjjdRVy2NqgkHsBDwmGqhZdIIBi6xKk07iSw9DKjWpKFtVVjQZKEdR5qWBAGHqoAmFcvSAFLSs9J02k6Tc5KsByxMYggmbAoBRmiz2IYowbBpBNFoYJjnpVkxXI00vne7UXduLOJEo5RZFYw3bA0ajMaxcSdPc9Moe_bC7xpclGZQZr45eUma7tztJpcBrnfCWTEbfgItqMbx
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%8B%AC%EC%B8%B5%EC%8B%A0%EA%B2%BD%EB%A7%9D%EC%9C%BC%EB%A1%9C+%EA%B0%80%EB%8A%94+%ED%86%B5%EA%B3%84+%EC%97%AC%ED%96%89%2C+%EC%B2%AB+%EB%B2%88%EC%A7%B8+%EC%97%AC%ED%96%89%3A+%ED%9A%8C%EA%B7%80%EB%AA%A8%ED%98%95%EC%97%90%EC%84%9C+%EC%8B%AC%EC%B8%B5%EC%8B%A0%EA%B2%BD%EB%A7%9D%EC%9C%BC%EB%A1%9C&rft.jtitle=%C5%ACngyong+t%CA%BBonggye+y%C5%8Fn%CA%BCgu&rft.au=%EA%B9%80%ED%9D%AC%EC%A3%BC%28Hee+Ju+Kim%29&rft.au=%ED%99%A9%EC%9D%B8%EC%A4%80%28In+Jun+Hwang%29&rft.au=%EA%B9%80%EC%9C%A0%EC%A7%84%28Yu+Jin+Kim%29&rft.au=%EC%9D%B4%EC%9C%A4%EB%8F%99%28Yoon+Dong+Lee%29&rft.date=2024&rft.pub=%ED%95%9C%EA%B5%AD%ED%86%B5%EA%B3%84%ED%95%99%ED%9A%8C&rft.issn=1225-066X&rft.eissn=2383-5818&rft.volume=37&rft.issue=5&rft.spage=541&rft.epage=551&rft.externalDocID=NODE11951623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-066X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-066X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-066X&client=summon