Bayesian baseline-category logit random effects models for longitudinal nominal data

Baseline-category logit random effects models have been used to analyze longitudinal nominal data. The models account for subject-specific variations using random effects. However, the random effects covariance matrix in the models needs to explain subject-specific variations as well as serial corre...

Full description

Saved in:
Bibliographic Details
Published inCommunications for statistical applications and methods Vol. 27; no. 2; pp. 201 - 210
Main Authors Kim, Jiyeong, Lee, Keunbaik
Format Journal Article
LanguageKorean
Published 한국통계학회 31.03.2020
Subjects
Online AccessGet full text
ISSN2287-7843

Cover

Abstract Baseline-category logit random effects models have been used to analyze longitudinal nominal data. The models account for subject-specific variations using random effects. However, the random effects covariance matrix in the models needs to explain subject-specific variations as well as serial correlations for nominal outcomes. In order to satisfy them, the covariance matrix must be heterogeneous and high-dimensional. However, it is difficult to estimate the random effects covariance matrix due to its high dimensionality and positive-definiteness. In this paper, we exploit the modified Cholesky decomposition to estimate the high-dimensional heterogeneous random effects covariance matrix. Bayesian methodology is proposed to estimate parameters of interest. The proposed methods are illustrated with real data from the McKinney Homeless Research Project.
AbstractList Baseline-category logit random effects models have been used to analyze longitudinal nominal data. The models account for subject-specific variations using random effects. However, the random effects covariance matrix in the models needs to explain subject-specific variations as well as serial correlations for nominal outcomes. In order to satisfy them, the covariance matrix must be heterogeneous and high-dimensional. However, it is difficult to estimate the random effects covariance matrix due to its high dimensionality and positive-definiteness. In this paper, we exploit the modified Cholesky decomposition to estimate the high-dimensional heterogeneous random effects covariance matrix. Bayesian methodology is proposed to estimate parameters of interest. The proposed methods are illustrated with real data from the McKinney Homeless Research Project.
Author Jiyeong Kim
Keunbaik Lee
Author_xml – sequence: 1
  fullname: Kim, Jiyeong
– sequence: 2
  fullname: Lee, Keunbaik
BookMark eNo9zDtPwzAYhWEPRaKU_gIWL4yRfLczlop7pS7Zoy--VKaOjeIw5N9TAWJ6h_Po3KBVLtmv0JoxoxttBL9G21o_CCFUGk2oWKPuARZfI2Q8QPUpZt9YmP2pTAtO5RRnPEF2ZcQ-BG_nisfifKo4lOmy5wv4cjFDwrmMP3Uwwy26CpCq3_51g7qnx27_0hyOz6_73aE5S6IbOxjOWuG0oIYEAZ4rbuVAZWgHp6V3RoOzRg8MrJOBWBWMASEpt8IRcHyD7n9vz7HOsc-upv5t935khBFKjKKcqpbqi7v7d7X_nOII09JzrZhWkn8DrSNW6w
ContentType Journal Article
DBID HZB
Q5X
JDI
DEWEY 519.5
DatabaseName 한국학술정보 KISS
Korean Studies Information Service System (KISS) B-Type
[Open Access] KoreaScience
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
DocumentTitleAlternate Bayesian baseline-category logit random effects models for longitudinal nominal data
EndPage 210
ExternalDocumentID JAKO202010861316917
3762765
GroupedDBID .UV
9ZL
ALMA_UNASSIGNED_HOLDINGS
ARCSS
HZB
JDI
M~E
Q5X
TUS
ID FETCH-LOGICAL-k507-cb83294d74180f4ae363c5b15f9bd75ed87adc87b2acd5f0c6f88a4513c4d0ad3
ISSN 2287-7843
IngestDate Fri Dec 22 12:03:38 EST 2023
Wed Jan 24 03:12:01 EST 2024
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords high-dimensional
positive-definiteness
heterogeneous
covariance matrix
modified Cholesky decomposition
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k507-cb83294d74180f4ae363c5b15f9bd75ed87adc87b2acd5f0c6f88a4513c4d0ad3
Notes The Korean Statistical Society
KISTI1.1003/JNL.JAKO202010861316917
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202010861316917&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 10
ParticipantIDs kisti_ndsl_JAKO202010861316917
kiss_primary_3762765
PublicationCentury 2000
PublicationDate 20200331
PublicationDateYYYYMMDD 2020-03-31
PublicationDate_xml – month: 03
  year: 2020
  text: 20200331
  day: 31
PublicationDecade 2020
PublicationTitle Communications for statistical applications and methods
PublicationTitleAlternate CSAM(Communications for Statistical Applications and Methods)
PublicationYear 2020
Publisher 한국통계학회
Publisher_xml – name: 한국통계학회
SSID ssj0001587014
ssib053376881
ssib044733355
Score 2.114149
Snippet Baseline-category logit random effects models have been used to analyze longitudinal nominal data. The models account for subject-specific variations using...
SourceID kisti
kiss
SourceType Open Access Repository
Publisher
StartPage 201
SubjectTerms covariance matrix
heterogeneous
high-dimensional
modified Cholesky decomposition
positive-definiteness
Title Bayesian baseline-category logit random effects models for longitudinal nominal data
URI https://kiss.kstudy.com/ExternalLink/Ar?key=3762765
http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202010861316917&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  issn: 2287-7843
  databaseCode: AMVHM
  dateStart: 20140901
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  omitProxy: false
  ssIdentifier: ssj0001587014
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 2287-7843
  databaseCode: M~E
  dateStart: 20140101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib044733355
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JbxMxFIctGi5wYGlBdKHygVs1aMbLeOaYoqIoVeASUG-RPbalKJBUJDmUv77v2Z5FUInlMhNNJtHI3-gttn_vEfLOFqJgheaZ91xmwgmTVXXls8bWnunSstqgOHn2qZx8EdMbedM2GE_qkp153_x8UFfyP1ThGnBFlew_kO3-FC7AZ-ALRyAMx79ifKnvXBBBoi_CeDHD_U2oOblAk7a7AEdkN9-7TRuh7U0owADfY6OivQ1NsVCajOckVOtLFwzVI_F3KEAKtZ2xxsBg8TssQsR21P3yUOzUPF3euU1ykP3Wn2u3Xxu9XA2nHSDHTDq81joxSLUyVcUaS60pjTL_9MqwoV1MMxYuWcm8dz_tkvsvXqnbKzgdX3_GB8CWUAXH2j7qgBzwgo3I4_Hs66SbnBFCcc57mS0EspBLJVltFI2DcQrV3ruHB0cMcfoWMhMM15eD0GL-gjxLOQEdR8AvyaPV5pA8T_kBTdZ3e0iezroau9sjMm_p09_o00CfRvo00aeRPgWKdEifJvoU6b8i849X8w-TLPXIyFYQyWeNAYtcC4s1iHIvtOMlb6QppK-NVdLZSmnbVMow3Vjp86b0VaWFLHgjbK4tf01G683avSE0d8prLyFALZUQjdFMKOss80ZKV-jqmBzhUC1uYxWUBQwuU6U8Judh6BZru_22eADWyZ9uOCVP-hfsjIx2P_buLUR6O3OeCN8DjvVXHA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+baseline-category+logit+random+effects+models+for+longitudinal+nominal+data&rft.jtitle=Communications+for+statistical+applications+and+methods&rft.au=Kim%2C+Jiyeong&rft.au=Lee%2C+Keunbaik&rft.date=2020-03-31&rft.issn=2287-7843&rft.volume=27&rft.issue=2&rft.spage=201&rft.epage=210&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO202010861316917
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2287-7843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2287-7843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2287-7843&client=summon