Bayesian baseline-category logit random effects models for longitudinal nominal data
Baseline-category logit random effects models have been used to analyze longitudinal nominal data. The models account for subject-specific variations using random effects. However, the random effects covariance matrix in the models needs to explain subject-specific variations as well as serial corre...
Saved in:
| Published in | Communications for statistical applications and methods Vol. 27; no. 2; pp. 201 - 210 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | Korean |
| Published |
한국통계학회
31.03.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2287-7843 |
Cover
| Abstract | Baseline-category logit random effects models have been used to analyze longitudinal nominal data. The models account for subject-specific variations using random effects. However, the random effects covariance matrix in the models needs to explain subject-specific variations as well as serial correlations for nominal outcomes. In order to satisfy them, the covariance matrix must be heterogeneous and high-dimensional. However, it is difficult to estimate the random effects covariance matrix due to its high dimensionality and positive-definiteness. In this paper, we exploit the modified Cholesky decomposition to estimate the high-dimensional heterogeneous random effects covariance matrix. Bayesian methodology is proposed to estimate parameters of interest. The proposed methods are illustrated with real data from the McKinney Homeless Research Project. |
|---|---|
| AbstractList | Baseline-category logit random effects models have been used to analyze longitudinal nominal data. The models account for subject-specific variations using random effects. However, the random effects covariance matrix in the models needs to explain subject-specific variations as well as serial correlations for nominal outcomes. In order to satisfy them, the covariance matrix must be heterogeneous and high-dimensional. However, it is difficult to estimate the random effects covariance matrix due to its high dimensionality and positive-definiteness. In this paper, we exploit the modified Cholesky decomposition to estimate the high-dimensional heterogeneous random effects covariance matrix. Bayesian methodology is proposed to estimate parameters of interest. The proposed methods are illustrated with real data from the McKinney Homeless Research Project. |
| Author | Jiyeong Kim Keunbaik Lee |
| Author_xml | – sequence: 1 fullname: Kim, Jiyeong – sequence: 2 fullname: Lee, Keunbaik |
| BookMark | eNo9zDtPwzAYhWEPRaKU_gIWL4yRfLczlop7pS7Zoy--VKaOjeIw5N9TAWJ6h_Po3KBVLtmv0JoxoxttBL9G21o_CCFUGk2oWKPuARZfI2Q8QPUpZt9YmP2pTAtO5RRnPEF2ZcQ-BG_nisfifKo4lOmy5wv4cjFDwrmMP3Uwwy26CpCq3_51g7qnx27_0hyOz6_73aE5S6IbOxjOWuG0oIYEAZ4rbuVAZWgHp6V3RoOzRg8MrJOBWBWMASEpt8IRcHyD7n9vz7HOsc-upv5t935khBFKjKKcqpbqi7v7d7X_nOII09JzrZhWkn8DrSNW6w |
| ContentType | Journal Article |
| DBID | HZB Q5X JDI |
| DEWEY | 519.5 |
| DatabaseName | 한국학술정보 KISS Korean Studies Information Service System (KISS) B-Type [Open Access] KoreaScience |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| DocumentTitleAlternate | Bayesian baseline-category logit random effects models for longitudinal nominal data |
| EndPage | 210 |
| ExternalDocumentID | JAKO202010861316917 3762765 |
| GroupedDBID | .UV 9ZL ALMA_UNASSIGNED_HOLDINGS ARCSS HZB JDI M~E Q5X TUS |
| ID | FETCH-LOGICAL-k507-cb83294d74180f4ae363c5b15f9bd75ed87adc87b2acd5f0c6f88a4513c4d0ad3 |
| ISSN | 2287-7843 |
| IngestDate | Fri Dec 22 12:03:38 EST 2023 Wed Jan 24 03:12:01 EST 2024 |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | high-dimensional positive-definiteness heterogeneous covariance matrix modified Cholesky decomposition |
| Language | Korean |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-k507-cb83294d74180f4ae363c5b15f9bd75ed87adc87b2acd5f0c6f88a4513c4d0ad3 |
| Notes | The Korean Statistical Society KISTI1.1003/JNL.JAKO202010861316917 |
| OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202010861316917&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
| PageCount | 10 |
| ParticipantIDs | kisti_ndsl_JAKO202010861316917 kiss_primary_3762765 |
| PublicationCentury | 2000 |
| PublicationDate | 20200331 |
| PublicationDateYYYYMMDD | 2020-03-31 |
| PublicationDate_xml | – month: 03 year: 2020 text: 20200331 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | Communications for statistical applications and methods |
| PublicationTitleAlternate | CSAM(Communications for Statistical Applications and Methods) |
| PublicationYear | 2020 |
| Publisher | 한국통계학회 |
| Publisher_xml | – name: 한국통계학회 |
| SSID | ssj0001587014 ssib053376881 ssib044733355 |
| Score | 2.114149 |
| Snippet | Baseline-category logit random effects models have been used to analyze longitudinal nominal data. The models account for subject-specific variations using... |
| SourceID | kisti kiss |
| SourceType | Open Access Repository Publisher |
| StartPage | 201 |
| SubjectTerms | covariance matrix heterogeneous high-dimensional modified Cholesky decomposition positive-definiteness |
| Title | Bayesian baseline-category logit random effects models for longitudinal nominal data |
| URI | https://kiss.kstudy.com/ExternalLink/Ar?key=3762765 http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202010861316917&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source issn: 2287-7843 databaseCode: AMVHM dateStart: 20140901 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source omitProxy: false ssIdentifier: ssj0001587014 providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 2287-7843 databaseCode: M~E dateStart: 20140101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: true ssIdentifier: ssib044733355 providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JbxMxFIctGi5wYGlBdKHygVs1aMbLeOaYoqIoVeASUG-RPbalKJBUJDmUv77v2Z5FUInlMhNNJtHI3-gttn_vEfLOFqJgheaZ91xmwgmTVXXls8bWnunSstqgOHn2qZx8EdMbedM2GE_qkp153_x8UFfyP1ThGnBFlew_kO3-FC7AZ-ALRyAMx79ifKnvXBBBoi_CeDHD_U2oOblAk7a7AEdkN9-7TRuh7U0owADfY6OivQ1NsVCajOckVOtLFwzVI_F3KEAKtZ2xxsBg8TssQsR21P3yUOzUPF3euU1ykP3Wn2u3Xxu9XA2nHSDHTDq81joxSLUyVcUaS60pjTL_9MqwoV1MMxYuWcm8dz_tkvsvXqnbKzgdX3_GB8CWUAXH2j7qgBzwgo3I4_Hs66SbnBFCcc57mS0EspBLJVltFI2DcQrV3ruHB0cMcfoWMhMM15eD0GL-gjxLOQEdR8AvyaPV5pA8T_kBTdZ3e0iezroau9sjMm_p09_o00CfRvo00aeRPgWKdEifJvoU6b8i849X8w-TLPXIyFYQyWeNAYtcC4s1iHIvtOMlb6QppK-NVdLZSmnbVMow3Vjp86b0VaWFLHgjbK4tf01G683avSE0d8prLyFALZUQjdFMKOss80ZKV-jqmBzhUC1uYxWUBQwuU6U8Judh6BZru_22eADWyZ9uOCVP-hfsjIx2P_buLUR6O3OeCN8DjvVXHA |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+baseline-category+logit+random+effects+models+for+longitudinal+nominal+data&rft.jtitle=Communications+for+statistical+applications+and+methods&rft.au=Kim%2C+Jiyeong&rft.au=Lee%2C+Keunbaik&rft.date=2020-03-31&rft.issn=2287-7843&rft.volume=27&rft.issue=2&rft.spage=201&rft.epage=210&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO202010861316917 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2287-7843&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2287-7843&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2287-7843&client=summon |