Resistant GPA algorithms based on the M and LMS estimation
Procrustes analysis is a useful technique useful to measure, compare shape differences and estimate a mean shape for objects; however it is based on a least squares criterion and is affected by some outliers. Therefore, we propose two generalized Procrustes analysis methods based on M-estimation and...
Saved in:
| Published in | Communications for statistical applications and methods Vol. 25; no. 6; pp. 673 - 685 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | Korean |
| Published |
한국통계학회
30.11.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2287-7843 |
Cover
| Abstract | Procrustes analysis is a useful technique useful to measure, compare shape differences and estimate a mean shape for objects; however it is based on a least squares criterion and is affected by some outliers. Therefore, we propose two generalized Procrustes analysis methods based on M-estimation and least median of squares estimation that are resistant to object outliers. In addition, two algorithms are given for practical implementation. A simulation study and some examples are used to examine and compared the performances of the algorithms with the least square method. Moreover since these resistant GPA methods are available for higher dimensions, we need some methods to visualize the objects and mean shape effectively. Also since we have concentrated on resistant fitting methods without considering shape distributions, we wish to shape analysis not be sensitive to particular model. |
|---|---|
| AbstractList | Procrustes analysis is a useful technique useful to measure, compare shape differences and estimate a mean shape for objects; however it is based on a least squares criterion and is affected by some outliers. Therefore, we propose two generalized Procrustes analysis methods based on M-estimation and least median of squares estimation that are resistant to object outliers. In addition, two algorithms are given for practical implementation. A simulation study and some examples are used to examine and compared the performances of the algorithms with the least square method. Moreover since these resistant GPA methods are available for higher dimensions, we need some methods to visualize the objects and mean shape effectively. Also since we have concentrated on resistant fitting methods without considering shape distributions, we wish to shape analysis not be sensitive to particular model. |
| Author | Geehong Hyun Yong-seok Choi Bo-hui Lee |
| Author_xml | – sequence: 1 fullname: Hyun, Geehong – sequence: 2 fullname: Lee, Bo-Hui – sequence: 3 fullname: Choi, Yong-Seok |
| BookMark | eNo9jr1OwzAYAD0UiVL6BCxeGCPZ_mzHYYsqKD-piqB75MSfqWnqoNgLb08kENMtp9NdkUUcIy7IUghTFqWRcEnWKX0yxrgyJeNySe7eMIWUbcx0-1pTO3yMU8jHc6KdTejoGGk-It1RGx1tdu8UUw5nm8MYr8mFt0PC9R9X5PBwf9g8Fs1--7Spm-KkmCg8VNL0knVKoUB03oH0ldW-R14BNxa08U573xstXS8EF87zUpdSd7IXCCty-5s9zZ-hjS4N7XP9sheMG1aBUhWAATF7N_9ear-m-XL6bkFLZqSEH1nxS3U |
| ContentType | Journal Article |
| DBID | HZB Q5X JDI |
| DEWEY | 519.5 |
| DatabaseName | 한국학술정보 KISS Korean Studies Information Service System (KISS) B-Type [Open Access] KoreaScience |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| DocumentTitleAlternate | Resistant GPA algorithms based on the M and LMS estimation |
| EndPage | 685 |
| ExternalDocumentID | JAKO201809355933832 3640844 |
| GroupedDBID | .UV 9ZL ALMA_UNASSIGNED_HOLDINGS ARCSS HZB JDI M~E Q5X TUS |
| ID | FETCH-LOGICAL-k502-f3948c40b55e2eedfd34f9a6fce19318a368fd6ffc864dc2212df176746b4c2e3 |
| ISSN | 2287-7843 |
| IngestDate | Fri Dec 22 12:04:05 EST 2023 Wed Jan 24 03:12:01 EST 2024 |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | mean shape least squares M-estimation least median of squares estimator resistant shape analysis generalized Procrustes analysis |
| Language | Korean |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-k502-f3948c40b55e2eedfd34f9a6fce19318a368fd6ffc864dc2212df176746b4c2e3 |
| Notes | The Korean Statistical Society KISTI1.1003/JNL.JAKO201809355933832 |
| OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201809355933832&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
| PageCount | 13 |
| ParticipantIDs | kisti_ndsl_JAKO201809355933832 kiss_primary_3640844 |
| PublicationCentury | 2000 |
| PublicationDate | 20181130 |
| PublicationDateYYYYMMDD | 2018-11-30 |
| PublicationDate_xml | – month: 11 year: 2018 text: 20181130 day: 30 |
| PublicationDecade | 2010 |
| PublicationTitle | Communications for statistical applications and methods |
| PublicationTitleAlternate | CSAM(Communications for Statistical Applications and Methods) |
| PublicationYear | 2018 |
| Publisher | 한국통계학회 |
| Publisher_xml | – name: 한국통계학회 |
| SSID | ssj0001587014 ssib053376881 ssib044733355 |
| Score | 2.061697 |
| Snippet | Procrustes analysis is a useful technique useful to measure, compare shape differences and estimate a mean shape for objects; however it is based on a least... |
| SourceID | kisti kiss |
| SourceType | Open Access Repository Publisher |
| StartPage | 673 |
| SubjectTerms | generalized Procrustes analysis least median of squares estimator least squares M-estimation mean shape resistant shape analysis |
| Title | Resistant GPA algorithms based on the M and LMS estimation |
| URI | https://kiss.kstudy.com/ExternalLink/Ar?key=3640844 http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201809355933832&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST issn: 2287-7843 databaseCode: AMVHM dateStart: 20140901 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source omitProxy: false ssIdentifier: ssj0001587014 providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 2287-7843 databaseCode: M~E dateStart: 20140101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: true ssIdentifier: ssib044733355 providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwGLVYuXBBoIEYY5MPyykKamLHcXbLum7VWAGhgnar4l9r1S1BJD1sfz2fnTSJ0A7AJbKsJEr8rM_vs_Xeh9CJIDphSZIHQmgTUDKWgVAyCWhO8kSxsVTGaofnn9nsO726iW_6IohOXVKLj_LxSV3J_6AKfYCrVcn-A7LdS6ED2oAvXAFhuP4Vxt90ZelfUfuXXzM_v7stIdVf3Ve-XZtUew7gz90BwTVk7NZR476HYmdQMNSIOHsGu8FQOwdn6yQwOOJ2b2qKTndc_FLrlS1YNHvYdhPtrAxW27V_rXUfVYrboNLlxp-syvVwryHkO4_DdnZ403Mvjb104k0z7yz2snPbw5lt2x7icbq7J3WNzOOTPqJFkJ4FCW98mXbht9E9t9NsGEtZU-PkDztswuiYU7qH9kgYjdDzbP5j1u3PUJoQQnqlLXBZSKdaZW2jG4f45Azfu2-BtRioegXJiWXs6wG7WLxCL9u0AGcNxq_Rs025j047fDHgi3t8scMXlwUGfPEcAyoY8MU9vm_Q4mK6mMyCttZFsIlhTTIkpVzSsYhjHQFtMYpQk-bMSA0MO-Q5YdwoZozkjCoZAeFQJrRGTExQGWnyFo2KstDvEA4JI1rAOEipqCCS81RIk4RKJRLocXSA9u3_Ln82bibLdkAP0LH7_2WhqrvlVfbpS-S83WA0U7uNEb1_-rlD9KKfKR_QqP611UfA02px3ILzG5zpOf0 |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resistant+GPA+algorithms+based+on+the+M+and+LMS+estimation&rft.jtitle=Communications+for+statistical+applications+and+methods&rft.au=Geehong+Hyun&rft.au=Bo-hui+Lee&rft.au=Yong-seok+Choi&rft.date=2018-11-30&rft.pub=%ED%95%9C%EA%B5%AD%ED%86%B5%EA%B3%84%ED%95%99%ED%9A%8C&rft.issn=2287-7843&rft.volume=25&rft.issue=6&rft.spage=673&rft.externalDocID=3640844 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2287-7843&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2287-7843&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2287-7843&client=summon |