Resistant GPA algorithms based on the M and LMS estimation

Procrustes analysis is a useful technique useful to measure, compare shape differences and estimate a mean shape for objects; however it is based on a least squares criterion and is affected by some outliers. Therefore, we propose two generalized Procrustes analysis methods based on M-estimation and...

Full description

Saved in:
Bibliographic Details
Published inCommunications for statistical applications and methods Vol. 25; no. 6; pp. 673 - 685
Main Authors Hyun, Geehong, Lee, Bo-Hui, Choi, Yong-Seok
Format Journal Article
LanguageKorean
Published 한국통계학회 30.11.2018
Subjects
Online AccessGet full text
ISSN2287-7843

Cover

Abstract Procrustes analysis is a useful technique useful to measure, compare shape differences and estimate a mean shape for objects; however it is based on a least squares criterion and is affected by some outliers. Therefore, we propose two generalized Procrustes analysis methods based on M-estimation and least median of squares estimation that are resistant to object outliers. In addition, two algorithms are given for practical implementation. A simulation study and some examples are used to examine and compared the performances of the algorithms with the least square method. Moreover since these resistant GPA methods are available for higher dimensions, we need some methods to visualize the objects and mean shape effectively. Also since we have concentrated on resistant fitting methods without considering shape distributions, we wish to shape analysis not be sensitive to particular model.
AbstractList Procrustes analysis is a useful technique useful to measure, compare shape differences and estimate a mean shape for objects; however it is based on a least squares criterion and is affected by some outliers. Therefore, we propose two generalized Procrustes analysis methods based on M-estimation and least median of squares estimation that are resistant to object outliers. In addition, two algorithms are given for practical implementation. A simulation study and some examples are used to examine and compared the performances of the algorithms with the least square method. Moreover since these resistant GPA methods are available for higher dimensions, we need some methods to visualize the objects and mean shape effectively. Also since we have concentrated on resistant fitting methods without considering shape distributions, we wish to shape analysis not be sensitive to particular model.
Author Geehong Hyun
Yong-seok Choi
Bo-hui Lee
Author_xml – sequence: 1
  fullname: Hyun, Geehong
– sequence: 2
  fullname: Lee, Bo-Hui
– sequence: 3
  fullname: Choi, Yong-Seok
BookMark eNo9jr1OwzAYAD0UiVL6BCxeGCPZ_mzHYYsqKD-piqB75MSfqWnqoNgLb08kENMtp9NdkUUcIy7IUghTFqWRcEnWKX0yxrgyJeNySe7eMIWUbcx0-1pTO3yMU8jHc6KdTejoGGk-It1RGx1tdu8UUw5nm8MYr8mFt0PC9R9X5PBwf9g8Fs1--7Spm-KkmCg8VNL0knVKoUB03oH0ldW-R14BNxa08U573xstXS8EF87zUpdSd7IXCCty-5s9zZ-hjS4N7XP9sheMG1aBUhWAATF7N_9ear-m-XL6bkFLZqSEH1nxS3U
ContentType Journal Article
DBID HZB
Q5X
JDI
DEWEY 519.5
DatabaseName 한국학술정보 KISS
Korean Studies Information Service System (KISS) B-Type
[Open Access] KoreaScience
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
DocumentTitleAlternate Resistant GPA algorithms based on the M and LMS estimation
EndPage 685
ExternalDocumentID JAKO201809355933832
3640844
GroupedDBID .UV
9ZL
ALMA_UNASSIGNED_HOLDINGS
ARCSS
HZB
JDI
M~E
Q5X
TUS
ID FETCH-LOGICAL-k502-f3948c40b55e2eedfd34f9a6fce19318a368fd6ffc864dc2212df176746b4c2e3
ISSN 2287-7843
IngestDate Fri Dec 22 12:04:05 EST 2023
Wed Jan 24 03:12:01 EST 2024
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords mean shape
least squares
M-estimation
least median of squares estimator
resistant
shape analysis
generalized Procrustes analysis
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k502-f3948c40b55e2eedfd34f9a6fce19318a368fd6ffc864dc2212df176746b4c2e3
Notes The Korean Statistical Society
KISTI1.1003/JNL.JAKO201809355933832
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201809355933832&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 13
ParticipantIDs kisti_ndsl_JAKO201809355933832
kiss_primary_3640844
PublicationCentury 2000
PublicationDate 20181130
PublicationDateYYYYMMDD 2018-11-30
PublicationDate_xml – month: 11
  year: 2018
  text: 20181130
  day: 30
PublicationDecade 2010
PublicationTitle Communications for statistical applications and methods
PublicationTitleAlternate CSAM(Communications for Statistical Applications and Methods)
PublicationYear 2018
Publisher 한국통계학회
Publisher_xml – name: 한국통계학회
SSID ssj0001587014
ssib053376881
ssib044733355
Score 2.061697
Snippet Procrustes analysis is a useful technique useful to measure, compare shape differences and estimate a mean shape for objects; however it is based on a least...
SourceID kisti
kiss
SourceType Open Access Repository
Publisher
StartPage 673
SubjectTerms generalized Procrustes analysis
least median of squares estimator
least squares
M-estimation
mean shape
resistant
shape analysis
Title Resistant GPA algorithms based on the M and LMS estimation
URI https://kiss.kstudy.com/ExternalLink/Ar?key=3640844
http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201809355933832&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  issn: 2287-7843
  databaseCode: AMVHM
  dateStart: 20140901
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  omitProxy: false
  ssIdentifier: ssj0001587014
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 2287-7843
  databaseCode: M~E
  dateStart: 20140101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib044733355
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwGLVYuXBBoIEYY5MPyykKamLHcXbLum7VWAGhgnar4l9r1S1BJD1sfz2fnTSJ0A7AJbKsJEr8rM_vs_Xeh9CJIDphSZIHQmgTUDKWgVAyCWhO8kSxsVTGaofnn9nsO726iW_6IohOXVKLj_LxSV3J_6AKfYCrVcn-A7LdS6ED2oAvXAFhuP4Vxt90ZelfUfuXXzM_v7stIdVf3Ve-XZtUew7gz90BwTVk7NZR476HYmdQMNSIOHsGu8FQOwdn6yQwOOJ2b2qKTndc_FLrlS1YNHvYdhPtrAxW27V_rXUfVYrboNLlxp-syvVwryHkO4_DdnZ403Mvjb104k0z7yz2snPbw5lt2x7icbq7J3WNzOOTPqJFkJ4FCW98mXbht9E9t9NsGEtZU-PkDztswuiYU7qH9kgYjdDzbP5j1u3PUJoQQnqlLXBZSKdaZW2jG4f45Azfu2-BtRioegXJiWXs6wG7WLxCL9u0AGcNxq_Rs025j047fDHgi3t8scMXlwUGfPEcAyoY8MU9vm_Q4mK6mMyCttZFsIlhTTIkpVzSsYhjHQFtMYpQk-bMSA0MO-Q5YdwoZozkjCoZAeFQJrRGTExQGWnyFo2KstDvEA4JI1rAOEipqCCS81RIk4RKJRLocXSA9u3_Ln82bibLdkAP0LH7_2WhqrvlVfbpS-S83WA0U7uNEb1_-rlD9KKfKR_QqP611UfA02px3ILzG5zpOf0
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resistant+GPA+algorithms+based+on+the+M+and+LMS+estimation&rft.jtitle=Communications+for+statistical+applications+and+methods&rft.au=Geehong+Hyun&rft.au=Bo-hui+Lee&rft.au=Yong-seok+Choi&rft.date=2018-11-30&rft.pub=%ED%95%9C%EA%B5%AD%ED%86%B5%EA%B3%84%ED%95%99%ED%9A%8C&rft.issn=2287-7843&rft.volume=25&rft.issue=6&rft.spage=673&rft.externalDocID=3640844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2287-7843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2287-7843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2287-7843&client=summon