Numerical and Data-Driven Modelling in Coastal, Hydrological and Hydraulic Engineering
The book presents recent studies covering the aspects of challenges in predictive modelling and applications. Advanced numerical techniques for accurate and efficient real-time prediction and optimal management in coastal and hydraulic engineering are explored. For example, adaptive unstructured mes...
Saved in:
| Format | eBook |
|---|---|
| Language | English |
| Published |
Basel, Switzerland
MDPI - Multidisciplinary Digital Publishing Institute
2021
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 3036509569 9783036509570 3036509577 9783036509563 |
| DOI | 10.3390/books978-3-0365-0957-0 |
Cover
| Abstract | The book presents recent studies covering the aspects of challenges in predictive modelling and applications. Advanced numerical techniques for accurate and efficient real-time prediction and optimal management in coastal and hydraulic engineering are explored. For example, adaptive unstructured meshes are introduced to capture the important dynamics that operate over a range of length scales. Deep learning techniques enable rapid and accurate modelling simulations and pave the way towards both real-time forecasting and overall optimisation control over time, thus improving profitability and managing risk. The use of data assimilation techniques incorporates information from experiments and observations to reduce uncertainties in predictions and improve predictive accuracy. Targeted observation approaches can be used for identifying when, where, and what types of observations would provide the greatest improvement to specific model forecasts at a future time. Such targeted observations are important as they will allow the most effective use of available monitoring resources. The combination of deep learning and data assimilation enables a rapid and accurate response in emergencies. The technologies discussed here can be also used to determine the sensitivity of outputs to various operational conditions in engineering and management, thus providing reliable information to both the public and policy-makers |
|---|---|
| AbstractList | The book presents recent studies covering the aspects of challenges in predictive modelling and applications. Advanced numerical techniques for accurate and efficient real-time prediction and optimal management in coastal and hydraulic engineering are explored. For example, adaptive unstructured meshes are introduced to capture the important dynamics that operate over a range of length scales. Deep learning techniques enable rapid and accurate modelling simulations and pave the way towards both real-time forecasting and overall optimisation control over time, thus improving profitability and managing risk. The use of data assimilation techniques incorporates information from experiments and observations to reduce uncertainties in predictions and improve predictive accuracy. Targeted observation approaches can be used for identifying when, where, and what types of observations would provide the greatest improvement to specific model forecasts at a future time. Such targeted observations are important as they will allow the most effective use of available monitoring resources. The combination of deep learning and data assimilation enables a rapid and accurate response in emergencies. The technologies discussed here can be also used to determine the sensitivity of outputs to various operational conditions in engineering and management, thus providing reliable information to both the public and policy-makers |
| BookMark | eNo9kMlOAzEQRC0BEiTkC5DQfACGtp1ZfERZCFKAS8TVai8zMnHsaCYB5e_JEOBUVa2uOrwBOY8pOkJuGdwLIeFBp7TuZFlRQUEUOQWZlxTOyED08ZgKeUlGXfcBAFwyYKK6Iu-v-41rvcGQYbTZFHdIp63_dDF7SdaF4GOT-ZhNEnY7DHfZ4mDbFFLzX-kPuA_eZLPY-OiOa7G5Jhc1hs6NfnVIVvPZarKgy7en58njkq45A6CyyrWrUMra5DWvLGNVIa1jJRNOc21qaYGbQnMAW2gzZrnTlmvhUBqdWzEk5Wl2H7d4-MIQ1Lb1G2wPioHqqag_KkqoHoPqqRzdkNycmgm3Liqb8OdRlcVYluIb3xFldg |
| ContentType | eBook |
| DBID | V1H ABOKW UNPAY |
| DOI | 10.3390/books978-3-0365-0957-0 |
| DatabaseName | DOAB: Directory of Open Access Books Unpaywall for CDI: Monographs and Miscellaneous Content Unpaywall |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: V1H name: DOAB: Directory of Open Access Books url: https://directory.doabooks.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Editor | Fang, Fangxin |
| Editor_xml | – sequence: 1 fullname: Fang, Fangxin |
| ExternalDocumentID | 10.3390/books978-3-0365-0957-0 76497 |
| GroupedDBID | ALMA_UNASSIGNED_HOLDINGS HVQEU V1H ABOKW UNPAY |
| ID | FETCH-LOGICAL-k2100-985be8a99fc5f28d11869de1713eb2bcf9d02c6b200d6bc415ebd2b3ea9cb5d3 |
| IEDL.DBID | V1H |
| ISBN | 3036509569 9783036509570 3036509577 9783036509563 |
| IngestDate | Thu Aug 28 11:00:08 EDT 2025 Tue Oct 07 21:36:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-k2100-985be8a99fc5f28d11869de1713eb2bcf9d02c6b200d6bc415ebd2b3ea9cb5d3 |
| OpenAccessLink | https://directory.doabooks.org/handle/20.500.12854/76497 |
| PageCount | 110 |
| ParticipantIDs | unpaywall_primary_10_3390_books978_3_0365_0957_0 oapen_doabooks_76497 |
| PublicationCentury | 2000 |
| PublicationDate | 2021 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel, Switzerland |
| PublicationPlace_xml | – name: Basel, Switzerland |
| PublicationYear | 2021 |
| Publisher | MDPI - Multidisciplinary Digital Publishing Institute |
| Publisher_xml | – name: MDPI - Multidisciplinary Digital Publishing Institute |
| SSID | ssj0002910138 |
| Score | 2.2026408 |
| Snippet | The book presents recent studies covering the aspects of challenges in predictive modelling and applications. Advanced numerical techniques for accurate and... |
| SourceID | unpaywall oapen |
| SourceType | Open Access Repository Publisher |
| SubjectTerms | 4D-Var data assimilation deep learning ensemble spread exposure time finite volume hyper-tidal estuary initial ensemble LETKF martinez boundary salinity generator MEOF n/a North Sea numerical modelling observation strategies ocean Double Gyre ocean forecasting systems ocean models Reference, Information and Interdisciplinary subjects Research and information: general residence time ROMS Sacramento–San Joaquin Delta salinity singular value decomposition transport time scale unstructured meshes |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA3SHsSLShUVlRw8mrrZj2z2KK2lCFYPrdRTSDJZKF3SUneR-utNdlspHkSvgYHwSDLvMZk3CN3wiOaUM0lMCEBiCgHhSRwSBSyGQLskXxtpP43YcBI_TpPpRij6Xpid-n3k5Pidp5rvTQk_8B-yHCNIiZPobZY47t1C7cno5f6taf39JcCPM5JLYw_QfmWXcv0hi2InjwwO0fN2B833kXm3KlVXf_4wZ_z7Fo9Q2_h2hWO0Z2wHvY6qpgJTYGkB92UpSX_lHzTsh57V_tt4ZnFvIR0rLG7xcA2r7fNXh_gFWRUzjXecCk_QePAw7g3JZnICmTsJF5CMJ8pwmWW5TvKQA_WDp8BQp0idklY6zyAINVPuigBT2iVxoyBUkZGZVglEp6hlF9acIQzcxXEJYchpTHMmpU_yKUBMM65Nfo46NbACFrIGQqQsztJzFHzjLJaNb4ZwesMDJraAiUh4wIQHTAQX_w-5RK1yVZkrRwtKdb05C18fK7WE priority: 102 providerName: Unpaywall |
| Title | Numerical and Data-Driven Modelling in Coastal, Hydrological and Hydraulic Engineering |
| URI | https://directory.doabooks.org/handle/20.500.12854/76497 https://doi.org/10.3390/books978-3-0365-0957-0 |
| UnpaywallVersion | publishedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwbV1LSwMxEA61PagnpYrPsgePxibZV3KU1lIEi4e21FNINlkoLrultkj_vZmsWyp4zIaE3Rl2Zr5k5huEHnhIc8oThS0zBkfUEMzjiGFtksiQzDl5T6T9NknGs-h1ES9aiDe1MLUhryCruVIQZ3756_yacsAh9aeYACOC26KfJpFIj1AHEA70LpjT8f50hTkvSEMOxRzORMfAticOBmlac-_sJ8O_45TUxcRhKEjfv0WdRQDTGOYxgQZJamXLU3S8LVdq962K4sAzjc5Qx0K5wjlq2bKL5pNtfQNTBO5TgqHaKDxcg0ELoOmZ598OlmUwqJSLCovHYLwz68b8-SXwQG2LZRYcMBVeoOnoZToY49_OCfjTQTiCBY-15UqIPItzxg2FxlPGUodIHZLWWS4MYVmi3S9iEp05J261YTq0SmQ6NuElapdVaa9QYLhbx5VhjNOI5olS4ORTYyIqeGbza9T1YpCNuqRXyzUie6nIVc2bIR3eAIHKRqAylCBQCQKV5Ob_nW7RCYM0En_qcYfam_XW3rs4YKN7qDObvD9_9LzqfwCjBagM |
| linkProvider | Open Access Publishing in European Networks |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA3SHsSLShUVlRw8mrrZj2z2KK2lCFYPrdRTSDJZKF3SUneR-utNdlspHkSvgYHwSDLvMZk3CN3wiOaUM0lMCEBiCgHhSRwSBSyGQLskXxtpP43YcBI_TpPpRij6Xpid-n3k5Pidp5rvTQk_8B-yHCNIiZPobZY47t1C7cno5f6taf39JcCPM5JLYw_QfmWXcv0hi2InjwwO0fN2B833kXm3KlVXf_4wZ_z7Fo9Q2_h2hWO0Z2wHvY6qpgJTYGkB92UpSX_lHzTsh57V_tt4ZnFvIR0rLG7xcA2r7fNXh_gFWRUzjXecCk_QePAw7g3JZnICmTsJF5CMJ8pwmWW5TvKQA_WDp8BQp0idklY6zyAINVPuigBT2iVxoyBUkZGZVglEp6hlF9acIQzcxXEJYchpTHMmpU_yKUBMM65Nfo46NbACFrIGQqQsztJzFHzjLJaNb4ZwesMDJraAiUh4wIQHTAQX_w-5RK1yVZkrRwtKdb05C18fK7WE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Numerical+and+Data-Driven+Modelling+in+Coastal%2C+Hydrological+and+Hydraulic+Engineering&rft.date=2021-01-01&rft.pub=MDPI+-+Multidisciplinary+Digital+Publishing+Institute&rft.isbn=9783036509563&rft_id=info:doi/10.3390%2Fbooks978-3-0365-0957-0&rft.externalDBID=V1H&rft.externalDocID=76497 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783036509563/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783036509563/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783036509563/sc.gif&client=summon&freeimage=true |