Building Predictive Models Using Penalized Linear Methods
This chapter discusses building predictive models using penalized linear methods. It demonstrates the use of penalized regression along with a number of general tools for predictive modeling. The chapter utilizes Python packages incarnating various different flavors of penalized regression for these...
Saved in:
| Published in | Machine Learning with Spark and Python pp. 1 - 2 |
|---|---|
| Main Author | |
| Format | Book Chapter |
| Language | English |
| Published |
United States
John Wiley & Sons
2020
John Wiley & Sons, Incorporated John Wiley & Sons, Inc |
| Edition | 2nd Edition |
| Subjects | |
| Online Access | Get full text |
| ISBN | 1119561930 9781119561934 |
| DOI | 10.1002/9781119562023.ch5 |
Cover
| Abstract | This chapter discusses building predictive models using penalized linear methods. It demonstrates the use of penalized regression along with a number of general tools for predictive modeling. The chapter utilizes Python packages incarnating various different flavors of penalized regression for these tasks. It introduces several new elements, one is using the string indexer to transform labels in a multiclass problem and another is using PySpark logistic regression for a multiclass problem. The chapter shows how to use PySpark logistic regression and introduced the PySpark Pipeline framework to doing the required data transformations. These include techniques for coding factor variables as numeric, for using a binary classifier to solve multiclass classification problems, and for extending linear methods to predict nonlinear relationships between attributes and outcomes. Predicting the wine taste is a regression problem because the objective of the problem is to predict the quality score, which is an integer between 0 and 10. |
|---|---|
| AbstractList | This chapter discusses building predictive models using penalized linear methods. It demonstrates the use of penalized regression along with a number of general tools for predictive modeling. The chapter utilizes Python packages incarnating various different flavors of penalized regression for these tasks. It introduces several new elements, one is using the string indexer to transform labels in a multiclass problem and another is using PySpark logistic regression for a multiclass problem. The chapter shows how to use PySpark logistic regression and introduced the PySpark Pipeline framework to doing the required data transformations. These include techniques for coding factor variables as numeric, for using a binary classifier to solve multiclass classification problems, and for extending linear methods to predict nonlinear relationships between attributes and outcomes. Predicting the wine taste is a regression problem because the objective of the problem is to predict the quality score, which is an integer between 0 and 10. |
| Author | Bowles Michael |
| Author_xml | – sequence: 1 fullname: Bowles, Michael |
| BookMark | eNptkE9PGzEQxV2VVgWaD9DbHrmEejz2xj4CghYpUTmQs-Vdjxs3291lvQmCT1_nz6WIw2g0M-_3NHpn7KTtWmLsG_BL4Fx8NzMNAEaVggu8rFfqAzsDJRAQudIf87C_gkH-eTcIWXKFSn1hk5T-8Gyh0BgpT5m53sTGx_Z38TCQj_UYt1QsOk9NKpZpv6fWNfGVfDGPLbmhWNC46nz6yj4F1ySaHPs5W97dPt78nM5__bi_uZpP16B0mBrtncBgAAMqrCBoh6WelWhmpGVVU-Aay_xMpYIIWPqZ5NoIWddQOSo9nrPpwfc5NvRiqeq6dbL_JWBfY29zCrb3IevhHT1wu0vuDbdjcmVGHph-6J42lMYDVlM7Dq6pV64faUhWGbnHIBuBMRm7OGDrtttSY_sh_nXDiz0Cdj1yELePcoH4D5GEf2Q |
| ContentType | Book Chapter |
| Copyright | 2020 2020 John Wiley & Sons, Inc. |
| Copyright_xml | – notice: 2020 – notice: 2020 John Wiley & Sons, Inc. |
| DBID | FFUUA |
| DOI | 10.1002/9781119562023.ch5 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1523133058 9781523133055 9781119562016 1119562015 1119562023 9781119562023 |
| Edition | 2nd Edition |
| Editor | Bowles, Michael |
| Editor_xml | – sequence: 1 givenname: Michael surname: Bowles fullname: Bowles, Michael |
| EndPage | 2 |
| ExternalDocumentID | 10.1002/9781119562023.ch5 EBC5942023_102_199 chapter_kt012ET4M3 |
| Genre | chapter |
| GroupedDBID | 38. 3XM AABBV AABID AAFKH AAKGN AALIM AANYM AATND AAZGR ABARN ABQPQ ADBND ADVEM AEHEP AERYV AFOJC AFPKT AFQEX AJFER ALMA_UNASSIGNED_HOLDINGS APVFW AVNOC BBABE CMZ CZZ DYXOI E2F GEOUK IPJKO JFSCD KT4 L7C LQKAK LWYJN LYPXV MRDEW OHILO OODEK TD3 UE6 W1A WIIVT WZT YPLAZ ZEEST AAGVH ABRSK AEKQY AHWGJ ECNEQ FFUUA MOSFZ ABLUV |
| ID | FETCH-LOGICAL-k158f-98da23f913f353b1f8a36876397e84bcef0836994b5f2f36d7408924cc1bae6d3 |
| IEDL.DBID | KT4 |
| ISBN | 1119561930 9781119561934 |
| IngestDate | Fri Jun 03 02:56:55 EDT 2022 Wed Nov 27 04:57:00 EST 2019 Tue Oct 21 07:48:26 EDT 2025 Sat Nov 23 14:03:39 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCallNum | Q325.5 .B695 2020 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-k158f-98da23f913f353b1f8a36876397e84bcef0836994b5f2f36d7408924cc1bae6d3 |
| OCLC | 1124605355 |
| PQID | EBC5942023_102_199 |
| PageCount | 2 |
| ParticipantIDs | wiley_ebooks_10_1002_9781119562023_ch5_ch5 proquest_ebookcentralchapters_5942023_102_199 knovel_primary_chapter_kt012ET4M3 |
| PublicationCentury | 2000 |
| PublicationDate | 2020 2019 2019-11-05 |
| PublicationDateYYYYMMDD | 2020-01-01 2019-01-01 2019-11-05 |
| PublicationDate_xml | – year: 2020 text: 2020 |
| PublicationDecade | 2020 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Indianapolis, Indiana |
| PublicationSubtitle | Essential Techniques for Predictive Analytics |
| PublicationTitle | Machine Learning with Spark and Python |
| PublicationYear | 2020 2019 |
| Publisher | John Wiley & Sons John Wiley & Sons, Incorporated John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons – name: John Wiley & Sons, Incorporated – name: John Wiley & Sons, Inc |
| SSID | ssj0002539944 ssib048316034 |
| Score | 1.5830344 |
| Snippet | This chapter discusses building predictive models using penalized linear methods. It demonstrates the use of penalized regression along with a number of... |
| SourceID | wiley proquest knovel |
| SourceType | Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | binary classification building predictive models General Engineering & Project Administration General References multiclass classification penalized linear methods predicting wine taste PySpark logistic regression Python packages |
| TableOfContents | 5.1 Python Packages for Penalized Linear Regression
5.2 Multivariable Regression: Predicting Wine Taste
5.3 Binary Classification: Using Penalized Linear Regression to Detect Unexploded Mines
5.4 Multiclass Classification: Classifying Crime Scene Glass Samples
5.5 Linear Regression and Classification Using PySpark
5.6 Using PySpark to Predict Wine Taste
5.7 Logistic Regression with PySpark: Rocks versus Mines
5.8 Incorporating Categorical Variables in a PySpark Model: Predicting Abalone Rings
5.9 Multiclass Logistic Regression with Meta Parameter Optimization
5.10 Summary
References |
| Title | Building Predictive Models Using Penalized Linear Methods |
| URI | https://app.knovel.com/hotlink/pdf/rcid:kpMLSPETP4/id:kt012ET4M3/machine-learning-with/building-predictive-models?kpromoter=Summon http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5942023&ppg=199&c=UERG https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119562023.ch5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1Lb9QwEB61hQPiUJ7q8qiMhDggeVM_ko25VGq1VYUIWomtVHGx4timKGU36qYc9shf4Y_icZKF5cSNQw62Ro49HtnjeX0Ar10ZLnnHDTWllFQyJmjJTUmrMrMTP_FGCExwLj5m5xfy_WV6uQM_hlwYBLeqF8vv7joe01fLFh2ZSWN9giCz7-qm-PBpNp3PZIKtNpyv07ksRPItxh462oMtfKFox0xMjy1Nmxv0e-AJQiPEzOq4bmK8W5CXzt60C3cYVjtDx-5cbuw0HEu3ShlBhjC3Lig8Q6mooS0Hb-kRTzb9CEs-rq7CnXW3W8-WCvunIhxvsrN9-DnwoAtgqce3rRlX67_KQ_5fJj2A-5iDQTA5IvQ-hB23eAT7AwIF6Q-kx6BO-kHJbDMoKeKgJAZDkJnDl8baWRJe3WE-pIiQ2asncHE2nZ-e0x4MgtYszT1VuS258IoJL1JhmM9LkWE5PTVxuTSV81hnO2yVST33IkiaPMrD47KqmCldZsVT2FssF-4ACFeWWaMsV-Ftm-bW8CwVLvdm4p3MuRrBq467uukqfuiqW67-zcoR0GE3dXRr97G0PeVKp0qiCOigwGmmwphv45Z3xCvdVYvmektewn9S_EbwZot4m2j9tYmEYbuf_cNMn8M9jjaCaDZ6AXvtza17GRSp1hzC7mnx-TDK-y9ZnCDZ |
| linkProvider | Knovel |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+with+Spark%E2%84%A2+and+Python%C2%AE+-+Essential+Techniques+for+Predictive+Analytics&rft.au=Bowles+Michael&rft.atitle=Building+Predictive+Models+Using+Penalized+Linear+Methods&rft.date=2020-01-01&rft.pub=John+Wiley+%26+Sons&rft.isbn=9781119561934&rft.spage=1&rft.epage=2&rft_id=info:doi/10.1002%2F9781119562023.ch5&rft.externalDocID=chapter_kt012ET4M3 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcontent.knovel.com%2Fcontent%2FThumbs%2Fthumb12780.gif http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5942023-l.jpg |