Building Predictive Models Using Penalized Linear Methods

This chapter discusses building predictive models using penalized linear methods. It demonstrates the use of penalized regression along with a number of general tools for predictive modeling. The chapter utilizes Python packages incarnating various different flavors of penalized regression for these...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning with Spark and Python pp. 1 - 2
Main Author Bowles, Michael
Format Book Chapter
LanguageEnglish
Published United States John Wiley & Sons 2020
John Wiley & Sons, Incorporated
John Wiley & Sons, Inc
Edition2nd Edition
Subjects
Online AccessGet full text
ISBN1119561930
9781119561934
DOI10.1002/9781119562023.ch5

Cover

Abstract This chapter discusses building predictive models using penalized linear methods. It demonstrates the use of penalized regression along with a number of general tools for predictive modeling. The chapter utilizes Python packages incarnating various different flavors of penalized regression for these tasks. It introduces several new elements, one is using the string indexer to transform labels in a multiclass problem and another is using PySpark logistic regression for a multiclass problem. The chapter shows how to use PySpark logistic regression and introduced the PySpark Pipeline framework to doing the required data transformations. These include techniques for coding factor variables as numeric, for using a binary classifier to solve multiclass classification problems, and for extending linear methods to predict nonlinear relationships between attributes and outcomes. Predicting the wine taste is a regression problem because the objective of the problem is to predict the quality score, which is an integer between 0 and 10.
AbstractList This chapter discusses building predictive models using penalized linear methods. It demonstrates the use of penalized regression along with a number of general tools for predictive modeling. The chapter utilizes Python packages incarnating various different flavors of penalized regression for these tasks. It introduces several new elements, one is using the string indexer to transform labels in a multiclass problem and another is using PySpark logistic regression for a multiclass problem. The chapter shows how to use PySpark logistic regression and introduced the PySpark Pipeline framework to doing the required data transformations. These include techniques for coding factor variables as numeric, for using a binary classifier to solve multiclass classification problems, and for extending linear methods to predict nonlinear relationships between attributes and outcomes. Predicting the wine taste is a regression problem because the objective of the problem is to predict the quality score, which is an integer between 0 and 10.
Author Bowles Michael
Author_xml – sequence: 1
  fullname: Bowles, Michael
BookMark eNptkE9PGzEQxV2VVgWaD9DbHrmEejz2xj4CghYpUTmQs-Vdjxs3291lvQmCT1_nz6WIw2g0M-_3NHpn7KTtWmLsG_BL4Fx8NzMNAEaVggu8rFfqAzsDJRAQudIf87C_gkH-eTcIWXKFSn1hk5T-8Gyh0BgpT5m53sTGx_Z38TCQj_UYt1QsOk9NKpZpv6fWNfGVfDGPLbmhWNC46nz6yj4F1ySaHPs5W97dPt78nM5__bi_uZpP16B0mBrtncBgAAMqrCBoh6WelWhmpGVVU-Aay_xMpYIIWPqZ5NoIWddQOSo9nrPpwfc5NvRiqeq6dbL_JWBfY29zCrb3IevhHT1wu0vuDbdjcmVGHph-6J42lMYDVlM7Dq6pV64faUhWGbnHIBuBMRm7OGDrtttSY_sh_nXDiz0Cdj1yELePcoH4D5GEf2Q
ContentType Book Chapter
Copyright 2020
2020 John Wiley & Sons, Inc.
Copyright_xml – notice: 2020
– notice: 2020 John Wiley & Sons, Inc.
DBID FFUUA
DOI 10.1002/9781119562023.ch5
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1523133058
9781523133055
9781119562016
1119562015
1119562023
9781119562023
Edition 2nd Edition
Editor Bowles, Michael
Editor_xml – sequence: 1
  givenname: Michael
  surname: Bowles
  fullname: Bowles, Michael
EndPage 2
ExternalDocumentID 10.1002/9781119562023.ch5
EBC5942023_102_199
chapter_kt012ET4M3
Genre chapter
GroupedDBID 38.
3XM
AABBV
AABID
AAFKH
AAKGN
AALIM
AANYM
AATND
AAZGR
ABARN
ABQPQ
ADBND
ADVEM
AEHEP
AERYV
AFOJC
AFPKT
AFQEX
AJFER
ALMA_UNASSIGNED_HOLDINGS
APVFW
AVNOC
BBABE
CMZ
CZZ
DYXOI
E2F
GEOUK
IPJKO
JFSCD
KT4
L7C
LQKAK
LWYJN
LYPXV
MRDEW
OHILO
OODEK
TD3
UE6
W1A
WIIVT
WZT
YPLAZ
ZEEST
AAGVH
ABRSK
AEKQY
AHWGJ
ECNEQ
FFUUA
MOSFZ
ABLUV
ID FETCH-LOGICAL-k158f-98da23f913f353b1f8a36876397e84bcef0836994b5f2f36d7408924cc1bae6d3
IEDL.DBID KT4
ISBN 1119561930
9781119561934
IngestDate Fri Jun 03 02:56:55 EDT 2022
Wed Nov 27 04:57:00 EST 2019
Tue Oct 21 07:48:26 EDT 2025
Sat Nov 23 14:03:39 EST 2024
IsPeerReviewed false
IsScholarly false
LCCallNum Q325.5 .B695 2020
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-k158f-98da23f913f353b1f8a36876397e84bcef0836994b5f2f36d7408924cc1bae6d3
OCLC 1124605355
PQID EBC5942023_102_199
PageCount 2
ParticipantIDs wiley_ebooks_10_1002_9781119562023_ch5_ch5
proquest_ebookcentralchapters_5942023_102_199
knovel_primary_chapter_kt012ET4M3
PublicationCentury 2000
PublicationDate 2020
2019
2019-11-05
PublicationDateYYYYMMDD 2020-01-01
2019-01-01
2019-11-05
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Indianapolis, Indiana
PublicationSubtitle Essential Techniques for Predictive Analytics
PublicationTitle Machine Learning with Spark and Python
PublicationYear 2020
2019
Publisher John Wiley & Sons
John Wiley & Sons, Incorporated
John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons
– name: John Wiley & Sons, Incorporated
– name: John Wiley & Sons, Inc
SSID ssj0002539944
ssib048316034
Score 1.5830344
Snippet This chapter discusses building predictive models using penalized linear methods. It demonstrates the use of penalized regression along with a number of...
SourceID wiley
proquest
knovel
SourceType Enrichment Source
Publisher
StartPage 1
SubjectTerms binary classification
building predictive models
General Engineering & Project Administration
General References
multiclass classification
penalized linear methods
predicting wine taste
PySpark logistic regression
Python packages
TableOfContents 5.1 Python Packages for Penalized Linear Regression 5.2 Multivariable Regression: Predicting Wine Taste 5.3 Binary Classification: Using Penalized Linear Regression to Detect Unexploded Mines 5.4 Multiclass Classification: Classifying Crime Scene Glass Samples 5.5 Linear Regression and Classification Using PySpark 5.6 Using PySpark to Predict Wine Taste 5.7 Logistic Regression with PySpark: Rocks versus Mines 5.8 Incorporating Categorical Variables in a PySpark Model: Predicting Abalone Rings 5.9 Multiclass Logistic Regression with Meta Parameter Optimization 5.10 Summary References
Title Building Predictive Models Using Penalized Linear Methods
URI https://app.knovel.com/hotlink/pdf/rcid:kpMLSPETP4/id:kt012ET4M3/machine-learning-with/building-predictive-models?kpromoter=Summon
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5942023&ppg=199&c=UERG
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119562023.ch5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1Lb9QwEB61hQPiUJ7q8qiMhDggeVM_ko25VGq1VYUIWomtVHGx4timKGU36qYc9shf4Y_icZKF5cSNQw62Ro49HtnjeX0Ar10ZLnnHDTWllFQyJmjJTUmrMrMTP_FGCExwLj5m5xfy_WV6uQM_hlwYBLeqF8vv7joe01fLFh2ZSWN9giCz7-qm-PBpNp3PZIKtNpyv07ksRPItxh462oMtfKFox0xMjy1Nmxv0e-AJQiPEzOq4bmK8W5CXzt60C3cYVjtDx-5cbuw0HEu3ShlBhjC3Lig8Q6mooS0Hb-kRTzb9CEs-rq7CnXW3W8-WCvunIhxvsrN9-DnwoAtgqce3rRlX67_KQ_5fJj2A-5iDQTA5IvQ-hB23eAT7AwIF6Q-kx6BO-kHJbDMoKeKgJAZDkJnDl8baWRJe3WE-pIiQ2asncHE2nZ-e0x4MgtYszT1VuS258IoJL1JhmM9LkWE5PTVxuTSV81hnO2yVST33IkiaPMrD47KqmCldZsVT2FssF-4ACFeWWaMsV-Ftm-bW8CwVLvdm4p3MuRrBq467uukqfuiqW67-zcoR0GE3dXRr97G0PeVKp0qiCOigwGmmwphv45Z3xCvdVYvmektewn9S_EbwZot4m2j9tYmEYbuf_cNMn8M9jjaCaDZ6AXvtza17GRSp1hzC7mnx-TDK-y9ZnCDZ
linkProvider Knovel
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+with+Spark%E2%84%A2+and+Python%C2%AE+-+Essential+Techniques+for+Predictive+Analytics&rft.au=Bowles+Michael&rft.atitle=Building+Predictive+Models+Using+Penalized+Linear+Methods&rft.date=2020-01-01&rft.pub=John+Wiley+%26+Sons&rft.isbn=9781119561934&rft.spage=1&rft.epage=2&rft_id=info:doi/10.1002%2F9781119562023.ch5&rft.externalDocID=chapter_kt012ET4M3
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcontent.knovel.com%2Fcontent%2FThumbs%2Fthumb12780.gif
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5942023-l.jpg