베이지안 네트워크를 이용한 대사증후군 모델링
대사증후군은 뇌졸중이나 심혈관 질환 등 다양한 합병증으로 발전될 수 있어 그 심각성이 커지고 있으며, 우리나라의 유병률이 증가하는 추세를 보이고 있어 연구의 필요성이 강조되고 있다. 본 연구는 베이지안 네트워크를 활용하여 대사증후군과 그 진단기준이 되는 5가지 이상 징후인 복부비만, 고중성지방혈증, 고혈압, 저 HDL 콜레스테롤혈증, 고혈당의 관계에 대한 모델을 구축 하고자 하였다. 추가적으로 대사증후군의 가장 위험한 진단조합을 선별하였고, 개개인의 특성에 따라 대사증후군의 특징도 다르게 나타난다는 것을 확인하였다. 사용된 데이터는...
Saved in:
Published in | Ŭngyong tʻonggye yŏnʼgu Vol. 27; no. 5; pp. 705 - 715 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Korean |
Published |
한국통계학회
2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1225-066X 2383-5818 |
Cover
Summary: | 대사증후군은 뇌졸중이나 심혈관 질환 등 다양한 합병증으로 발전될 수 있어 그 심각성이 커지고 있으며, 우리나라의 유병률이 증가하는 추세를 보이고 있어 연구의 필요성이 강조되고 있다. 본 연구는 베이지안 네트워크를 활용하여 대사증후군과 그 진단기준이 되는 5가지 이상 징후인 복부비만, 고중성지방혈증, 고혈압, 저 HDL 콜레스테롤혈증, 고혈당의 관계에 대한 모델을 구축 하고자 하였다. 추가적으로 대사증후군의 가장 위험한 진단조합을 선별하였고, 개개인의 특성에 따라 대사증후군의 특징도 다르게 나타난다는 것을 확인하였다. 사용된 데이터는 제5기 국민건강영양조사 중 2010년 자료로써 건강설문조사의 모든 문항에 응답한 성인 4,489명의 데이터이다.
Metabolic syndrome is a major factor for cardiovascular disease that can develop into a variety of complications such as stroke disease. This study utilizes a Bayesian network to model metabolic syndrome. In addition, we tried to find the best risk combinations to diagnose metabolic syndrome. We confirmed that the combinations are difference according to individual characteristics. The paper used data from 4,489 adults who responded to all health interview questions from the the 5th Korea National Health and Nutrition Examination Survey conducted in 2010. |
---|---|
Bibliography: | The Korean Statistical Society KISTI1.1003/JNL.JAKO201433752159608 G704-000408.2014.27.5.004 |
ISSN: | 1225-066X 2383-5818 |