Implementation of Pressure Loss Model for Incompressible Flow Solver on Cartesian Grid Method
The Cartesian grid method is very useful for CFD simulation around a complex geometry in terms of automatic and robust grid generation. However, it is difficult to simulate both large-scale and subgrid-scale flow simultaneously on the Cartesian grid because of the restriction of a computing resource...
Saved in:
Published in | Transactions of the Japan Society for Computational Engineering and Science Vol. 2007; p. 20070032 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Japanese |
Published |
JAPAN SOCIETY FOR COMPUTATIONAL ENGINEERING AND SCIENCE
21.12.2007
一般社団法人 日本計算工学会 |
Subjects | |
Online Access | Get full text |
ISSN | 1347-8826 |
DOI | 10.11421/jsces.2007.20070032 |
Cover
Abstract | The Cartesian grid method is very useful for CFD simulation around a complex geometry in terms of automatic and robust grid generation. However, it is difficult to simulate both large-scale and subgrid-scale flow simultaneously on the Cartesian grid because of the restriction of a computing resource. Therefore, an empirical formula is often employed on the Cartesian grid system to incorporate the subgrid-scale effect of fluid characteristics. For example, in the case of flow computation for heat exchangers, the detail of geometry is usually not represented. Instead, Darcy’s law is used to simulate the relationship between flow rate and pressure drop. Moreover, for the flow calculation around the unaligned heat exchanger with respect to the underlying Cartesian grid, a special technique is necessary to express the pressure drop along the normal direction of the inclined heat exchanger. In this paper, the empirical formula that describes macroscopic fluid properties is expressed as an external force in the incompressible Navier-Stokes equations. This formulation is also valid for unaligned heat exchangers. Special attention is paid to the iterative method of the pressure Poisson equation in order to satisfy the constraint of the fluid characteristics for the heat exchanger. To validate the proposed method, several examples were calculated. Finally, it was found that the proposed method could reasonably predict the pressure loss of the inclined heat exchanger. In addition, the convergence behavior of the iterative process was investigated. |
---|---|
AbstractList | The Cartesian grid method is very useful for CFD simulation around a complex geometry in terms of automatic and robust grid generation. However, it is difficult to simulate both large-scale and subgrid-scale flow simultaneously on the Cartesian grid because of the restriction of a computing resource. Therefore, an empirical formula is often employed on the Cartesian grid system to incorporate the subgrid-scale effect of fluid characteristics. For example, in the case of flow computation for heat exchangers, the detail of geometry is usually not represented. Instead, Darcy’s law is used to simulate the relationship between flow rate and pressure drop. Moreover, for the flow calculation around the unaligned heat exchanger with respect to the underlying Cartesian grid, a special technique is necessary to express the pressure drop along the normal direction of the inclined heat exchanger. In this paper, the empirical formula that describes macroscopic fluid properties is expressed as an external force in the incompressible Navier-Stokes equations. This formulation is also valid for unaligned heat exchangers. Special attention is paid to the iterative method of the pressure Poisson equation in order to satisfy the constraint of the fluid characteristics for the heat exchanger. To validate the proposed method, several examples were calculated. Finally, it was found that the proposed method could reasonably predict the pressure loss of the inclined heat exchanger. In addition, the convergence behavior of the iterative process was investigated. The Cartesian grid method is very useful for CFD simulation around a complex geometry in terms of automatic and robust grid generation. However, it is difficult to simulate both large-scale and subgrid-scale flow simultaneously on the Cartesian grid because of the restriction of a computing resource. Therefore, an empirical formula is often employed on the Cartesian grid system to incorporate the subgrid-scale effect of fluid characteristics. For example, in the case of flow computation for heat exchangers, the detail of geometry is usually not represented. Instead, Darcy’s law is used to simulate the relationship between flow rate and pressure drop. Moreover, for the flow calculation around the unaligned heat exchanger with respect to the underlying Cartesian grid, a special technique is necessary to express the pressure drop along the normal direction of the inclined heat exchanger. In this paper, the empirical formula that describes macroscopic fluid properties is expressed as an external force in the incompressible Navier-Stokes equations. This formulation is also valid for unaligned heat exchangers. Special attention is paid to the iterative method of the pressure Poisson equation in order to satisfy the constraint of the fluid characteristics for the heat exchanger. To validate the proposed method, several examples were calculated. Finally, it was found that the proposed method could reasonably predict the pressure loss of the inclined heat exchanger. In addition, the convergence behavior of the iterative process was investigated. 直交格子への実装を前提に,熱交換器の圧力損失特性およびファンの圧力利得特性の影響を非圧縮性Navier-Stokes方程式の外力項により反映させる手法を提案する.本提案手法は熱交換器の圧力損失の影響を各方向成分に分解して流れの支配方程式に取込む工夫を行っているため,格子に対して斜めに配置された熱交換器の圧力損失と流れの影響を考慮することが可能となる.この際,熱交換器内で発生する圧力損失は通過流速の関数となっている.そこで本手法は,圧力損失と流速の関係式を非圧縮流れの分離解法へ組込み,そこから導出される圧力のPoisson方程式を解くことで,圧力損失と流速の関係を満足させている.本手法の検証として,2次元流れおよび3次元ダクト内の流れに適用し実用上十分な精度を有していることを確認した.本手法を用いることで,熱交換器やファンの影響を考慮したエンジンルーム内の複雑な流れを短期間に解析できる可能性を示すことができた. |
Author | ONO, Kenji AKASAKA, Kei |
Author_FL | 赤坂 啓 ONO Kenji |
Author_FL_xml | – sequence: 1 fullname: 赤坂 啓 – sequence: 2 fullname: ONO Kenji |
Author_xml | – sequence: 1 fullname: AKASAKA, Kei organization: Division of Human Mechanical Systems and Design, Graduate School of Engineering, Hokkaido University – sequence: 1 fullname: ONO, Kenji organization: RIKEN |
BackLink | https://cir.nii.ac.jp/crid/1390569944002452480$$DView record in CiNii |
BookMark | eNpNkE1LAzEQhoMoWGv_gYccvG6dfOzXUYqtlRYFe5Ulm53YlN2kJKviv7fbinh538M8MwzPFTl33iEhNwymjEnO7nZRY5xygPwYAIKfkRETMk-KgmeXZBKjrQGgzFgGxYi8Lbt9ix26XvXWO-oNfQkY40dAuvIx0rVvsKXGB7p02nf7YWjrFum89V_01befGOhhcaZCj9EqRxfBNnSN_dY31-TCqDbi5LfHZDN_2Mwek9XzYjm7XyW7MoMkLZApI01ZKJCZQIWlMSlXuURQCgvJhciBgRQm58jqLK-butFNrTPeaM3FmNyezjprK22HZKKENCtLKQG4TLks4IA9nbBd7NU7VvtgOxW-q8PnVrdYHeVVg7cK_tdg8Q_SWxUqdOIHG2FwPQ |
ContentType | Journal Article |
Copyright | 2007 The Japan Society For Computational Engineering and Science |
Copyright_xml | – notice: 2007 The Japan Society For Computational Engineering and Science |
DBID | RYH |
DOI | 10.11421/jsces.2007.20070032 |
DatabaseName | CiNii Complete |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
DocumentTitleAlternate | 直交格子を用いた非圧縮流れ解析における圧力損失モデルの実装 |
DocumentTitle_FL | 直交格子を用いた非圧縮流れ解析における圧力損失モデルの実装 |
EISSN | 1347-8826 |
EndPage | 20070032 |
ExternalDocumentID | 130008056226 article_jsces_2007_0_2007_0_20070032_article_char_en |
GroupedDBID | 2WC ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS E3Z JSF KQ8 RJT RYH |
ID | FETCH-LOGICAL-j960-58e1af4f98a0463eae9ff52a74e0aae84233701043f72e1b67bdbdcdbc62dcc23 |
IngestDate | Fri Jun 27 00:31:25 EDT 2025 Wed Sep 03 06:25:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j960-58e1af4f98a0463eae9ff52a74e0aae84233701043f72e1b67bdbdcdbc62dcc23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jsces/2007/0/2007_0_20070032/_article/-char/en |
PageCount | 1 |
ParticipantIDs | nii_cinii_1390569944002452480 jstage_primary_article_jsces_2007_0_2007_0_20070032_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2007/12/21 2007-12-21 |
PublicationDateYYYYMMDD | 2007-12-21 |
PublicationDate_xml | – month: 12 year: 2007 text: 2007/12/21 day: 21 |
PublicationDecade | 2000 |
PublicationTitle | Transactions of the Japan Society for Computational Engineering and Science |
PublicationTitleAlternate | 日本計算工学会論文集 Transactions of JSCES |
PublicationTitle_FL | 日本計算工学会論文集 Transactions of JSCES |
PublicationYear | 2007 |
Publisher | JAPAN SOCIETY FOR COMPUTATIONAL ENGINEERING AND SCIENCE 一般社団法人 日本計算工学会 |
Publisher_xml | – name: JAPAN SOCIETY FOR COMPUTATIONAL ENGINEERING AND SCIENCE – name: 一般社団法人 日本計算工学会 |
References | (4) 磯島宣之, 藤本貴行, 阿部行伸, 直交格子法による光ディスクドライブ内部の流体解析, 日本機械力学会 2006年度年次大会講演論文集(2), 2006, pp. 163-164. (3) 越智章生, 中村佳朗, 直交格子を用いた航空機の空力解析ツールの開発について(その1), 第19回数値流体シンポジウム講演要旨集, 2005, p. 54. (20) Hong, J.M., Kim, C., Discontinuous Fluids, ACM Transactions on Graphics (In Proceedings of ACM SIGGRAPH 2005), Volume 24, Issue 3, 2005, pp. 915-920. (6) Willoughby, D.A., Greiner, C.M., Carroll, G.W., A CFD Method with Cartesian Grids and Complex Geometries Defined by Cell Porosities, Proc. of the ASME Fluids Engineering Division, FED-Vol. 242, 1996, pp. 155-161. (2) 市川治, 藤井孝蔵, 直交格子を使用した3次元の任意形状物体まわりの流体シミュレーション, 日本機械学会論文集(B編), 68巻, 669号, 2002, pp. 1329-1336. (19) Liu, X., Fedkiw, R.P., Kang, M., A Boundary Condition Capturing Method for Poisson’s Equation on Irregular Domains, J. Comput. Phys., No. 160, 2000, pp. 151-178. (5) 安部静生, 鈴木誠, エンジンルーム内風流れのシミュレーション, 自動車技術会学術講演前刷集, No. 952, 1995, pp. 223-226. (9) 清水龍哉, 花岡雄二, 非構造格子を用いた空力解析-ラジエータ冷却風量の予測と空力特性予測の改善, 自動車技術, vol. 54, No. 4, 2000, pp. 65-69. (16) 送風機の試験及び検査方法, (財)日本規格協会, JIS B8330, 2000, pp. 2-13. (13) 小野潤也, 村上泰史, 池田和外, CFDを用いたエンジンルーム内温度解析手法の開発, 自動車技術会学術講演会前刷集, No. 119-02, 2002, pp. 1-4. (8) Ono, K., Tomita, N., Fujitani, K., Himeno, R., An Application of Voxel Modeling Approach to Prediction of Engine Cooling Flow, Proc. of JSAE Spring Convention, No. 984, 1998, pp. 165-168. (11) 大島竜也, 浮田哲嗣, 山本稔, CFDによる冷却性能予測手法の開発(第一報)-ラジエータ冷却風速の予測, 自動車技術会学術講演会前刷集, No. 7-01, 2001, pp. 5-9. (15) 自動車用ラジエータ—放熱性能試験方法—, (財)日本規格協会, JIS D1614, 2000, pp. 1-5. (18) 梶島岳夫, 乱流の数値シミュレーション, 養賢堂, 第1版, 1999, pp. 120-125. (1) 松永奈美, 劉浩, 姫野龍太郎, 医療画像データを用いた直交座標系における血流解析, 第16回数値流体シンポジウム講演要旨集, 2002, p. 106. (10) Matsushima, Y., Takeuchi, T., Kohri, I., Prediction Method of Engine Compartment Air Flow Using CFD Analysis, JSAE Review, Vol. 21, 2000, pp. 197-203. (12) 中西年和, 下田三四郎, 矢部充男, 草場泰介, 藤原英晃, 建設機械のエンジンルーム内流れ解析, 自動車技術会学術講演会前刷集, No. 7-01, 2001, pp. 1-4. (17) Chorin, A.J, Numerical Solution of the Navier Stokes Equations, Math. Comput., No. 22, 1968, pp. 745-762. (7) 竹内俊雄, 郡逸平, CFDを用いたトラック・バスの開発, 自動車技術会学術講演会前刷集, No. 964, 1996, pp. 49-52. (21) II, S., Xiao, F., Ono, K., The Fluid-Structure Interacting Simulations with the Immersed Interface Method on a Cartesian Grid, the proceeding of Asian simulation conference, 2006, pp. 118-122. (14) http://www.calsonickansei.co.jp/products/fe_module.html |
References_xml | – reference: (6) Willoughby, D.A., Greiner, C.M., Carroll, G.W., A CFD Method with Cartesian Grids and Complex Geometries Defined by Cell Porosities, Proc. of the ASME Fluids Engineering Division, FED-Vol. 242, 1996, pp. 155-161. – reference: (16) 送風機の試験及び検査方法, (財)日本規格協会, JIS B8330, 2000, pp. 2-13. – reference: (18) 梶島岳夫, 乱流の数値シミュレーション, 養賢堂, 第1版, 1999, pp. 120-125. – reference: (19) Liu, X., Fedkiw, R.P., Kang, M., A Boundary Condition Capturing Method for Poisson’s Equation on Irregular Domains, J. Comput. Phys., No. 160, 2000, pp. 151-178. – reference: (12) 中西年和, 下田三四郎, 矢部充男, 草場泰介, 藤原英晃, 建設機械のエンジンルーム内流れ解析, 自動車技術会学術講演会前刷集, No. 7-01, 2001, pp. 1-4. – reference: (3) 越智章生, 中村佳朗, 直交格子を用いた航空機の空力解析ツールの開発について(その1), 第19回数値流体シンポジウム講演要旨集, 2005, p. 54. – reference: (10) Matsushima, Y., Takeuchi, T., Kohri, I., Prediction Method of Engine Compartment Air Flow Using CFD Analysis, JSAE Review, Vol. 21, 2000, pp. 197-203. – reference: (5) 安部静生, 鈴木誠, エンジンルーム内風流れのシミュレーション, 自動車技術会学術講演前刷集, No. 952, 1995, pp. 223-226. – reference: (21) II, S., Xiao, F., Ono, K., The Fluid-Structure Interacting Simulations with the Immersed Interface Method on a Cartesian Grid, the proceeding of Asian simulation conference, 2006, pp. 118-122. – reference: (2) 市川治, 藤井孝蔵, 直交格子を使用した3次元の任意形状物体まわりの流体シミュレーション, 日本機械学会論文集(B編), 68巻, 669号, 2002, pp. 1329-1336. – reference: (7) 竹内俊雄, 郡逸平, CFDを用いたトラック・バスの開発, 自動車技術会学術講演会前刷集, No. 964, 1996, pp. 49-52. – reference: (1) 松永奈美, 劉浩, 姫野龍太郎, 医療画像データを用いた直交座標系における血流解析, 第16回数値流体シンポジウム講演要旨集, 2002, p. 106. – reference: (17) Chorin, A.J, Numerical Solution of the Navier Stokes Equations, Math. Comput., No. 22, 1968, pp. 745-762. – reference: (4) 磯島宣之, 藤本貴行, 阿部行伸, 直交格子法による光ディスクドライブ内部の流体解析, 日本機械力学会 2006年度年次大会講演論文集(2), 2006, pp. 163-164. – reference: (13) 小野潤也, 村上泰史, 池田和外, CFDを用いたエンジンルーム内温度解析手法の開発, 自動車技術会学術講演会前刷集, No. 119-02, 2002, pp. 1-4. – reference: (8) Ono, K., Tomita, N., Fujitani, K., Himeno, R., An Application of Voxel Modeling Approach to Prediction of Engine Cooling Flow, Proc. of JSAE Spring Convention, No. 984, 1998, pp. 165-168. – reference: (11) 大島竜也, 浮田哲嗣, 山本稔, CFDによる冷却性能予測手法の開発(第一報)-ラジエータ冷却風速の予測, 自動車技術会学術講演会前刷集, No. 7-01, 2001, pp. 5-9. – reference: (20) Hong, J.M., Kim, C., Discontinuous Fluids, ACM Transactions on Graphics (In Proceedings of ACM SIGGRAPH 2005), Volume 24, Issue 3, 2005, pp. 915-920. – reference: (14) http://www.calsonickansei.co.jp/products/fe_module.html – reference: (15) 自動車用ラジエータ—放熱性能試験方法—, (財)日本規格協会, JIS D1614, 2000, pp. 1-5. – reference: (9) 清水龍哉, 花岡雄二, 非構造格子を用いた空力解析-ラジエータ冷却風量の予測と空力特性予測の改善, 自動車技術, vol. 54, No. 4, 2000, pp. 65-69. |
SSID | ssib000961608 ssj0069538 ssib002670976 |
Score | 1.7438703 |
Snippet | The Cartesian grid method is very useful for CFD simulation around a complex geometry in terms of automatic and robust grid generation. However, it is... |
SourceID | nii jstage |
SourceType | Publisher |
StartPage | 20070032 |
SubjectTerms | Boundary Condition Cartesian grid Heat Exchanger Incompressible Viscous Flow Poisson Equation Pressure Loss |
Title | Implementation of Pressure Loss Model for Incompressible Flow Solver on Cartesian Grid Method |
URI | https://www.jstage.jst.go.jp/article/jsces/2007/0/2007_0_20070032/_article/-char/en https://cir.nii.ac.jp/crid/1390569944002452480 |
Volume | 2007 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Transactions of the Japan Society for Computational Engineering and Science, 2007/12/21, Vol.2007, pp.20070032-20070032 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library databaseCode: KQ8 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1347-8826 dateEnd: 99991231 titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html omitProxy: true ssIdentifier: ssj0069538 providerName: Colorado Alliance of Research Libraries |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68cILd8SAIT_gp6iQuI7jPGZRyljpGFomjQdUJY4jtYIWtZ2Q-FP8Rc6xky7RJnF5qBu5TSL5fDkX55zvEPIaTGpUVUUwLEWohkLAI1Vi0jiS4ipuwIIqLHCensrjC3FyGV4OBr86WUtX2_KN_nlrXcn_SBXmQK5YJfsPkt1dFCbgGOQLI0gYxr-SsaX2_dZUD1m_z1X7rY33AYyfbXRm6xNRDcCDb3NesVRq_HX1wztfYVY0vi1IMbHTVlO-W88rb2q7Snfd1vy6q_imzSo4ATO77GV9ug4R7e5ih-nQ5Yc6LbJD2CQ5h483MfN2imUhO_KZGrMsZipiKvNYpliSsjhmmWBHCVNpb5siwpQPHnRMyFlyiuwO77P8swcBrpd-nJ5d5C3lb4dGy_JqNVtszko51TwSYE-Vq69vdTfeqat-kb3IbzZMzY2pm-ZCcGsvNqCTHZ1l_wo9Im588Qf-NaCbyz1yh0dSYsuMyaeOPxvLQHbIkjiy46G_51wDGYN5aeo38dZvb7kxeEILiAuQ8GFvOZ93nJ38AbnXRCk0cZB7SAaL4hG530QstJHk5jH50kcgXdW0RSBFBFKLQArgoH0EUkQgdQikcOIOgRQRSB0Cn5B8nOXp8bBp2DFcQCA8DJUJilrUsSqQh84UJq7rkBeRMH5RGAWe-yjC-H9UR9wEpYzKqqx0VWrJK6356CnZX66W5hmhvjQ1h_O0DmoRmKLkpS60gtWtZBDo4ICkbpVm3x0py6x5CGd2SbG5ajTzu1-4trs_YUUjKJADcghLPNNzHCEUAtnGsRAuHUEo__kffn9B7l5D_SXZ366vzCH4qNvylcXFb0ilhZM |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+Pressure+Loss+Model+for+Incompressible+Flow+Solver+on+Cartesian+Grid+Method&rft.jtitle=Transactions+of+the+Japan+Society+for+Computational+Engineering+and+Science&rft.au=AKASAKA+Kei&rft.au=%E5%B0%8F%E9%87%8E+%E8%AC%99%E4%BA%8C&rft.date=2007-12-21&rft.pub=JAPAN+SOCIETY+FOR+COMPUTATIONAL+ENGINEERING+AND+SCIENCE&rft.eissn=1347-8826&rft.volume=2007&rft.spage=20070032&rft.epage=20070032&rft_id=info:doi/10.11421%2Fjsces.2007.20070032&rft.externalDocID=130008056226 |