Implementation of Pressure Loss Model for Incompressible Flow Solver on Cartesian Grid Method

The Cartesian grid method is very useful for CFD simulation around a complex geometry in terms of automatic and robust grid generation. However, it is difficult to simulate both large-scale and subgrid-scale flow simultaneously on the Cartesian grid because of the restriction of a computing resource...

Full description

Saved in:
Bibliographic Details
Published inTransactions of the Japan Society for Computational Engineering and Science Vol. 2007; p. 20070032
Main Authors AKASAKA, Kei, ONO, Kenji
Format Journal Article
LanguageJapanese
Published JAPAN SOCIETY FOR COMPUTATIONAL ENGINEERING AND SCIENCE 21.12.2007
一般社団法人 日本計算工学会
Subjects
Online AccessGet full text
ISSN1347-8826
DOI10.11421/jsces.2007.20070032

Cover

Abstract The Cartesian grid method is very useful for CFD simulation around a complex geometry in terms of automatic and robust grid generation. However, it is difficult to simulate both large-scale and subgrid-scale flow simultaneously on the Cartesian grid because of the restriction of a computing resource. Therefore, an empirical formula is often employed on the Cartesian grid system to incorporate the subgrid-scale effect of fluid characteristics. For example, in the case of flow computation for heat exchangers, the detail of geometry is usually not represented. Instead, Darcy’s law is used to simulate the relationship between flow rate and pressure drop. Moreover, for the flow calculation around the unaligned heat exchanger with respect to the underlying Cartesian grid, a special technique is necessary to express the pressure drop along the normal direction of the inclined heat exchanger. In this paper, the empirical formula that describes macroscopic fluid properties is expressed as an external force in the incompressible Navier-Stokes equations. This formulation is also valid for unaligned heat exchangers. Special attention is paid to the iterative method of the pressure Poisson equation in order to satisfy the constraint of the fluid characteristics for the heat exchanger. To validate the proposed method, several examples were calculated. Finally, it was found that the proposed method could reasonably predict the pressure loss of the inclined heat exchanger. In addition, the convergence behavior of the iterative process was investigated.
AbstractList The Cartesian grid method is very useful for CFD simulation around a complex geometry in terms of automatic and robust grid generation. However, it is difficult to simulate both large-scale and subgrid-scale flow simultaneously on the Cartesian grid because of the restriction of a computing resource. Therefore, an empirical formula is often employed on the Cartesian grid system to incorporate the subgrid-scale effect of fluid characteristics. For example, in the case of flow computation for heat exchangers, the detail of geometry is usually not represented. Instead, Darcy’s law is used to simulate the relationship between flow rate and pressure drop. Moreover, for the flow calculation around the unaligned heat exchanger with respect to the underlying Cartesian grid, a special technique is necessary to express the pressure drop along the normal direction of the inclined heat exchanger. In this paper, the empirical formula that describes macroscopic fluid properties is expressed as an external force in the incompressible Navier-Stokes equations. This formulation is also valid for unaligned heat exchangers. Special attention is paid to the iterative method of the pressure Poisson equation in order to satisfy the constraint of the fluid characteristics for the heat exchanger. To validate the proposed method, several examples were calculated. Finally, it was found that the proposed method could reasonably predict the pressure loss of the inclined heat exchanger. In addition, the convergence behavior of the iterative process was investigated.
The Cartesian grid method is very useful for CFD simulation around a complex geometry in terms of automatic and robust grid generation. However, it is difficult to simulate both large-scale and subgrid-scale flow simultaneously on the Cartesian grid because of the restriction of a computing resource. Therefore, an empirical formula is often employed on the Cartesian grid system to incorporate the subgrid-scale effect of fluid characteristics. For example, in the case of flow computation for heat exchangers, the detail of geometry is usually not represented. Instead, Darcy’s law is used to simulate the relationship between flow rate and pressure drop. Moreover, for the flow calculation around the unaligned heat exchanger with respect to the underlying Cartesian grid, a special technique is necessary to express the pressure drop along the normal direction of the inclined heat exchanger. In this paper, the empirical formula that describes macroscopic fluid properties is expressed as an external force in the incompressible Navier-Stokes equations. This formulation is also valid for unaligned heat exchangers. Special attention is paid to the iterative method of the pressure Poisson equation in order to satisfy the constraint of the fluid characteristics for the heat exchanger. To validate the proposed method, several examples were calculated. Finally, it was found that the proposed method could reasonably predict the pressure loss of the inclined heat exchanger. In addition, the convergence behavior of the iterative process was investigated. 直交格子への実装を前提に,熱交換器の圧力損失特性およびファンの圧力利得特性の影響を非圧縮性Navier-Stokes方程式の外力項により反映させる手法を提案する.本提案手法は熱交換器の圧力損失の影響を各方向成分に分解して流れの支配方程式に取込む工夫を行っているため,格子に対して斜めに配置された熱交換器の圧力損失と流れの影響を考慮することが可能となる.この際,熱交換器内で発生する圧力損失は通過流速の関数となっている.そこで本手法は,圧力損失と流速の関係式を非圧縮流れの分離解法へ組込み,そこから導出される圧力のPoisson方程式を解くことで,圧力損失と流速の関係を満足させている.本手法の検証として,2次元流れおよび3次元ダクト内の流れに適用し実用上十分な精度を有していることを確認した.本手法を用いることで,熱交換器やファンの影響を考慮したエンジンルーム内の複雑な流れを短期間に解析できる可能性を示すことができた.
Author ONO, Kenji
AKASAKA, Kei
Author_FL 赤坂 啓
ONO Kenji
Author_FL_xml – sequence: 1
  fullname: 赤坂 啓
– sequence: 2
  fullname: ONO Kenji
Author_xml – sequence: 1
  fullname: AKASAKA, Kei
  organization: Division of Human Mechanical Systems and Design, Graduate School of Engineering, Hokkaido University
– sequence: 1
  fullname: ONO, Kenji
  organization: RIKEN
BackLink https://cir.nii.ac.jp/crid/1390569944002452480$$DView record in CiNii
BookMark eNpNkE1LAzEQhoMoWGv_gYccvG6dfOzXUYqtlRYFe5Ulm53YlN2kJKviv7fbinh538M8MwzPFTl33iEhNwymjEnO7nZRY5xygPwYAIKfkRETMk-KgmeXZBKjrQGgzFgGxYi8Lbt9ix26XvXWO-oNfQkY40dAuvIx0rVvsKXGB7p02nf7YWjrFum89V_01befGOhhcaZCj9EqRxfBNnSN_dY31-TCqDbi5LfHZDN_2Mwek9XzYjm7XyW7MoMkLZApI01ZKJCZQIWlMSlXuURQCgvJhciBgRQm58jqLK-butFNrTPeaM3FmNyezjprK22HZKKENCtLKQG4TLks4IA9nbBd7NU7VvtgOxW-q8PnVrdYHeVVg7cK_tdg8Q_SWxUqdOIHG2FwPQ
ContentType Journal Article
Copyright 2007 The Japan Society For Computational Engineering and Science
Copyright_xml – notice: 2007 The Japan Society For Computational Engineering and Science
DBID RYH
DOI 10.11421/jsces.2007.20070032
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
DocumentTitleAlternate 直交格子を用いた非圧縮流れ解析における圧力損失モデルの実装
DocumentTitle_FL 直交格子を用いた非圧縮流れ解析における圧力損失モデルの実装
EISSN 1347-8826
EndPage 20070032
ExternalDocumentID 130008056226
article_jsces_2007_0_2007_0_20070032_article_char_en
GroupedDBID 2WC
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
E3Z
JSF
KQ8
RJT
RYH
ID FETCH-LOGICAL-j960-58e1af4f98a0463eae9ff52a74e0aae84233701043f72e1b67bdbdcdbc62dcc23
IngestDate Fri Jun 27 00:31:25 EDT 2025
Wed Sep 03 06:25:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j960-58e1af4f98a0463eae9ff52a74e0aae84233701043f72e1b67bdbdcdbc62dcc23
OpenAccessLink https://www.jstage.jst.go.jp/article/jsces/2007/0/2007_0_20070032/_article/-char/en
PageCount 1
ParticipantIDs nii_cinii_1390569944002452480
jstage_primary_article_jsces_2007_0_2007_0_20070032_article_char_en
PublicationCentury 2000
PublicationDate 2007/12/21
2007-12-21
PublicationDateYYYYMMDD 2007-12-21
PublicationDate_xml – month: 12
  year: 2007
  text: 2007/12/21
  day: 21
PublicationDecade 2000
PublicationTitle Transactions of the Japan Society for Computational Engineering and Science
PublicationTitleAlternate 日本計算工学会論文集
Transactions of JSCES
PublicationTitle_FL 日本計算工学会論文集
Transactions of JSCES
PublicationYear 2007
Publisher JAPAN SOCIETY FOR COMPUTATIONAL ENGINEERING AND SCIENCE
一般社団法人 日本計算工学会
Publisher_xml – name: JAPAN SOCIETY FOR COMPUTATIONAL ENGINEERING AND SCIENCE
– name: 一般社団法人 日本計算工学会
References (4) 磯島宣之, 藤本貴行, 阿部行伸, 直交格子法による光ディスクドライブ内部の流体解析, 日本機械力学会 2006年度年次大会講演論文集(2), 2006, pp. 163-164.
(3) 越智章生, 中村佳朗, 直交格子を用いた航空機の空力解析ツールの開発について(その1), 第19回数値流体シンポジウム講演要旨集, 2005, p. 54.
(20) Hong, J.M., Kim, C., Discontinuous Fluids, ACM Transactions on Graphics (In Proceedings of ACM SIGGRAPH 2005), Volume 24, Issue 3, 2005, pp. 915-920.
(6) Willoughby, D.A., Greiner, C.M., Carroll, G.W., A CFD Method with Cartesian Grids and Complex Geometries Defined by Cell Porosities, Proc. of the ASME Fluids Engineering Division, FED-Vol. 242, 1996, pp. 155-161.
(2) 市川治, 藤井孝蔵, 直交格子を使用した3次元の任意形状物体まわりの流体シミュレーション, 日本機械学会論文集(B編), 68巻, 669号, 2002, pp. 1329-1336.
(19) Liu, X., Fedkiw, R.P., Kang, M., A Boundary Condition Capturing Method for Poisson’s Equation on Irregular Domains, J. Comput. Phys., No. 160, 2000, pp. 151-178.
(5) 安部静生, 鈴木誠, エンジンルーム内風流れのシミュレーション, 自動車技術会学術講演前刷集, No. 952, 1995, pp. 223-226.
(9) 清水龍哉, 花岡雄二, 非構造格子を用いた空力解析-ラジエータ冷却風量の予測と空力特性予測の改善, 自動車技術, vol. 54, No. 4, 2000, pp. 65-69.
(16) 送風機の試験及び検査方法, (財)日本規格協会, JIS B8330, 2000, pp. 2-13.
(13) 小野潤也, 村上泰史, 池田和外, CFDを用いたエンジンルーム内温度解析手法の開発, 自動車技術会学術講演会前刷集, No. 119-02, 2002, pp. 1-4.
(8) Ono, K., Tomita, N., Fujitani, K., Himeno, R., An Application of Voxel Modeling Approach to Prediction of Engine Cooling Flow, Proc. of JSAE Spring Convention, No. 984, 1998, pp. 165-168.
(11) 大島竜也, 浮田哲嗣, 山本稔, CFDによる冷却性能予測手法の開発(第一報)-ラジエータ冷却風速の予測, 自動車技術会学術講演会前刷集, No. 7-01, 2001, pp. 5-9.
(15) 自動車用ラジエータ—放熱性能試験方法—, (財)日本規格協会, JIS D1614, 2000, pp. 1-5.
(18) 梶島岳夫, 乱流の数値シミュレーション, 養賢堂, 第1版, 1999, pp. 120-125.
(1) 松永奈美, 劉浩, 姫野龍太郎, 医療画像データを用いた直交座標系における血流解析, 第16回数値流体シンポジウム講演要旨集, 2002, p. 106.
(10) Matsushima, Y., Takeuchi, T., Kohri, I., Prediction Method of Engine Compartment Air Flow Using CFD Analysis, JSAE Review, Vol. 21, 2000, pp. 197-203.
(12) 中西年和, 下田三四郎, 矢部充男, 草場泰介, 藤原英晃, 建設機械のエンジンルーム内流れ解析, 自動車技術会学術講演会前刷集, No. 7-01, 2001, pp. 1-4.
(17) Chorin, A.J, Numerical Solution of the Navier Stokes Equations, Math. Comput., No. 22, 1968, pp. 745-762.
(7) 竹内俊雄, 郡逸平, CFDを用いたトラック・バスの開発, 自動車技術会学術講演会前刷集, No. 964, 1996, pp. 49-52.
(21) II, S., Xiao, F., Ono, K., The Fluid-Structure Interacting Simulations with the Immersed Interface Method on a Cartesian Grid, the proceeding of Asian simulation conference, 2006, pp. 118-122.
(14) http://www.calsonickansei.co.jp/products/fe_module.html
References_xml – reference: (6) Willoughby, D.A., Greiner, C.M., Carroll, G.W., A CFD Method with Cartesian Grids and Complex Geometries Defined by Cell Porosities, Proc. of the ASME Fluids Engineering Division, FED-Vol. 242, 1996, pp. 155-161.
– reference: (16) 送風機の試験及び検査方法, (財)日本規格協会, JIS B8330, 2000, pp. 2-13.
– reference: (18) 梶島岳夫, 乱流の数値シミュレーション, 養賢堂, 第1版, 1999, pp. 120-125.
– reference: (19) Liu, X., Fedkiw, R.P., Kang, M., A Boundary Condition Capturing Method for Poisson’s Equation on Irregular Domains, J. Comput. Phys., No. 160, 2000, pp. 151-178.
– reference: (12) 中西年和, 下田三四郎, 矢部充男, 草場泰介, 藤原英晃, 建設機械のエンジンルーム内流れ解析, 自動車技術会学術講演会前刷集, No. 7-01, 2001, pp. 1-4.
– reference: (3) 越智章生, 中村佳朗, 直交格子を用いた航空機の空力解析ツールの開発について(その1), 第19回数値流体シンポジウム講演要旨集, 2005, p. 54.
– reference: (10) Matsushima, Y., Takeuchi, T., Kohri, I., Prediction Method of Engine Compartment Air Flow Using CFD Analysis, JSAE Review, Vol. 21, 2000, pp. 197-203.
– reference: (5) 安部静生, 鈴木誠, エンジンルーム内風流れのシミュレーション, 自動車技術会学術講演前刷集, No. 952, 1995, pp. 223-226.
– reference: (21) II, S., Xiao, F., Ono, K., The Fluid-Structure Interacting Simulations with the Immersed Interface Method on a Cartesian Grid, the proceeding of Asian simulation conference, 2006, pp. 118-122.
– reference: (2) 市川治, 藤井孝蔵, 直交格子を使用した3次元の任意形状物体まわりの流体シミュレーション, 日本機械学会論文集(B編), 68巻, 669号, 2002, pp. 1329-1336.
– reference: (7) 竹内俊雄, 郡逸平, CFDを用いたトラック・バスの開発, 自動車技術会学術講演会前刷集, No. 964, 1996, pp. 49-52.
– reference: (1) 松永奈美, 劉浩, 姫野龍太郎, 医療画像データを用いた直交座標系における血流解析, 第16回数値流体シンポジウム講演要旨集, 2002, p. 106.
– reference: (17) Chorin, A.J, Numerical Solution of the Navier Stokes Equations, Math. Comput., No. 22, 1968, pp. 745-762.
– reference: (4) 磯島宣之, 藤本貴行, 阿部行伸, 直交格子法による光ディスクドライブ内部の流体解析, 日本機械力学会 2006年度年次大会講演論文集(2), 2006, pp. 163-164.
– reference: (13) 小野潤也, 村上泰史, 池田和外, CFDを用いたエンジンルーム内温度解析手法の開発, 自動車技術会学術講演会前刷集, No. 119-02, 2002, pp. 1-4.
– reference: (8) Ono, K., Tomita, N., Fujitani, K., Himeno, R., An Application of Voxel Modeling Approach to Prediction of Engine Cooling Flow, Proc. of JSAE Spring Convention, No. 984, 1998, pp. 165-168.
– reference: (11) 大島竜也, 浮田哲嗣, 山本稔, CFDによる冷却性能予測手法の開発(第一報)-ラジエータ冷却風速の予測, 自動車技術会学術講演会前刷集, No. 7-01, 2001, pp. 5-9.
– reference: (20) Hong, J.M., Kim, C., Discontinuous Fluids, ACM Transactions on Graphics (In Proceedings of ACM SIGGRAPH 2005), Volume 24, Issue 3, 2005, pp. 915-920.
– reference: (14) http://www.calsonickansei.co.jp/products/fe_module.html
– reference: (15) 自動車用ラジエータ—放熱性能試験方法—, (財)日本規格協会, JIS D1614, 2000, pp. 1-5.
– reference: (9) 清水龍哉, 花岡雄二, 非構造格子を用いた空力解析-ラジエータ冷却風量の予測と空力特性予測の改善, 自動車技術, vol. 54, No. 4, 2000, pp. 65-69.
SSID ssib000961608
ssj0069538
ssib002670976
Score 1.7438703
Snippet The Cartesian grid method is very useful for CFD simulation around a complex geometry in terms of automatic and robust grid generation. However, it is...
SourceID nii
jstage
SourceType Publisher
StartPage 20070032
SubjectTerms Boundary Condition
Cartesian grid
Heat Exchanger
Incompressible Viscous Flow
Poisson Equation
Pressure Loss
Title Implementation of Pressure Loss Model for Incompressible Flow Solver on Cartesian Grid Method
URI https://www.jstage.jst.go.jp/article/jsces/2007/0/2007_0_20070032/_article/-char/en
https://cir.nii.ac.jp/crid/1390569944002452480
Volume 2007
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Transactions of the Japan Society for Computational Engineering and Science, 2007/12/21, Vol.2007, pp.20070032-20070032
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  databaseCode: KQ8
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1347-8826
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssj0069538
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68cILd8SAIT_gp6iQuI7jPGZRyljpGFomjQdUJY4jtYIWtZ2Q-FP8Rc6xky7RJnF5qBu5TSL5fDkX55zvEPIaTGpUVUUwLEWohkLAI1Vi0jiS4ipuwIIqLHCensrjC3FyGV4OBr86WUtX2_KN_nlrXcn_SBXmQK5YJfsPkt1dFCbgGOQLI0gYxr-SsaX2_dZUD1m_z1X7rY33AYyfbXRm6xNRDcCDb3NesVRq_HX1wztfYVY0vi1IMbHTVlO-W88rb2q7Snfd1vy6q_imzSo4ATO77GV9ug4R7e5ih-nQ5Yc6LbJD2CQ5h483MfN2imUhO_KZGrMsZipiKvNYpliSsjhmmWBHCVNpb5siwpQPHnRMyFlyiuwO77P8swcBrpd-nJ5d5C3lb4dGy_JqNVtszko51TwSYE-Vq69vdTfeqat-kb3IbzZMzY2pm-ZCcGsvNqCTHZ1l_wo9Im588Qf-NaCbyz1yh0dSYsuMyaeOPxvLQHbIkjiy46G_51wDGYN5aeo38dZvb7kxeEILiAuQ8GFvOZ93nJ38AbnXRCk0cZB7SAaL4hG530QstJHk5jH50kcgXdW0RSBFBFKLQArgoH0EUkQgdQikcOIOgRQRSB0Cn5B8nOXp8bBp2DFcQCA8DJUJilrUsSqQh84UJq7rkBeRMH5RGAWe-yjC-H9UR9wEpYzKqqx0VWrJK6356CnZX66W5hmhvjQ1h_O0DmoRmKLkpS60gtWtZBDo4ICkbpVm3x0py6x5CGd2SbG5ajTzu1-4trs_YUUjKJADcghLPNNzHCEUAtnGsRAuHUEo__kffn9B7l5D_SXZ366vzCH4qNvylcXFb0ilhZM
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+Pressure+Loss+Model+for+Incompressible+Flow+Solver+on+Cartesian+Grid+Method&rft.jtitle=Transactions+of+the+Japan+Society+for+Computational+Engineering+and+Science&rft.au=AKASAKA+Kei&rft.au=%E5%B0%8F%E9%87%8E+%E8%AC%99%E4%BA%8C&rft.date=2007-12-21&rft.pub=JAPAN+SOCIETY+FOR+COMPUTATIONAL+ENGINEERING+AND+SCIENCE&rft.eissn=1347-8826&rft.volume=2007&rft.spage=20070032&rft.epage=20070032&rft_id=info:doi/10.11421%2Fjsces.2007.20070032&rft.externalDocID=130008056226