The Motor Unit Recruitment Patterns in Stroke Show Different Characteristics Depending on the Phase
Objective: The aim of this study was to clarify the characteristics of motor unit recruitment patterns in post-stroke at different phases.Methods: A total of 16 subjects, 8 subacute and 8 chronic phase stroke patients, participated in this study. Wireless surface electromyography(sEMG) was attached...
Saved in:
Published in | Physical Therapy Japan Vol. 52; no. 1; pp. 20 - 27 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Japanese |
Published |
Japanese Society of Physical Therapy
20.02.2025
一般社団法人日本理学療法学会連合 |
Subjects | |
Online Access | Get full text |
ISSN | 0289-3770 2189-602X |
DOI | 10.15063/rigaku.12531 |
Cover
Abstract | Objective: The aim of this study was to clarify the characteristics of motor unit recruitment patterns in post-stroke at different phases.Methods: A total of 16 subjects, 8 subacute and 8 chronic phase stroke patients, participated in this study. Wireless surface electromyography(sEMG) was attached to the biceps brachii on the unaffected and affected side. We measured maximum muscle force and performed visual tracking tasks. Then, we decomposed and detected the motor unit data from the sEMG signal using the decomposition algorithm. We calculated the motor unit recruitment range and motor unit recruitment threshold, and the motor unit firing rate was analyzed for phase factors and paralysis factors.Results: The results suggest that the motor unit recruitment range and threshold were lower in the chronic phase than in the subacute phase. There were significant effects of the phase factors and no significant effect of the paralysis factors.Conclusion: The motor unit recruitment patterns, in which small motor units act synchronously to control forces, indicated different characteristics between the subacute and chronic phases. |
---|---|
AbstractList | Objective: The aim of this study was to clarify the characteristics of motor unit recruitment patterns in post-stroke at different phases.Methods: A total of 16 subjects, 8 subacute and 8 chronic phase stroke patients, participated in this study. Wireless surface electromyography(sEMG) was attached to the biceps brachii on the unaffected and affected side. We measured maximum muscle force and performed visual tracking tasks. Then, we decomposed and detected the motor unit data from the sEMG signal using the decomposition algorithm. We calculated the motor unit recruitment range and motor unit recruitment threshold, and the motor unit firing rate was analyzed for phase factors and paralysis factors.Results: The results suggest that the motor unit recruitment range and threshold were lower in the chronic phase than in the subacute phase. There were significant effects of the phase factors and no significant effect of the paralysis factors.Conclusion: The motor unit recruitment patterns, in which small motor units act synchronously to control forces, indicated different characteristics between the subacute and chronic phases. Objective: The aim of this study was to clarify the characteristics of motor unit recruitment patterns in post-stroke at different phases.Methods: A total of 16 subjects, 8 subacute and 8 chronic phase stroke patients, participated in this study. Wireless surface electromyography(sEMG) was attached to the biceps brachii on the unaffected and affected side. We measured maximum muscle force and performed visual tracking tasks. Then, we decomposed and detected the motor unit data from the sEMG signal using the decomposition algorithm. We calculated the motor unit recruitment range and motor unit recruitment threshold, and the motor unit firing rate was analyzed for phase factors and paralysis factors.Results: The results suggest that the motor unit recruitment range and threshold were lower in the chronic phase than in the subacute phase. There were significant effects of the phase factors and no significant effect of the paralysis factors.Conclusion: The motor unit recruitment patterns, in which small motor units act synchronously to control forces, indicated different characteristics between the subacute and chronic phases. 【目的】脳卒中片麻痺者における病期の違いによる運動単位動員様式の特徴を明らかにすることを目的とした。【方法】回復期及び慢性期脳卒中者各8名,計16名を対象とした。運動単位分解用ワイヤレス表面筋電計を非麻痺側及び麻痺側上腕二頭筋に貼付し,肘関節屈曲等尺性収縮による最大筋力の測定及び視覚追跡課題を実施した。測定された筋活動データは分解アルゴリズムに基づいて運動単位データを取得し,各病期及び麻痺の有無の2要因において運動単位動員範囲や運動単位動員閾値を探索した。【結果】運動単位動員範囲及び運動単位動員閾値は病期の要因でのみ主効果を認め,慢性期群が回復期群よりも低値を示した。一方,麻痺の要因においては主効果を認めなかった。【結論】小さい運動単位が同期的に活動し,力を制御する運動単位動員様式は,脳卒中回復期及び慢性期の病期の違いにより異なる特徴をもつことが示唆された。 |
Author | ITO, Mio NAKAMURA, Takahito ITO, Takanori KOKUBUN, Takanori |
Author_FL | 伊藤 実央 中村 高仁 国分 貴徳 伊藤 貴紀 |
Author_FL_xml | – sequence: 1 fullname: 伊藤 実央 – sequence: 2 fullname: 伊藤 貴紀 – sequence: 3 fullname: 中村 高仁 – sequence: 4 fullname: 国分 貴徳 |
Author_xml | – sequence: 1 fullname: NAKAMURA, Takahito organization: Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University – sequence: 1 fullname: KOKUBUN, Takanori organization: Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University – sequence: 1 fullname: ITO, Mio organization: Department of Rehabilitation, Rehabilitation Amakusa Hospital – sequence: 1 fullname: ITO, Takanori organization: Graduate School of Health, Medicine, and Welfare, Saitama Prefectural University |
BackLink | https://cir.nii.ac.jp/crid/1390584729933177984$$DView record in CiNii |
BookMark | eNo9kM1Lw0AQxRepYK09et-D19bZj2SzR239gorFVvAWNptJs_3YlM0W8b83tSIMbwbmx4P3LknPNx4JuWYwZgmk4ja4ldkcxowngp2RPmeZHqXAP3ukD7y7hVJwQYZt6woAyBRnXPWJXdZIX5vYBPrhXaTvaMPBxR36SOcmRgy-pc7TRQzNBumibr7o1FUVhiMxqU0wtoNcG51t6RT36EvnV7TxNHbO89q0eEXOK7Ntcfi3B2T5-LCcPI9mb08vk7vZaJ1lcmRLU1olioRXCEqAlSqRDEomM8uwKgSgzIArVqjUVgBaQqlTMFKzbhDEgNycbL1zuXVHZUJDkknFtRaCKaUz2WH3J2zdRrPCfB_czoTv3IQuwhbzU495wnP2K8c-_5-2C5yjFz8wqHBE |
ContentType | Journal Article |
Copyright | 2025 Japanese Society of Physical Therapy |
Copyright_xml | – notice: 2025 Japanese Society of Physical Therapy |
DBID | RYH |
DOI | 10.15063/rigaku.12531 |
DatabaseName | CiNii Complete |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | 脳卒中片麻痺者の運動単位動員様式は病期により異なる特徴を示す |
DocumentTitle_FL | 脳卒中片麻痺者の運動単位動員様式は病期により異なる特徴を示す |
EISSN | 2189-602X |
EndPage | 27 |
ExternalDocumentID | article_rigaku_52_1_52_12531_article_char_en |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS EIHBH JSF KQ8 RJT RYH |
ID | FETCH-LOGICAL-j884-cdadc73b52fe0730c475410d148c1efb30e480271b76cf00940d960a491491e03 |
ISSN | 0289-3770 |
IngestDate | Thu Jun 26 21:09:45 EDT 2025 Wed Sep 03 06:30:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 1 |
Language | Japanese |
License | https://creativecommons.org/licenses/by/4.0/deed.ja |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j884-cdadc73b52fe0730c475410d148c1efb30e480271b76cf00940d960a491491e03 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/rigaku/52/1/52_12531/_article/-char/en |
PageCount | 8 |
ParticipantIDs | nii_cinii_1390584729933177984 jstage_primary_article_rigaku_52_1_52_12531_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2025/02/20 2025-02-20 |
PublicationDateYYYYMMDD | 2025-02-20 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025/02/20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Physical Therapy Japan |
PublicationTitleAlternate | Physical Therapy Japan |
PublicationTitle_FL | Physical Therapy Japan 理学療法学 |
PublicationYear | 2025 |
Publisher | Japanese Society of Physical Therapy 一般社団法人日本理学療法学会連合 |
Publisher_xml | – name: Japanese Society of Physical Therapy – name: 一般社団法人日本理学療法学会連合 |
References | 24) Hu X, Suresh AK, et al.: Assessing altered motor unit recruitment patterns in paretic muscles of stroke survivors using surface electromyography. J Neural Eng. 2015; 12: 066001. 12) De Luca CJ, LeFever RS, et al.: Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol. 1982; 329: 113–128. 10) McNulty PA, Lin G, et al.: Single motor unit firing rate after stroke is higher on the less-affected side during stable low-level voluntary contractions. Front Hum Neurosci. 2014; 8: 518–518. 2) Bernhardt J, Hayward KS, et al.: Agreed definitions and a shared vision for new standards in stroke recovery research: The stroke recovery and rehabilitation roundtable taskforce. Neurorehabil Neural Repair. 2017; 31: 793–799. 11) Adrian ED, Bronk DW: The discharge of impulses in motor nerve fibres- Part II. The frequency of discharge in reflex and voluntary contractions. J Physiol. 1929; 67: i3–i151. 18) Hara Y, Masakado Y, et al.: The physiological functional loss of single thenar motor units in the stroke patients: When does it occur? Does it progress? Clin Neurophysiol. 2004; 115: 97–103. 37) Conrad MO, Qiu D, et al.: Analysis of muscle fiber conduction velocity during finger flexion and extension after stroke. Top Stroke Rehabil. 2017; 24: 262–268. 8) Azzollini V, Dalise S, et al.: How does stroke affect skeletal muscle? state of the art and rehabilitation perspective., Review Front Neurol. 2021; 12: 797559. 7) English C, McLennan H, et al.: Loss of skeletal muscle mass after stroke: A systematic review. Int J Stroke. 2010; 5: 395–402. 36) Dalla Toffola E, Sparpaglione D, et al.: Myoelectric manifestations of muscle changes in stroke patients. Arch Phys Med Rehabil. 2001; 82: 661–665. 33) Enoka RM, Duchateau J: Rate coding and the control of muscle force. Cold Spring Harb Perspect Med. 2017; 7: a029702. 30) Henneman E, Somjen G, et al.: Excitability and inhibitibility of motoneurons of different sizes. J Neurophysiol. 1965; 28: 599–620. 9) Mirbagheri MM, Tsao C, et al.: Time course of changes in neuromuscular properties following stroke. Annu Int Conf IEEE Eng Med Biol Soc. 2008; 2008: 5097–5100. 19) Arasaki K, Igarashi O, et al.: Reduction in the motor unit number estimate (MUNE) after cerebral infarction. J Neurol Sci. 2006; 250: 27–32. 29) Farmer SF, Swash M, et al.: Changes in motor unit synchronization following central nervous lesions in man. J Physiol. 1993; 463: 83–105. 15) Enoka RM: Physiological validation of the decomposition of surface EMG signals. J Electromyogr Kinesiol. 2019; 46: 70–83. 14) De Luca CJ, Chang S-S, et al.: Decomposition of surface EMG signals from cyclic dynamic contractions. J Neurophysiol. 2015; 113: 1941–1951. 4) Kolmos M, Madsen MJ, et al.: Patient-tailored transcranial direct current stimulation to improve stroke rehabilitation: Study protocol of a randomized sham-controlled trial. Trials. 2023; 24: 216. 17) McComas AJ, Sica REP, et al.: Motoneurone dysfunction in patients with hemiplegie atrophy. Nat New Biol. 1971; 233: 21–23. 35) De Luca CJ, Erim Z: Common drive of motor units in regulation of muscle force. Trends Neurosci. 1994; 17: 299–305. 26) Kline JC, Luca CJD: Synchronization of motor unit firings: an epiphenomenon of firing rate characteristics not common inputs. J Neurophysiol. 2016; 115: 178–192. 38) Berenpas F, Martens A-M, et al.: Bilateral changes in muscle architecture of physically active people with chronic stroke: A quantitative muscle ultrasound study. Clin Neurophysiol. 2017; 128: 115–122. 31) Lukács M, Vécsei L, et al.: Large motor units are selectively affected following a stroke. Clin Neurophysiol. 2008; 119: 2555–2558. 32) Heckman CJ, Enoka RM: Physiology of the motor neuron and the motor unit. In: Eisen A (ed): Handbook of Clinical Neurophysiology. Elsevier, Canada, 2004, pp. 119–147. 6) Metoki N, Sato Y, et al.: Muscular atrophy in the hemiplegic thigh in patients after stroke. Am J Phys Med Rehabil. 2003; 82: 862–865. 28) De Luca CJ, Contessa P: Biomechanical benefits of the Onion-Skin motor unit control scheme. J Biomech. 2015; 48: 195–203. 13) De Luca CJ, Adam A, et al.: Decomposition of Surface EMG Signals. J Neurophysiol. 2006; 96: 1646–1657. 20) Hu X, Suresh AK, et al.: Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography. J Neural Eng. 2016; 13: 046025. 25) Orantes-Gonzalez E, Heredia-Jimenez J, et al.: An exploration of the motor unit behaviour during the concentric and eccentric phases of a squat task performed at different speeds. Sports Biomech. 2023; 1–12. doi: 10.1080/14763141. 34) Monti RJ, Roy RR, et al.: Role of motor unit structure in defining function. Muscle Nerve. 2001; 24: 848–866. 16) Jain R, Garg VK: Review of electromyography signal with detection, decomposition, features and classifier theories. Int J Comput Sci Eng. 2019; 7: 487–500. 1) Langhorne P, Coupar F, et al.: Motor recovery after stroke: A systematic review. Lancet Neurol. 2009; 8: 741–754. 3) van Lieshout ECC, Jacobs LD, et al.: Exploring the experiences of stroke patients treated with transcranial magnetic stimulation for upper limb recovery: A qualitative study. BMC Neurol. 2020; 20: 365. 22) Shin H, Suresh NL, et al.: Relative contribution of different altered motor unit control to muscle weakness in stroke: A simulation study. J Neural Eng. 2018; 15: 016014. 23) Liu Y, Chen Y-T, et al.: Motor unit distribution and recruitment in spastic and non-spastic bilateral biceps brachii muscles of chronic stroke survivors. J Neural Eng. 2022; 19: 046047. 5) Feng W, Kautz SA, et al.: Transcranial direct current stimulation for poststroke motor recovery: Challenges and opportunities. PM R. 2018; 10(Suppl. 2): S157–S164. 21) Murphy SA, Negro F, et al.: Stroke increases ischemia-related decreases in motor unit discharge rates. J Neurophysiol. 2018; 120: 3246–3256. 27) Duchateau J, Enoka RM: Distribution of motor unit properties across human muscles. J Appl Physiol. 2022; 132: 1–13. |
References_xml | – reference: 3) van Lieshout ECC, Jacobs LD, et al.: Exploring the experiences of stroke patients treated with transcranial magnetic stimulation for upper limb recovery: A qualitative study. BMC Neurol. 2020; 20: 365. – reference: 5) Feng W, Kautz SA, et al.: Transcranial direct current stimulation for poststroke motor recovery: Challenges and opportunities. PM R. 2018; 10(Suppl. 2): S157–S164. – reference: 4) Kolmos M, Madsen MJ, et al.: Patient-tailored transcranial direct current stimulation to improve stroke rehabilitation: Study protocol of a randomized sham-controlled trial. Trials. 2023; 24: 216. – reference: 30) Henneman E, Somjen G, et al.: Excitability and inhibitibility of motoneurons of different sizes. J Neurophysiol. 1965; 28: 599–620. – reference: 21) Murphy SA, Negro F, et al.: Stroke increases ischemia-related decreases in motor unit discharge rates. J Neurophysiol. 2018; 120: 3246–3256. – reference: 37) Conrad MO, Qiu D, et al.: Analysis of muscle fiber conduction velocity during finger flexion and extension after stroke. Top Stroke Rehabil. 2017; 24: 262–268. – reference: 32) Heckman CJ, Enoka RM: Physiology of the motor neuron and the motor unit. In: Eisen A (ed): Handbook of Clinical Neurophysiology. Elsevier, Canada, 2004, pp. 119–147. – reference: 24) Hu X, Suresh AK, et al.: Assessing altered motor unit recruitment patterns in paretic muscles of stroke survivors using surface electromyography. J Neural Eng. 2015; 12: 066001. – reference: 7) English C, McLennan H, et al.: Loss of skeletal muscle mass after stroke: A systematic review. Int J Stroke. 2010; 5: 395–402. – reference: 23) Liu Y, Chen Y-T, et al.: Motor unit distribution and recruitment in spastic and non-spastic bilateral biceps brachii muscles of chronic stroke survivors. J Neural Eng. 2022; 19: 046047. – reference: 2) Bernhardt J, Hayward KS, et al.: Agreed definitions and a shared vision for new standards in stroke recovery research: The stroke recovery and rehabilitation roundtable taskforce. Neurorehabil Neural Repair. 2017; 31: 793–799. – reference: 34) Monti RJ, Roy RR, et al.: Role of motor unit structure in defining function. Muscle Nerve. 2001; 24: 848–866. – reference: 1) Langhorne P, Coupar F, et al.: Motor recovery after stroke: A systematic review. Lancet Neurol. 2009; 8: 741–754. – reference: 19) Arasaki K, Igarashi O, et al.: Reduction in the motor unit number estimate (MUNE) after cerebral infarction. J Neurol Sci. 2006; 250: 27–32. – reference: 33) Enoka RM, Duchateau J: Rate coding and the control of muscle force. Cold Spring Harb Perspect Med. 2017; 7: a029702. – reference: 13) De Luca CJ, Adam A, et al.: Decomposition of Surface EMG Signals. J Neurophysiol. 2006; 96: 1646–1657. – reference: 27) Duchateau J, Enoka RM: Distribution of motor unit properties across human muscles. J Appl Physiol. 2022; 132: 1–13. – reference: 35) De Luca CJ, Erim Z: Common drive of motor units in regulation of muscle force. Trends Neurosci. 1994; 17: 299–305. – reference: 11) Adrian ED, Bronk DW: The discharge of impulses in motor nerve fibres- Part II. The frequency of discharge in reflex and voluntary contractions. J Physiol. 1929; 67: i3–i151. – reference: 6) Metoki N, Sato Y, et al.: Muscular atrophy in the hemiplegic thigh in patients after stroke. Am J Phys Med Rehabil. 2003; 82: 862–865. – reference: 25) Orantes-Gonzalez E, Heredia-Jimenez J, et al.: An exploration of the motor unit behaviour during the concentric and eccentric phases of a squat task performed at different speeds. Sports Biomech. 2023; 1–12. doi: 10.1080/14763141. – reference: 26) Kline JC, Luca CJD: Synchronization of motor unit firings: an epiphenomenon of firing rate characteristics not common inputs. J Neurophysiol. 2016; 115: 178–192. – reference: 17) McComas AJ, Sica REP, et al.: Motoneurone dysfunction in patients with hemiplegie atrophy. Nat New Biol. 1971; 233: 21–23. – reference: 8) Azzollini V, Dalise S, et al.: How does stroke affect skeletal muscle? state of the art and rehabilitation perspective., Review Front Neurol. 2021; 12: 797559. – reference: 12) De Luca CJ, LeFever RS, et al.: Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol. 1982; 329: 113–128. – reference: 22) Shin H, Suresh NL, et al.: Relative contribution of different altered motor unit control to muscle weakness in stroke: A simulation study. J Neural Eng. 2018; 15: 016014. – reference: 16) Jain R, Garg VK: Review of electromyography signal with detection, decomposition, features and classifier theories. Int J Comput Sci Eng. 2019; 7: 487–500. – reference: 20) Hu X, Suresh AK, et al.: Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography. J Neural Eng. 2016; 13: 046025. – reference: 28) De Luca CJ, Contessa P: Biomechanical benefits of the Onion-Skin motor unit control scheme. J Biomech. 2015; 48: 195–203. – reference: 29) Farmer SF, Swash M, et al.: Changes in motor unit synchronization following central nervous lesions in man. J Physiol. 1993; 463: 83–105. – reference: 15) Enoka RM: Physiological validation of the decomposition of surface EMG signals. J Electromyogr Kinesiol. 2019; 46: 70–83. – reference: 18) Hara Y, Masakado Y, et al.: The physiological functional loss of single thenar motor units in the stroke patients: When does it occur? Does it progress? Clin Neurophysiol. 2004; 115: 97–103. – reference: 38) Berenpas F, Martens A-M, et al.: Bilateral changes in muscle architecture of physically active people with chronic stroke: A quantitative muscle ultrasound study. Clin Neurophysiol. 2017; 128: 115–122. – reference: 14) De Luca CJ, Chang S-S, et al.: Decomposition of surface EMG signals from cyclic dynamic contractions. J Neurophysiol. 2015; 113: 1941–1951. – reference: 31) Lukács M, Vécsei L, et al.: Large motor units are selectively affected following a stroke. Clin Neurophysiol. 2008; 119: 2555–2558. – reference: 10) McNulty PA, Lin G, et al.: Single motor unit firing rate after stroke is higher on the less-affected side during stable low-level voluntary contractions. Front Hum Neurosci. 2014; 8: 518–518. – reference: 36) Dalla Toffola E, Sparpaglione D, et al.: Myoelectric manifestations of muscle changes in stroke patients. Arch Phys Med Rehabil. 2001; 82: 661–665. – reference: 9) Mirbagheri MM, Tsao C, et al.: Time course of changes in neuromuscular properties following stroke. Annu Int Conf IEEE Eng Med Biol Soc. 2008; 2008: 5097–5100. |
SSID | ssib000872127 ssib022575314 ssib044219340 ssib001527063 ssib005902260 ssj0003304640 ssib003110431 ssib044759789 ssib023161324 |
Score | 2.0113409 |
Snippet | Objective: The aim of this study was to clarify the characteristics of motor unit recruitment patterns in post-stroke at different phases.Methods: A total of... |
SourceID | nii jstage |
SourceType | Publisher |
StartPage | 20 |
SubjectTerms | Chronic Motor unit Neuromuscular physiology Stroke Subacute 回復期 慢性期 神経筋生理学 脳卒中 運動単位 |
Title | The Motor Unit Recruitment Patterns in Stroke Show Different Characteristics Depending on the Phase |
URI | https://www.jstage.jst.go.jp/article/rigaku/52/1/52_12531/_article/-char/en https://cir.nii.ac.jp/crid/1390584729933177984 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Physical Therapy Japan, 2025/02/20, Vol.52(1), pp.20-27 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2189-602X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003304640 issn: 0289-3770 databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2189-602X dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044759789 issn: 0289-3770 databaseCode: M~E dateStart: 19840101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELW6y4ULAgFigUU-cFulOInzUXEqX1pt1W5hW2lvUeI4NK2UoNIKiT_G3-PZzoe3y4EFqbIqJ6oSz-vMm2T8hpDXuZCBVwSuI4vCc9TWSieNw9jJw1jFJ1m4WoFvOgvPl_ziOrgeDH5ZVUv7XTYUP_-4r-RfrIo52FXtkr2DZbsfxQS-w74YYWGMf23jaY2sWVNHTQH3pSkbn2vdTFMlfrXb1ht5drWqf8DFmYYoO_2i3ZZq_qDb4eoiaFP6OF-1b24a8jpvbbowUgRnF4i0Hbhm48l4uvwy1ghIN-kKvqJz55eT5bvlrD1U1duyw-Ti0pTv1wczN05snkt4Zp8362OGugL5XXbVp6qk7-AyLV-HvA--zvQQGUo9B_IxckKmu613zjrwboGy8bzMiuFGbuBWdAjAx2DTbfk13eyHoHZNALopuN2YMzGnJYGXuHpQpyftQbUnDhA8Ive8KAxV64zJZ5vXRko53-KlXsQsnTMfpMsWNVIaOl6fp8LHIovsX2-Dg4N19bL6nCPO-L1IjxZtbNsGKAqiHlKF3DxfbBa20ZdVS_DGXgAwrzXyECUwcVSVpUWuFg_JgyYromNz24_IYJ0-JgL2oxreVMGbWvCmLbxpWVEDb6rgTTt40wN40w7etK4o4E01vJ-QxaePi_fnTtMTxFnHMXdEnuYi8jP4F6mCk8Cdc5flSOqFK4vMZ5LHzIvcLApFocpmWY4cPeUjFx_J_KfkuKor-YzQ0BeBK5DdhMLlmZvHOYvhziIWg4sEXJ6Qt2Zhkm9G9yW5CzBOyClWMxGlGpFlMVWOAOrng69Ho5g__69ff0Hu93-5l-R4t93LU5DjXfZKA_E3o6ayPA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Motor+Unit+Recruitment+Patterns+in+Stroke+Show+Different+Characteristics+Depending+on+the+Phase&rft.jtitle=Physical+Therapy+Japan&rft.au=NAKAMURA%2C+Takahito&rft.au=KOKUBUN%2C+Takanori&rft.au=ITO%2C+Mio&rft.au=ITO%2C+Takanori&rft.date=2025-02-20&rft.pub=Japanese+Society+of+Physical+Therapy&rft.issn=0289-3770&rft.eissn=2189-602X&rft.volume=52&rft.issue=1&rft.spage=20&rft.epage=27&rft_id=info:doi/10.15063%2Frigaku.12531&rft.externalDocID=article_rigaku_52_1_52_12531_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0289-3770&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0289-3770&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0289-3770&client=summon |