The Motor Unit Recruitment Patterns in Stroke Show Different Characteristics Depending on the Phase

Objective: The aim of this study was to clarify the characteristics of motor unit recruitment patterns in post-stroke at different phases.Methods: A total of 16 subjects, 8 subacute and 8 chronic phase stroke patients, participated in this study. Wireless surface electromyography(sEMG) was attached...

Full description

Saved in:
Bibliographic Details
Published inPhysical Therapy Japan Vol. 52; no. 1; pp. 20 - 27
Main Authors NAKAMURA, Takahito, KOKUBUN, Takanori, ITO, Mio, ITO, Takanori
Format Journal Article
LanguageJapanese
Published Japanese Society of Physical Therapy 20.02.2025
一般社団法人日本理学療法学会連合
Subjects
Online AccessGet full text
ISSN0289-3770
2189-602X
DOI10.15063/rigaku.12531

Cover

Abstract Objective: The aim of this study was to clarify the characteristics of motor unit recruitment patterns in post-stroke at different phases.Methods: A total of 16 subjects, 8 subacute and 8 chronic phase stroke patients, participated in this study. Wireless surface electromyography(sEMG) was attached to the biceps brachii on the unaffected and affected side. We measured maximum muscle force and performed visual tracking tasks. Then, we decomposed and detected the motor unit data from the sEMG signal using the decomposition algorithm. We calculated the motor unit recruitment range and motor unit recruitment threshold, and the motor unit firing rate was analyzed for phase factors and paralysis factors.Results: The results suggest that the motor unit recruitment range and threshold were lower in the chronic phase than in the subacute phase. There were significant effects of the phase factors and no significant effect of the paralysis factors.Conclusion: The motor unit recruitment patterns, in which small motor units act synchronously to control forces, indicated different characteristics between the subacute and chronic phases.
AbstractList Objective: The aim of this study was to clarify the characteristics of motor unit recruitment patterns in post-stroke at different phases.Methods: A total of 16 subjects, 8 subacute and 8 chronic phase stroke patients, participated in this study. Wireless surface electromyography(sEMG) was attached to the biceps brachii on the unaffected and affected side. We measured maximum muscle force and performed visual tracking tasks. Then, we decomposed and detected the motor unit data from the sEMG signal using the decomposition algorithm. We calculated the motor unit recruitment range and motor unit recruitment threshold, and the motor unit firing rate was analyzed for phase factors and paralysis factors.Results: The results suggest that the motor unit recruitment range and threshold were lower in the chronic phase than in the subacute phase. There were significant effects of the phase factors and no significant effect of the paralysis factors.Conclusion: The motor unit recruitment patterns, in which small motor units act synchronously to control forces, indicated different characteristics between the subacute and chronic phases.
Objective: The aim of this study was to clarify the characteristics of motor unit recruitment patterns in post-stroke at different phases.Methods: A total of 16 subjects, 8 subacute and 8 chronic phase stroke patients, participated in this study. Wireless surface electromyography(sEMG) was attached to the biceps brachii on the unaffected and affected side. We measured maximum muscle force and performed visual tracking tasks. Then, we decomposed and detected the motor unit data from the sEMG signal using the decomposition algorithm. We calculated the motor unit recruitment range and motor unit recruitment threshold, and the motor unit firing rate was analyzed for phase factors and paralysis factors.Results: The results suggest that the motor unit recruitment range and threshold were lower in the chronic phase than in the subacute phase. There were significant effects of the phase factors and no significant effect of the paralysis factors.Conclusion: The motor unit recruitment patterns, in which small motor units act synchronously to control forces, indicated different characteristics between the subacute and chronic phases. 【目的】脳卒中片麻痺者における病期の違いによる運動単位動員様式の特徴を明らかにすることを目的とした。【方法】回復期及び慢性期脳卒中者各8名,計16名を対象とした。運動単位分解用ワイヤレス表面筋電計を非麻痺側及び麻痺側上腕二頭筋に貼付し,肘関節屈曲等尺性収縮による最大筋力の測定及び視覚追跡課題を実施した。測定された筋活動データは分解アルゴリズムに基づいて運動単位データを取得し,各病期及び麻痺の有無の2要因において運動単位動員範囲や運動単位動員閾値を探索した。【結果】運動単位動員範囲及び運動単位動員閾値は病期の要因でのみ主効果を認め,慢性期群が回復期群よりも低値を示した。一方,麻痺の要因においては主効果を認めなかった。【結論】小さい運動単位が同期的に活動し,力を制御する運動単位動員様式は,脳卒中回復期及び慢性期の病期の違いにより異なる特徴をもつことが示唆された。
Author ITO, Mio
NAKAMURA, Takahito
ITO, Takanori
KOKUBUN, Takanori
Author_FL 伊藤 実央
中村 高仁
国分 貴徳
伊藤 貴紀
Author_FL_xml – sequence: 1
  fullname: 伊藤 実央
– sequence: 2
  fullname: 伊藤 貴紀
– sequence: 3
  fullname: 中村 高仁
– sequence: 4
  fullname: 国分 貴徳
Author_xml – sequence: 1
  fullname: NAKAMURA, Takahito
  organization: Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University
– sequence: 1
  fullname: KOKUBUN, Takanori
  organization: Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University
– sequence: 1
  fullname: ITO, Mio
  organization: Department of Rehabilitation, Rehabilitation Amakusa Hospital
– sequence: 1
  fullname: ITO, Takanori
  organization: Graduate School of Health, Medicine, and Welfare, Saitama Prefectural University
BackLink https://cir.nii.ac.jp/crid/1390584729933177984$$DView record in CiNii
BookMark eNo9kM1Lw0AQxRepYK09et-D19bZj2SzR239gorFVvAWNptJs_3YlM0W8b83tSIMbwbmx4P3LknPNx4JuWYwZgmk4ja4ldkcxowngp2RPmeZHqXAP3ukD7y7hVJwQYZt6woAyBRnXPWJXdZIX5vYBPrhXaTvaMPBxR36SOcmRgy-pc7TRQzNBumibr7o1FUVhiMxqU0wtoNcG51t6RT36EvnV7TxNHbO89q0eEXOK7Ntcfi3B2T5-LCcPI9mb08vk7vZaJ1lcmRLU1olioRXCEqAlSqRDEomM8uwKgSgzIArVqjUVgBaQqlTMFKzbhDEgNycbL1zuXVHZUJDkknFtRaCKaUz2WH3J2zdRrPCfB_czoTv3IQuwhbzU495wnP2K8c-_5-2C5yjFz8wqHBE
ContentType Journal Article
Copyright 2025 Japanese Society of Physical Therapy
Copyright_xml – notice: 2025 Japanese Society of Physical Therapy
DBID RYH
DOI 10.15063/rigaku.12531
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate 脳卒中片麻痺者の運動単位動員様式は病期により異なる特徴を示す
DocumentTitle_FL 脳卒中片麻痺者の運動単位動員様式は病期により異なる特徴を示す
EISSN 2189-602X
EndPage 27
ExternalDocumentID article_rigaku_52_1_52_12531_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
EIHBH
JSF
KQ8
RJT
RYH
ID FETCH-LOGICAL-j884-cdadc73b52fe0730c475410d148c1efb30e480271b76cf00940d960a491491e03
ISSN 0289-3770
IngestDate Thu Jun 26 21:09:45 EDT 2025
Wed Sep 03 06:30:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 1
Language Japanese
License https://creativecommons.org/licenses/by/4.0/deed.ja
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j884-cdadc73b52fe0730c475410d148c1efb30e480271b76cf00940d960a491491e03
OpenAccessLink https://www.jstage.jst.go.jp/article/rigaku/52/1/52_12531/_article/-char/en
PageCount 8
ParticipantIDs nii_cinii_1390584729933177984
jstage_primary_article_rigaku_52_1_52_12531_article_char_en
PublicationCentury 2000
PublicationDate 2025/02/20
2025-02-20
PublicationDateYYYYMMDD 2025-02-20
PublicationDate_xml – month: 02
  year: 2025
  text: 2025/02/20
  day: 20
PublicationDecade 2020
PublicationTitle Physical Therapy Japan
PublicationTitleAlternate Physical Therapy Japan
PublicationTitle_FL Physical Therapy Japan
理学療法学
PublicationYear 2025
Publisher Japanese Society of Physical Therapy
一般社団法人日本理学療法学会連合
Publisher_xml – name: Japanese Society of Physical Therapy
– name: 一般社団法人日本理学療法学会連合
References 24) Hu X, Suresh AK, et al.: Assessing altered motor unit recruitment patterns in paretic muscles of stroke survivors using surface electromyography. J Neural Eng. 2015; 12: 066001.
12) De Luca CJ, LeFever RS, et al.: Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol. 1982; 329: 113–128.
10) McNulty PA, Lin G, et al.: Single motor unit firing rate after stroke is higher on the less-affected side during stable low-level voluntary contractions. Front Hum Neurosci. 2014; 8: 518–518.
2) Bernhardt J, Hayward KS, et al.: Agreed definitions and a shared vision for new standards in stroke recovery research: The stroke recovery and rehabilitation roundtable taskforce. Neurorehabil Neural Repair. 2017; 31: 793–799.
11) Adrian ED, Bronk DW: The discharge of impulses in motor nerve fibres- Part II. The frequency of discharge in reflex and voluntary contractions. J Physiol. 1929; 67: i3–i151.
18) Hara Y, Masakado Y, et al.: The physiological functional loss of single thenar motor units in the stroke patients: When does it occur? Does it progress? Clin Neurophysiol. 2004; 115: 97–103.
37) Conrad MO, Qiu D, et al.: Analysis of muscle fiber conduction velocity during finger flexion and extension after stroke. Top Stroke Rehabil. 2017; 24: 262–268.
8) Azzollini V, Dalise S, et al.: How does stroke affect skeletal muscle? state of the art and rehabilitation perspective., Review Front Neurol. 2021; 12: 797559.
7) English C, McLennan H, et al.: Loss of skeletal muscle mass after stroke: A systematic review. Int J Stroke. 2010; 5: 395–402.
36) Dalla Toffola E, Sparpaglione D, et al.: Myoelectric manifestations of muscle changes in stroke patients. Arch Phys Med Rehabil. 2001; 82: 661–665.
33) Enoka RM, Duchateau J: Rate coding and the control of muscle force. Cold Spring Harb Perspect Med. 2017; 7: a029702.
30) Henneman E, Somjen G, et al.: Excitability and inhibitibility of motoneurons of different sizes. J Neurophysiol. 1965; 28: 599–620.
9) Mirbagheri MM, Tsao C, et al.: Time course of changes in neuromuscular properties following stroke. Annu Int Conf IEEE Eng Med Biol Soc. 2008; 2008: 5097–5100.
19) Arasaki K, Igarashi O, et al.: Reduction in the motor unit number estimate (MUNE) after cerebral infarction. J Neurol Sci. 2006; 250: 27–32.
29) Farmer SF, Swash M, et al.: Changes in motor unit synchronization following central nervous lesions in man. J Physiol. 1993; 463: 83–105.
15) Enoka RM: Physiological validation of the decomposition of surface EMG signals. J Electromyogr Kinesiol. 2019; 46: 70–83.
14) De Luca CJ, Chang S-S, et al.: Decomposition of surface EMG signals from cyclic dynamic contractions. J Neurophysiol. 2015; 113: 1941–1951.
4) Kolmos M, Madsen MJ, et al.: Patient-tailored transcranial direct current stimulation to improve stroke rehabilitation: Study protocol of a randomized sham-controlled trial. Trials. 2023; 24: 216.
17) McComas AJ, Sica REP, et al.: Motoneurone dysfunction in patients with hemiplegie atrophy. Nat New Biol. 1971; 233: 21–23.
35) De Luca CJ, Erim Z: Common drive of motor units in regulation of muscle force. Trends Neurosci. 1994; 17: 299–305.
26) Kline JC, Luca CJD: Synchronization of motor unit firings: an epiphenomenon of firing rate characteristics not common inputs. J Neurophysiol. 2016; 115: 178–192.
38) Berenpas F, Martens A-M, et al.: Bilateral changes in muscle architecture of physically active people with chronic stroke: A quantitative muscle ultrasound study. Clin Neurophysiol. 2017; 128: 115–122.
31) Lukács M, Vécsei L, et al.: Large motor units are selectively affected following a stroke. Clin Neurophysiol. 2008; 119: 2555–2558.
32) Heckman CJ, Enoka RM: Physiology of the motor neuron and the motor unit. In: Eisen A (ed): Handbook of Clinical Neurophysiology. Elsevier, Canada, 2004, pp. 119–147.
6) Metoki N, Sato Y, et al.: Muscular atrophy in the hemiplegic thigh in patients after stroke. Am J Phys Med Rehabil. 2003; 82: 862–865.
28) De Luca CJ, Contessa P: Biomechanical benefits of the Onion-Skin motor unit control scheme. J Biomech. 2015; 48: 195–203.
13) De Luca CJ, Adam A, et al.: Decomposition of Surface EMG Signals. J Neurophysiol. 2006; 96: 1646–1657.
20) Hu X, Suresh AK, et al.: Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography. J Neural Eng. 2016; 13: 046025.
25) Orantes-Gonzalez E, Heredia-Jimenez J, et al.: An exploration of the motor unit behaviour during the concentric and eccentric phases of a squat task performed at different speeds. Sports Biomech. 2023; 1–12. doi: 10.1080/14763141.
34) Monti RJ, Roy RR, et al.: Role of motor unit structure in defining function. Muscle Nerve. 2001; 24: 848–866.
16) Jain R, Garg VK: Review of electromyography signal with detection, decomposition, features and classifier theories. Int J Comput Sci Eng. 2019; 7: 487–500.
1) Langhorne P, Coupar F, et al.: Motor recovery after stroke: A systematic review. Lancet Neurol. 2009; 8: 741–754.
3) van Lieshout ECC, Jacobs LD, et al.: Exploring the experiences of stroke patients treated with transcranial magnetic stimulation for upper limb recovery: A qualitative study. BMC Neurol. 2020; 20: 365.
22) Shin H, Suresh NL, et al.: Relative contribution of different altered motor unit control to muscle weakness in stroke: A simulation study. J Neural Eng. 2018; 15: 016014.
23) Liu Y, Chen Y-T, et al.: Motor unit distribution and recruitment in spastic and non-spastic bilateral biceps brachii muscles of chronic stroke survivors. J Neural Eng. 2022; 19: 046047.
5) Feng W, Kautz SA, et al.: Transcranial direct current stimulation for poststroke motor recovery: Challenges and opportunities. PM R. 2018; 10(Suppl. 2): S157–S164.
21) Murphy SA, Negro F, et al.: Stroke increases ischemia-related decreases in motor unit discharge rates. J Neurophysiol. 2018; 120: 3246–3256.
27) Duchateau J, Enoka RM: Distribution of motor unit properties across human muscles. J Appl Physiol. 2022; 132: 1–13.
References_xml – reference: 3) van Lieshout ECC, Jacobs LD, et al.: Exploring the experiences of stroke patients treated with transcranial magnetic stimulation for upper limb recovery: A qualitative study. BMC Neurol. 2020; 20: 365.
– reference: 5) Feng W, Kautz SA, et al.: Transcranial direct current stimulation for poststroke motor recovery: Challenges and opportunities. PM R. 2018; 10(Suppl. 2): S157–S164.
– reference: 4) Kolmos M, Madsen MJ, et al.: Patient-tailored transcranial direct current stimulation to improve stroke rehabilitation: Study protocol of a randomized sham-controlled trial. Trials. 2023; 24: 216.
– reference: 30) Henneman E, Somjen G, et al.: Excitability and inhibitibility of motoneurons of different sizes. J Neurophysiol. 1965; 28: 599–620.
– reference: 21) Murphy SA, Negro F, et al.: Stroke increases ischemia-related decreases in motor unit discharge rates. J Neurophysiol. 2018; 120: 3246–3256.
– reference: 37) Conrad MO, Qiu D, et al.: Analysis of muscle fiber conduction velocity during finger flexion and extension after stroke. Top Stroke Rehabil. 2017; 24: 262–268.
– reference: 32) Heckman CJ, Enoka RM: Physiology of the motor neuron and the motor unit. In: Eisen A (ed): Handbook of Clinical Neurophysiology. Elsevier, Canada, 2004, pp. 119–147.
– reference: 24) Hu X, Suresh AK, et al.: Assessing altered motor unit recruitment patterns in paretic muscles of stroke survivors using surface electromyography. J Neural Eng. 2015; 12: 066001.
– reference: 7) English C, McLennan H, et al.: Loss of skeletal muscle mass after stroke: A systematic review. Int J Stroke. 2010; 5: 395–402.
– reference: 23) Liu Y, Chen Y-T, et al.: Motor unit distribution and recruitment in spastic and non-spastic bilateral biceps brachii muscles of chronic stroke survivors. J Neural Eng. 2022; 19: 046047.
– reference: 2) Bernhardt J, Hayward KS, et al.: Agreed definitions and a shared vision for new standards in stroke recovery research: The stroke recovery and rehabilitation roundtable taskforce. Neurorehabil Neural Repair. 2017; 31: 793–799.
– reference: 34) Monti RJ, Roy RR, et al.: Role of motor unit structure in defining function. Muscle Nerve. 2001; 24: 848–866.
– reference: 1) Langhorne P, Coupar F, et al.: Motor recovery after stroke: A systematic review. Lancet Neurol. 2009; 8: 741–754.
– reference: 19) Arasaki K, Igarashi O, et al.: Reduction in the motor unit number estimate (MUNE) after cerebral infarction. J Neurol Sci. 2006; 250: 27–32.
– reference: 33) Enoka RM, Duchateau J: Rate coding and the control of muscle force. Cold Spring Harb Perspect Med. 2017; 7: a029702.
– reference: 13) De Luca CJ, Adam A, et al.: Decomposition of Surface EMG Signals. J Neurophysiol. 2006; 96: 1646–1657.
– reference: 27) Duchateau J, Enoka RM: Distribution of motor unit properties across human muscles. J Appl Physiol. 2022; 132: 1–13.
– reference: 35) De Luca CJ, Erim Z: Common drive of motor units in regulation of muscle force. Trends Neurosci. 1994; 17: 299–305.
– reference: 11) Adrian ED, Bronk DW: The discharge of impulses in motor nerve fibres- Part II. The frequency of discharge in reflex and voluntary contractions. J Physiol. 1929; 67: i3–i151.
– reference: 6) Metoki N, Sato Y, et al.: Muscular atrophy in the hemiplegic thigh in patients after stroke. Am J Phys Med Rehabil. 2003; 82: 862–865.
– reference: 25) Orantes-Gonzalez E, Heredia-Jimenez J, et al.: An exploration of the motor unit behaviour during the concentric and eccentric phases of a squat task performed at different speeds. Sports Biomech. 2023; 1–12. doi: 10.1080/14763141.
– reference: 26) Kline JC, Luca CJD: Synchronization of motor unit firings: an epiphenomenon of firing rate characteristics not common inputs. J Neurophysiol. 2016; 115: 178–192.
– reference: 17) McComas AJ, Sica REP, et al.: Motoneurone dysfunction in patients with hemiplegie atrophy. Nat New Biol. 1971; 233: 21–23.
– reference: 8) Azzollini V, Dalise S, et al.: How does stroke affect skeletal muscle? state of the art and rehabilitation perspective., Review Front Neurol. 2021; 12: 797559.
– reference: 12) De Luca CJ, LeFever RS, et al.: Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol. 1982; 329: 113–128.
– reference: 22) Shin H, Suresh NL, et al.: Relative contribution of different altered motor unit control to muscle weakness in stroke: A simulation study. J Neural Eng. 2018; 15: 016014.
– reference: 16) Jain R, Garg VK: Review of electromyography signal with detection, decomposition, features and classifier theories. Int J Comput Sci Eng. 2019; 7: 487–500.
– reference: 20) Hu X, Suresh AK, et al.: Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography. J Neural Eng. 2016; 13: 046025.
– reference: 28) De Luca CJ, Contessa P: Biomechanical benefits of the Onion-Skin motor unit control scheme. J Biomech. 2015; 48: 195–203.
– reference: 29) Farmer SF, Swash M, et al.: Changes in motor unit synchronization following central nervous lesions in man. J Physiol. 1993; 463: 83–105.
– reference: 15) Enoka RM: Physiological validation of the decomposition of surface EMG signals. J Electromyogr Kinesiol. 2019; 46: 70–83.
– reference: 18) Hara Y, Masakado Y, et al.: The physiological functional loss of single thenar motor units in the stroke patients: When does it occur? Does it progress? Clin Neurophysiol. 2004; 115: 97–103.
– reference: 38) Berenpas F, Martens A-M, et al.: Bilateral changes in muscle architecture of physically active people with chronic stroke: A quantitative muscle ultrasound study. Clin Neurophysiol. 2017; 128: 115–122.
– reference: 14) De Luca CJ, Chang S-S, et al.: Decomposition of surface EMG signals from cyclic dynamic contractions. J Neurophysiol. 2015; 113: 1941–1951.
– reference: 31) Lukács M, Vécsei L, et al.: Large motor units are selectively affected following a stroke. Clin Neurophysiol. 2008; 119: 2555–2558.
– reference: 10) McNulty PA, Lin G, et al.: Single motor unit firing rate after stroke is higher on the less-affected side during stable low-level voluntary contractions. Front Hum Neurosci. 2014; 8: 518–518.
– reference: 36) Dalla Toffola E, Sparpaglione D, et al.: Myoelectric manifestations of muscle changes in stroke patients. Arch Phys Med Rehabil. 2001; 82: 661–665.
– reference: 9) Mirbagheri MM, Tsao C, et al.: Time course of changes in neuromuscular properties following stroke. Annu Int Conf IEEE Eng Med Biol Soc. 2008; 2008: 5097–5100.
SSID ssib000872127
ssib022575314
ssib044219340
ssib001527063
ssib005902260
ssj0003304640
ssib003110431
ssib044759789
ssib023161324
Score 2.0113409
Snippet Objective: The aim of this study was to clarify the characteristics of motor unit recruitment patterns in post-stroke at different phases.Methods: A total of...
SourceID nii
jstage
SourceType Publisher
StartPage 20
SubjectTerms Chronic
Motor unit
Neuromuscular physiology
Stroke
Subacute
回復期
慢性期
神経筋生理学
脳卒中
運動単位
Title The Motor Unit Recruitment Patterns in Stroke Show Different Characteristics Depending on the Phase
URI https://www.jstage.jst.go.jp/article/rigaku/52/1/52_12531/_article/-char/en
https://cir.nii.ac.jp/crid/1390584729933177984
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Physical Therapy Japan, 2025/02/20, Vol.52(1), pp.20-27
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2189-602X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003304640
  issn: 0289-3770
  databaseCode: KQ8
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2189-602X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044759789
  issn: 0289-3770
  databaseCode: M~E
  dateStart: 19840101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELW6y4ULAgFigUU-cFulOInzUXEqX1pt1W5hW2lvUeI4NK2UoNIKiT_G3-PZzoe3y4EFqbIqJ6oSz-vMm2T8hpDXuZCBVwSuI4vCc9TWSieNw9jJw1jFJ1m4WoFvOgvPl_ziOrgeDH5ZVUv7XTYUP_-4r-RfrIo52FXtkr2DZbsfxQS-w74YYWGMf23jaY2sWVNHTQH3pSkbn2vdTFMlfrXb1ht5drWqf8DFmYYoO_2i3ZZq_qDb4eoiaFP6OF-1b24a8jpvbbowUgRnF4i0Hbhm48l4uvwy1ghIN-kKvqJz55eT5bvlrD1U1duyw-Ti0pTv1wczN05snkt4Zp8362OGugL5XXbVp6qk7-AyLV-HvA--zvQQGUo9B_IxckKmu613zjrwboGy8bzMiuFGbuBWdAjAx2DTbfk13eyHoHZNALopuN2YMzGnJYGXuHpQpyftQbUnDhA8Ive8KAxV64zJZ5vXRko53-KlXsQsnTMfpMsWNVIaOl6fp8LHIovsX2-Dg4N19bL6nCPO-L1IjxZtbNsGKAqiHlKF3DxfbBa20ZdVS_DGXgAwrzXyECUwcVSVpUWuFg_JgyYromNz24_IYJ0-JgL2oxreVMGbWvCmLbxpWVEDb6rgTTt40wN40w7etK4o4E01vJ-QxaePi_fnTtMTxFnHMXdEnuYi8jP4F6mCk8Cdc5flSOqFK4vMZ5LHzIvcLApFocpmWY4cPeUjFx_J_KfkuKor-YzQ0BeBK5DdhMLlmZvHOYvhziIWg4sEXJ6Qt2Zhkm9G9yW5CzBOyClWMxGlGpFlMVWOAOrng69Ho5g__69ff0Hu93-5l-R4t93LU5DjXfZKA_E3o6ayPA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Motor+Unit+Recruitment+Patterns+in+Stroke+Show+Different+Characteristics+Depending+on+the+Phase&rft.jtitle=Physical+Therapy+Japan&rft.au=NAKAMURA%2C+Takahito&rft.au=KOKUBUN%2C+Takanori&rft.au=ITO%2C+Mio&rft.au=ITO%2C+Takanori&rft.date=2025-02-20&rft.pub=Japanese+Society+of+Physical+Therapy&rft.issn=0289-3770&rft.eissn=2189-602X&rft.volume=52&rft.issue=1&rft.spage=20&rft.epage=27&rft_id=info:doi/10.15063%2Frigaku.12531&rft.externalDocID=article_rigaku_52_1_52_12531_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0289-3770&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0289-3770&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0289-3770&client=summon