Generalized Pairwise Comparisons for Survival Analysis

The Net Benefit and the Win Ratio are the effect measures used in clinical trials with survival endpoints such as oncology and cardiology. These measures are based on generalized pairwise comparisons. In a randomized trial, the statistical methods estimate the ‘win’ probability that a subject random...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Japan Statistical Society, Japanese Issue Vol. 52; no. 2; pp. 319 - 354
Main Authors Fukuda, Musashi, Oba, Koji, Sakamaki, Kentaro
Format Journal Article
LanguageJapanese
Published Japan Statistical Society 01.03.2023
一般社団法人 日本統計学会
Subjects
Online AccessGet full text
ISSN0389-5602
2189-1478
DOI10.11329/jjssj.52.319

Cover

Abstract The Net Benefit and the Win Ratio are the effect measures used in clinical trials with survival endpoints such as oncology and cardiology. These measures are based on generalized pairwise comparisons. In a randomized trial, the statistical methods estimate the ‘win’ probability that a subject randomly selected from the new treatment group has a better outcome than a subject from the control group and the ‘loss’ probability in the opposite situation. The Net Benefit is the difference between these probabilities, and the Win Ratio is the ratio between them. In this study, we review several estimators of the win/loss probability in terms of generalized pairwise comparisons, and the variance of those estimators based on U-statistic theory. Especially, we explain how to deal with the censored data to estimate those probabilities. Finally, we illustrate using the actual data to implement those statistical methods by R-packages.
AbstractList The Net Benefit and the Win Ratio are the effect measures used in clinical trials with survival endpoints such as oncology and cardiology. These measures are based on generalized pairwise comparisons. In a randomized trial, the statistical methods estimate the ‘win’ probability that a subject randomly selected from the new treatment group has a better outcome than a subject from the control group and the ‘loss’ probability in the opposite situation. The Net Benefit is the difference between these probabilities, and the Win Ratio is the ratio between them. In this study, we review several estimators of the win/loss probability in terms of generalized pairwise comparisons, and the variance of those estimators based on U-statistic theory. Especially, we explain how to deal with the censored data to estimate those probabilities. Finally, we illustrate using the actual data to implement those statistical methods by R-packages.
The Net Benefit and the Win Ratio are the effect measures used in clinical trials with survival endpoints such as oncology and cardiology. These measures are based on generalized pairwise comparisons. In a randomized trial, the statistical methods estimate the ‘win’ probability that a subject randomly selected from the new treatment group has a better outcome than a subject from the control group and the ‘loss’ probability in the opposite situation. The Net Benefit is the difference between these probabilities, and the Win Ratio is the ratio between them. In this study, we review several estimators of the win/loss probability in terms of generalized pairwise comparisons, and the variance of those estimators based on U-statistic theory. Especially, we explain how to deal with the censored data to estimate those probabilities. Finally, we illustrate using the actual data to implement those statistical methods by R-packages. 生存時間を評価項目とするがん領域や循環器領域の医学系研究で,治療効果の指標としてNet BenefitやWin Ratioが利用されている.これらは一般化ペアワイズ比較に基づく指標として整理できる.一般化ペアワイズ比較では,新治療と標準治療を比較するランダム化比較試験の場合,各群から1人ずつをランダムに選んでできるペアに対する勝ち負けの確率を評価する.このとき,評価項目の大小関係に基づく様々な勝ち負けのルールを考えることができる.Net Benefitは勝ち負けの確率の差,Win Ratioは比として定義される指標である.本稿では,勝ち負けの確率,Net BenefitとWin Ratioの推定方法を一般化ペアワイズ比較の観点から整理し,U統計量理論から導かれる漸近分散を説明する.また,打ち切りを含む生存時間における推定の問題と対処方法を説明する.最後に,Rパッケージによる実装方法を例示する.
Author Sakamaki, Kentaro
Fukuda, Musashi
Oba, Koji
Author_FL 福田 武蔵
坂巻 顕太郎
大庭 幸治
Author_FL_xml – sequence: 1
  fullname: 福田 武蔵
– sequence: 2
  fullname: 坂巻 顕太郎
– sequence: 3
  fullname: 大庭 幸治
Author_xml – sequence: 1
  fullname: Fukuda, Musashi
– sequence: 1
  fullname: Oba, Koji
– sequence: 1
  fullname: Sakamaki, Kentaro
BackLink https://cir.nii.ac.jp/crid/1390013795251461376$$DView record in CiNii
BookMark eNo9UMFKAzEUDFLBWnv0vgevW_OSTTY5SSlahYKCvYe327eaZZstSa3Ur3e14mVmYIZhmEs2Cn0gxq6BzwCksLdtm1I7U2ImwZ6xsQBjcyhKM2JjLgetNBcXbJqSrzhXloOVcsz0kgJF7PwXbbIX9PHTJ8oW_XaH0ac-pKzpY_b6EQ_-gF02D9gdk09X7LzBLtH0jyds_XC_Xjzmq-fl02K-ylujdF5QgWBqAbwWpizFsLNGo6tCCyuNJMXLSlQNbdCQxAoBORGIhqumLJSq5YTdnGqD9672PwjScg6ytEooKPSg9BC7O8XatMc3crvotxiPDuPe1x2532ucEk78wPDPv1O_Y3QU5DcU3l-3
ContentType Journal Article
Copyright 2023 Japan Statistical Society
Copyright_xml – notice: 2023 Japan Statistical Society
DBID RYH
DOI 10.11329/jjssj.52.319
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
DocumentTitleAlternate 一般化ペアワイズ比較による生存時間解析
DocumentTitle_FL 一般化ペアワイズ比較による生存時間解析
EISSN 2189-1478
EndPage 354
ExternalDocumentID article_jjssj_52_2_52_319_article_char_en
GroupedDBID 2WC
3K4
5GY
ABDBF
ACGFO
ACIWK
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
E3Z
EBS
EJD
GX1
JSF
JSH
KQ8
OK1
OVT
P2P
RJT
TN5
TR2
XSB
RYH
ID FETCH-LOGICAL-j856-4e4a18c210c28772132ca86b4629383e507b2bfeda8e3aba1a0ee12f05f7455c3
ISSN 0389-5602
IngestDate Thu Jun 26 22:46:46 EDT 2025
Wed Sep 03 06:31:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j856-4e4a18c210c28772132ca86b4629383e507b2bfeda8e3aba1a0ee12f05f7455c3
ORCID 0000-0001-5468-8988
OpenAccessLink https://www.jstage.jst.go.jp/article/jjssj/52/2/52_319/_article/-char/en
PageCount 36
ParticipantIDs nii_cinii_1390013795251461376
jstage_primary_article_jjssj_52_2_52_319_article_char_en
PublicationCentury 2000
PublicationDate 2023/03/01
2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023/03/01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of the Japan Statistical Society, Japanese Issue
PublicationTitleAlternate Journal of the Japan Statistical Society, Japanese Issue
PublicationTitle_FL 日本統計学会和文誌
Journal of the Japan Statistical Society, Japanese Issue
日本統計学会誌
Journal of the Japan Statistical Society
PublicationYear 2023
Publisher Japan Statistical Society
一般社団法人 日本統計学会
Publisher_xml – name: Japan Statistical Society
– name: 一般社団法人 日本統計学会
References Rotolo, F., Paoletti, X. and Michiels, S. (2018). surrosurv: an R package for the evaluation of failure time surrogate endpoints in individual patient data meta-analyses of randomized clinical trials, Computer Methods and Programs in Biomedicine, 155, 189–198.
Dong, G., Mao, L., Huang, B., Gamalo-Siebers, M., Wang, J., Yu, G. and Hoaglin, D. C. (2020c). The inverse-probability-of-censoring weighting (IPCW) adjusted win ratio statistic: an unbiased estimator in the presence of independent censoring, Journal of Biopharmaceutical Statistics, 30, 882–899.
Péron, J., Roy, P., Ozenne, B., Roche, L. and Buyse, M. (2016b). The net chance of a longer survival as a patient-oriented measure of treatment benefit in randomized clinical trials, JAMA Oncology, 2, 901–905.
Bebu, I. and Lachin, J. M. (2016). Large sample inference for a win ratio analysis of a composite outcome based on prioritized components, Biostatistics, 17, 178–187.
Luo, X., Qiu, J., Bai, S. and Tian, H. (2017). Weighted win loss approach for analyzing prioritized outcomes, Statistics in Medicine, 36, 2452–2465.
Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other, The Annals of Mathematical Statistics, 18, 50–60.
Maurer, M. S., Schwartz, J. H., Gundapaneni, B., Elliott, P. M., Merlini, G., Waddington-Cruz, M., Kristen, A. V., Grogan, M., Witteles, R., Damy, T., Drachman, B. M., Shah, S. J., Hanna, M., Judge, D. P., Barsdorf, A. I., Huber, P., Patterson, T. A., Riley, S., Schumacher, J., Stewart, M., Sultan, M. B., Rapezzi, C. and ATTR-ACT Study Investigators (2018). Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy, The New England Journal of Medicine, 379, 1007–1016.
European Medicines Agency (2011). Benefit-risk methodology project. Work package 1 report: description of the current practice of benefit-risk assessment for centralised procedure products in the EU regulatory network, https://www.ema.europa.eu/en/documents/report/benefit-risk-methodology-project-work-package-1-report-description-current-practice-benefit-risk_en.pdf.
Buyse, M., Saad, E. D., Burzykowski, T. and Péron, J. (2020). Assessing treatment benefit in immuno-oncology, Statistics in Biosciences, 12, 83–103.
Fergusson, N. A., Ramsay, T., Chassé, M., English, S. W. and Knoll, G. A. (2018). The win ratio approach did not alter study conclusions and may mitigate concerns regarding unequal composite end points in kidney transplant trials, Journal of Clinical Epidemiology, 98, 9–15.
Péron, J., Idlhaj, M., Maucort-Boulch, D., Giai, J., Roy, P., Collette, L., Buyse, M. and Ozenne, B. (2021). Correcting the bias of the net benefit estimator due to right-censored observations, Biometrical Journal, 63, 893–906.
Péron, J., Roy, P., Conroy, T., Desseigne, F., Ychou, M., Gourgou-Bourgade, S., Stanbury, T., Roche, L., Ozenne, B. and Buyse, M. (2016a). An assessment of the benefit-risk balance of FOLFIRINOX in metastatic pancreatic adenocarcinoma, Oncotarget, 7, 82953–82960.
Finkelstein, D. M. and Schoenfeld, D. A. (1999). Combining mortality and longitudinal measures in clinical trials, Statistics in Medicine, 18, 1341–1354.
Van Cutsem, E., Moiseyenko, V. M., Tjulandin, S., Majlis, A., Constenla, M., Boni, C., Rodrigues, A., Fodor, M., Chao, Y., Voznyi, E., Risse, M. L., Ajani, J. A. and V325 Study Group (2006). Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: a report of the V325 Study Group, Journal of Clinical Oncology, 24, 4991–4997.
Verbeeck, J., Ozenne, B. and Anderson, W. N. (2020). Evaluation of inferential methods for the net benefit and win ratio statistics, Journal of Biopharmaceutical Statistics, 30, 765–782.
Rauch, G., Jahn-Eimermacher, A., Brannath, W. and Kieser, M. (2014). Opportunities and challenges of combined effect measures based on prioritized outcomes, Statistics in Medicine, 33, 1104–1120.
Mao, L., Kim, K. and Miao, X. (2021). Sample size formula for general win ratio analysis, Biometrics, https://doi.org/10.1111/biom.13501.
Cantagallo, E., De Backer, M., Kicinski, M., Ozenne, B., Collette, L., Legrand, C., Buyse, M. and Péron, J. (2021). A new measure of treatment effect in clinical trials involving competing risks based on generalized pairwise comparisons, Biometrical Journal, 63, 272–288.
Dong, G., Hoaglin, D. C., Qiu, J., Matsouaka, R. A., Chang, Y. W., Wang, J. and Vandemeulebroecke, M. (2020a). The win ratio: on interpretation and handling of ties, Statistics in Biopharmaceutical Research, 12, 99–106.
Kotalik, A., Eaton, A., Lian, Q., Serrano, C., Connett, J. and Neaton, J. D. (2019). A win ratio approach to the re-analysis of Multiple Risk Factor Intervention Trial, Clinical Trials, 16, 626–634.
Voors, A. A., Angermann, C. E., Teerlink, J. R., Collins, S. P., Kosiborod, M., Biegus, J., Ferreira, J. P., Nassif, M. E., Psotka, M. A., Tromp, J., Borleffs, C., Ma, C., Comin-Colet, J., Fu, M., Janssens, S. P., Kiss, R. G., Mentz, R. J., Sakata, Y., Schirmer, H., Schou, M., Schulze, P. C., Spinarova, L., Volterrani, M., Wranicz, J. K., Zeymer, U., Zieroth, S., Brueckmann, M., Blatchford, J. P., Salsali, A. and Ponikowski, P. (2022). The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial, Nature Medicine, 28, 568–574.
Cui, Y. and Huang, B. (2022). WINS: The R WINS package, R package version 1.3.2.
Efron, B. (1967). The two sample problem with censored data, Proc Fifth Berkeley Symp Math Stat Probab, 4, 831–853.
Luo, X., Tian, H., Mohanty, S. and Tsai, W. Y. (2015). An alternative approach to confidence interval estimation for the win ratio statistic, Biometrics, 71, 139–145.
Ozenne, B. and Péron, J. (2022). BuyseTest: implementation of the generalized pairwise comparisons, R package version 2.3.11.
Mao, L., Kim, K. and Li, Y. (2022). On recurrent-event win ratio, Statistical Methods in Medical Research, 31, 1120–1134.
Food and Drug Administration (2021). Benefit-risk assessment for new drug and biological products, https://www.fda.gov/regulatory-information/search-fda-guidance-documents/benefit-risk-assessment-new-drug-and-biological-products.
Pocock, S. J., Ariti, C. A., Collier, T. J. and Wang, D. (2012). The win ratio: a new approach to the analysis of composite endpoints in clinical trials based on clinical priorities, European Heart Journal, 33, 176–182.
Buyse, M. (2010). Generalized pairwise comparisons of prioritized outcomes in the two-sample problem, Statistics in Medicine, 29, 3245–3257.
Ozenne, B., Budtz-Jørgensen, E. and Péron, J. (2021). The asymptotic distribution of the net benefit estimator in presence of right-censoring, Statistical Methods in Medical Research, 30, 2399–2412.
Acion, L., Peterson, J. J., Temple, S. and Arndt, S. (2006). Probabilistic index: an intuitive non-parametric approach to measuring the size of treatment effects, Statistics in Medicine, 25, 591–602.
Buyse, M. and Péron, J. (2020). Generalized pairwise comparisons for prioritized outcomes, Principles and Practice of Clinical Trials, Piantadosi, S. and Meinert, C. L. ed., Springer, 1–25.
Péron, J., Roy, J., Ding, P., Parulekar, W. R., Roche, L. and Buyse, M. (2015). Assessing the benefit–risk of new treatments using generalised pairwise comparisons: the case of erlotinib in pancreatic cancer, British Journal of Cancer, 112, 971–976.
Oakes, D. (2016). On the win-ratio statistic in clinical trials with multiple types of event, Biometrika, 103, 742–745.
Saad, E. D., Zalcberg, J. R., Pcron, J., Coart, E., Burzykowski, T. and Buyse, M. (2018). Understanding and communicating measures of treatment effect on survival: can we do better?, Journal of the National Cancer Institute, 110, 232–240.
Finkelstein, D. M. and Schoenfeld, D. A. (2019). Graphing the win ratio and its components over time, Statistics in Medicine, 38, 53–61.
Redfors, B., Gregson, J., Crowley, A., McAndrew, T., Ben-Yehuda, O., Stone, G. W. and Pocock, S. J. (2020). The win ratio approach for composite endpoints: practical guidance based on previous experience, European Heart Journal, 41, 4391–4399.
Dong, G., Huang, B., Wang, D., Verbeeck, J., Wang, J. and Hoaglin, D. C. (2021). Adjusting win statistics for dependent censoring, Pharmaceutical Statistics, 20, 440–450.
Péron, J., Giai, J., Maucort-Boulch, D. and Buyse, M. (2019a). The benefit-risk balance of nab-paclitaxel in metastatic pancreatic adenocarcinoma, Pancreas, 48, 275–280.
Dobler, D. and Pauly, M. (2018). Bootstrap- and permutation-based inference for the Mann–Whitney effect for right-censored and tied data, Test, 27, 639–658.
Chamseddine, A. N., Oba, K., Buyse, M., Boku, N., Bouché, O., Satar, T., Auperin, A. and Paoletti, X. (2021). Impact of follow-up on generalized pairwise comparisons for estimating the irinotecan benefit in advanced/metastatic gastric cancer, Contemporary Clinical Trials, 105, 106400.
Péron, J., Buyse, M., Ozenne, B., Roche, L. and Roy, P. (2018). An extension of generalized pairwise comparisons for prioritized outcomes in the presence of censoring, Statistical Methods in Medical Research, 27, 1230–1239.
Yang, S., Troendle, J., Pak, D. and Leifer, E. (2022). Event-specific win ratios for inference with terminal and non-terminal events, Statistics in Medicine, 41, 1225–1241.
O'Connor, C. M., Whellan, D. J., Lee, K. L., Keteyian, S. J., Cooper, L. S., Ellis, S. J., Leifer, E. S., Kraus, W. E., Kitzman, D. W., Blumenthal, J. A., Rendall, D. S., Miller, N. H., Fleg, J. L., Schulman, K. A., McKelvie, R. S., Zannad, F., Piña, I. L. and HF-ACTION Investigators (2009). Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial, JAMA: the journal of the American Medical Association, 301, 1439–1450.
Dong, G., Li, D., Ballerstedt, S. and Vandemeulebroecke, M. (2016). A generalized analytic solution to the win ratio to analyze a composite endpoint considering the clinical importan
References_xml – reference: Finkelstein, D. M. and Schoenfeld, D. A. (2019). Graphing the win ratio and its components over time, Statistics in Medicine, 38, 53–61.
– reference: Tsuchikawa, M. and Sakamaki, K. (2022). Estimands for continuous longitudinal outcomes in the presence of treatment discontinuation—a simulation study in hyperkalemia treatments, Statistics in Biopharmaceutical Research, https://doi.org/10.1080/19466315.2022.2050289.
– reference: Kotalik, A., Eaton, A., Lian, Q., Serrano, C., Connett, J. and Neaton, J. D. (2019). A win ratio approach to the re-analysis of Multiple Risk Factor Intervention Trial, Clinical Trials, 16, 626–634.
– reference: Mao, L. and Wang, T. (2021). A class of proportional win-fractions regression models for composite outcomes, Biometrics, 77, 1265–1275.
– reference: Buyse, M., Saad, E. D., Péron, J., Chiem, J. C., De Backer, M., Cantagallo, E. and Ciani, O. (2021). The net benefit of a treatment should take the correlation between benefits and harms into account, Journal of Clinical Epidemiology, 137, 148–158.
– reference: Dong, G., Hoaglin, D. C., Qiu, J., Matsouaka, R. A., Chang, Y. W., Wang, J. and Vandemeulebroecke, M. (2020a). The win ratio: on interpretation and handling of ties, Statistics in Biopharmaceutical Research, 12, 99–106.
– reference: European Medicines Agency (2011). Benefit-risk methodology project. Work package 1 report: description of the current practice of benefit-risk assessment for centralised procedure products in the EU regulatory network, https://www.ema.europa.eu/en/documents/report/benefit-risk-methodology-project-work-package-1-report-description-current-practice-benefit-risk_en.pdf.
– reference: Rotolo, F., Paoletti, X. and Michiels, S. (2018). surrosurv: an R package for the evaluation of failure time surrogate endpoints in individual patient data meta-analyses of randomized clinical trials, Computer Methods and Programs in Biomedicine, 155, 189–198.
– reference: Dong, G., Huang, B., Wang, D., Verbeeck, J., Wang, J. and Hoaglin, D. C. (2021). Adjusting win statistics for dependent censoring, Pharmaceutical Statistics, 20, 440–450.
– reference: Péron, J., Buyse, M., Ozenne, B., Roche, L. and Roy, P. (2018). An extension of generalized pairwise comparisons for prioritized outcomes in the presence of censoring, Statistical Methods in Medical Research, 27, 1230–1239.
– reference: Giai, J., Maucort-Boulch, D., Ozenne, B., Chiêm, J. C., Buyse, M. and Péron, J. (2021). Net benefit in the presence of correlated prioritized outcomes using generalized pairwise comparisons: a simulation study, Statistics in Medicine, 40, 553–565.
– reference: Luo, X., Tian, H., Mohanty, S. and Tsai, W. Y. (2015). An alternative approach to confidence interval estimation for the win ratio statistic, Biometrics, 71, 139–145.
– reference: Péron, J., Giai, J., Maucort-Boulch, D. and Buyse, M. (2019a). The benefit-risk balance of nab-paclitaxel in metastatic pancreatic adenocarcinoma, Pancreas, 48, 275–280.
– reference: Mao, L., Kim, K. and Miao, X. (2021). Sample size formula for general win ratio analysis, Biometrics, https://doi.org/10.1111/biom.13501.
– reference: Saad, E. D., Zalcberg, J. R., Pcron, J., Coart, E., Burzykowski, T. and Buyse, M. (2018). Understanding and communicating measures of treatment effect on survival: can we do better?, Journal of the National Cancer Institute, 110, 232–240.
– reference: Fergusson, N. A., Ramsay, T., Chassé, M., English, S. W. and Knoll, G. A. (2018). The win ratio approach did not alter study conclusions and may mitigate concerns regarding unequal composite end points in kidney transplant trials, Journal of Clinical Epidemiology, 98, 9–15.
– reference: Rauch, G., Jahn-Eimermacher, A., Brannath, W. and Kieser, M. (2014). Opportunities and challenges of combined effect measures based on prioritized outcomes, Statistics in Medicine, 33, 1104–1120.
– reference: Buyse, M., Saad, E. D., Burzykowski, T. and Péron, J. (2020). Assessing treatment benefit in immuno-oncology, Statistics in Biosciences, 12, 83–103.
– reference: Bebu, I. and Lachin, J. M. (2016). Large sample inference for a win ratio analysis of a composite outcome based on prioritized components, Biostatistics, 17, 178–187.
– reference: Dong, G., Li, D., Ballerstedt, S. and Vandemeulebroecke, M. (2016). A generalized analytic solution to the win ratio to analyze a composite endpoint considering the clinical importance order among components, Pharmaceutical Statistics, 15, 430–437.
– reference: Dong, G., Qiu, J., Wang, D. and Vandemeulebroecke, M. (2018). The stratified win ratio, Journal of Biopharmaceutical Statistics, 28, 778–796.
– reference: Luo, X., Qiu, J., Bai, S. and Tian, H. (2017). Weighted win loss approach for analyzing prioritized outcomes, Statistics in Medicine, 36, 2452–2465.
– reference: Ozenne, B. and Péron, J. (2022). BuyseTest: implementation of the generalized pairwise comparisons, R package version 2.3.11.
– reference: Péron, J., Idlhaj, M., Maucort-Boulch, D., Giai, J., Roy, P., Collette, L., Buyse, M. and Ozenne, B. (2021). Correcting the bias of the net benefit estimator due to right-censored observations, Biometrical Journal, 63, 893–906.
– reference: Péron, J., Lambert, A., Munier, S., Ozenne, B., Giai, J., Roy, P., Dalle, S., Machingura, A., Maucort-Boulch, D. and Buyse, M. (2019b). Assessing long-term survival benefits of immune checkpoint inhibitors using the net survival benefit, Journal of the National Cancer Institute, 111, 1186–1191.
– reference: Efron, B. (1967). The two sample problem with censored data, Proc Fifth Berkeley Symp Math Stat Probab, 4, 831–853.
– reference: Chamseddine, A. N., Oba, K., Buyse, M., Boku, N., Bouché, O., Satar, T., Auperin, A. and Paoletti, X. (2021). Impact of follow-up on generalized pairwise comparisons for estimating the irinotecan benefit in advanced/metastatic gastric cancer, Contemporary Clinical Trials, 105, 106400.
– reference: Yang, S., Troendle, J., Pak, D. and Leifer, E. (2022). Event-specific win ratios for inference with terminal and non-terminal events, Statistics in Medicine, 41, 1225–1241.
– reference: Food and Drug Administration (2021). Benefit-risk assessment for new drug and biological products, https://www.fda.gov/regulatory-information/search-fda-guidance-documents/benefit-risk-assessment-new-drug-and-biological-products.
– reference: Acion, L., Peterson, J. J., Temple, S. and Arndt, S. (2006). Probabilistic index: an intuitive non-parametric approach to measuring the size of treatment effects, Statistics in Medicine, 25, 591–602.
– reference: Cui, Y. and Huang, B. (2022). WINS: The R WINS package, R package version 1.3.2.
– reference: Voors, A. A., Angermann, C. E., Teerlink, J. R., Collins, S. P., Kosiborod, M., Biegus, J., Ferreira, J. P., Nassif, M. E., Psotka, M. A., Tromp, J., Borleffs, C., Ma, C., Comin-Colet, J., Fu, M., Janssens, S. P., Kiss, R. G., Mentz, R. J., Sakata, Y., Schirmer, H., Schou, M., Schulze, P. C., Spinarova, L., Volterrani, M., Wranicz, J. K., Zeymer, U., Zieroth, S., Brueckmann, M., Blatchford, J. P., Salsali, A. and Ponikowski, P. (2022). The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial, Nature Medicine, 28, 568–574.
– reference: Zhang, D. and Jeong, J. H. (2021). Inference on win ratio for cluster-randomized semi-competing risk data, Japanese Journal of Statistics and Data Science, 4, 1263–1292.
– reference: Buyse, M. and Péron, J. (2020). Generalized pairwise comparisons for prioritized outcomes, Principles and Practice of Clinical Trials, Piantadosi, S. and Meinert, C. L. ed., Springer, 1–25.
– reference: Yang, S. and Troendle, J. (2021). Event-specific win ratios and testing with terminal and non-terminal events, Clinical Trials, 18, 180–187.
– reference: Buyse, M. (2010). Generalized pairwise comparisons of prioritized outcomes in the two-sample problem, Statistics in Medicine, 29, 3245–3257.
– reference: Maurer, M. S., Schwartz, J. H., Gundapaneni, B., Elliott, P. M., Merlini, G., Waddington-Cruz, M., Kristen, A. V., Grogan, M., Witteles, R., Damy, T., Drachman, B. M., Shah, S. J., Hanna, M., Judge, D. P., Barsdorf, A. I., Huber, P., Patterson, T. A., Riley, S., Schumacher, J., Stewart, M., Sultan, M. B., Rapezzi, C. and ATTR-ACT Study Investigators (2018). Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy, The New England Journal of Medicine, 379, 1007–1016.
– reference: Ozenne, B., Budtz-Jørgensen, E. and Péron, J. (2021). The asymptotic distribution of the net benefit estimator in presence of right-censoring, Statistical Methods in Medical Research, 30, 2399–2412.
– reference: Péron, J., Roy, P., Conroy, T., Desseigne, F., Ychou, M., Gourgou-Bourgade, S., Stanbury, T., Roche, L., Ozenne, B. and Buyse, M. (2016a). An assessment of the benefit-risk balance of FOLFIRINOX in metastatic pancreatic adenocarcinoma, Oncotarget, 7, 82953–82960.
– reference: Péron, J., Roy, J., Ding, P., Parulekar, W. R., Roche, L. and Buyse, M. (2015). Assessing the benefit–risk of new treatments using generalised pairwise comparisons: the case of erlotinib in pancreatic cancer, British Journal of Cancer, 112, 971–976.
– reference: Dong, G., Huang, B., Chang, Y. W., Seifu, Y., Song, J. and Hoaglin, D. C. (2020b). The win ratio: impact of censoring and follow-up time and use with nonproportional hazards, Pharmaceutical Statistics, 19, 168–177.
– reference: Ferreira, J. P., Jhund, P. S., Duarte, K., Claggett, B. L., Solomon, S. D., Pocock, S., Petrie, M. C., Zannad, F. and McMurray, J. J. V. (2020). Use of the win ratio in cardiovascular trials, JACC. Heart failure, 8, 441–450.
– reference: Redfors, B., Gregson, J., Crowley, A., McAndrew, T., Ben-Yehuda, O., Stone, G. W. and Pocock, S. J. (2020). The win ratio approach for composite endpoints: practical guidance based on previous experience, European Heart Journal, 41, 4391–4399.
– reference: Verbeeck, J., Ozenne, B. and Anderson, W. N. (2020). Evaluation of inferential methods for the net benefit and win ratio statistics, Journal of Biopharmaceutical Statistics, 30, 765–782.
– reference: Mao, L., Kim, K. and Li, Y. (2022). On recurrent-event win ratio, Statistical Methods in Medical Research, 31, 1120–1134.
– reference: Finkelstein, D. M. and Schoenfeld, D. A. (1999). Combining mortality and longitudinal measures in clinical trials, Statistics in Medicine, 18, 1341–1354.
– reference: O'Connor, C. M., Whellan, D. J., Lee, K. L., Keteyian, S. J., Cooper, L. S., Ellis, S. J., Leifer, E. S., Kraus, W. E., Kitzman, D. W., Blumenthal, J. A., Rendall, D. S., Miller, N. H., Fleg, J. L., Schulman, K. A., McKelvie, R. S., Zannad, F., Piña, I. L. and HF-ACTION Investigators (2009). Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial, JAMA: the journal of the American Medical Association, 301, 1439–1450.
– reference: Dong, G., Mao, L., Huang, B., Gamalo-Siebers, M., Wang, J., Yu, G. and Hoaglin, D. C. (2020c). The inverse-probability-of-censoring weighting (IPCW) adjusted win ratio statistic: an unbiased estimator in the presence of independent censoring, Journal of Biopharmaceutical Statistics, 30, 882–899.
– reference: Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other, The Annals of Mathematical Statistics, 18, 50–60.
– reference: Pocock, S. J., Ariti, C. A., Collier, T. J. and Wang, D. (2012). The win ratio: a new approach to the analysis of composite endpoints in clinical trials based on clinical priorities, European Heart Journal, 33, 176–182.
– reference: Oakes, D. (2016). On the win-ratio statistic in clinical trials with multiple types of event, Biometrika, 103, 742–745.
– reference: Dobler, D. and Pauly, M. (2018). Bootstrap- and permutation-based inference for the Mann–Whitney effect for right-censored and tied data, Test, 27, 639–658.
– reference: Péron, J., Roy, P., Ozenne, B., Roche, L. and Buyse, M. (2016b). The net chance of a longer survival as a patient-oriented measure of treatment benefit in randomized clinical trials, JAMA Oncology, 2, 901–905.
– reference: Cantagallo, E., De Backer, M., Kicinski, M., Ozenne, B., Collette, L., Legrand, C., Buyse, M. and Péron, J. (2021). A new measure of treatment effect in clinical trials involving competing risks based on generalized pairwise comparisons, Biometrical Journal, 63, 272–288.
– reference: Van Cutsem, E., Moiseyenko, V. M., Tjulandin, S., Majlis, A., Constenla, M., Boni, C., Rodrigues, A., Fodor, M., Chao, Y., Voznyi, E., Risse, M. L., Ajani, J. A. and V325 Study Group (2006). Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: a report of the V325 Study Group, Journal of Clinical Oncology, 24, 4991–4997.
– reference: Verbeeck, J., Spitzer, E., de Vries, T., van Es, G. A., Anderson, W. N., Van Mieghem, N. M., Leon, M. B., Molenberghs, G. and Tijssen, J. (2019). Generalized pairwise comparison methods to analyze (non)prioritized composite endpoints, Statistics in Medicine, 38, 5641–5656.
SSID ssib005901933
ssib023160829
ssib023160828
ssib000650024
ssib023157179
ssj0033564
ssib000936966
ssib002223900
ssib000936967
ssib022230570
Score 2.3370588
Snippet The Net Benefit and the Win Ratio are the effect measures used in clinical trials with survival endpoints such as oncology and cardiology. These measures are...
SourceID nii
jstage
SourceType Publisher
StartPage 319
SubjectTerms Net Benefit
U統計量
Win Ratio
一般化ペアワイズ比較
打ち切り
生存時間解析
Title Generalized Pairwise Comparisons for Survival Analysis
URI https://www.jstage.jst.go.jp/article/jjssj/52/2/52_319/_article/-char/en
https://cir.nii.ac.jp/crid/1390013795251461376
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of the Japan Statistical Society, Japanese Issue, 2023/03/01, Vol.52(2), pp.319-354
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2189-1478
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033564
  issn: 0389-5602
  databaseCode: KQ8
  dateStart: 19700101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2189-1478
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033564
  issn: 0389-5602
  databaseCode: KQ8
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2189-1478
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033564
  issn: 0389-5602
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWmZdMNKi9RoCgLthniZ5wlQqCqFQjEIHUX2Y4jJRUz1cwEpP5B_5rrRzIuUKl0Y02cTBLn3Fwfx9fnIvQGYy2wEjA60Q3JGatkrrEluTaGF6YqOWl8lO9ncfKdnZ7z89nsOolaGrZ6bq7-ua7kPqhCHeDqVsn-B7LTSaECfgO-UALCUN4J46gZ3V0Ba_yiuvWvbmPDG-4zC3qpBXAN4A1-OiSi_sgtfNQx0FPoOn1K363Xb3ZKISGqMwTUwk4LV_AZ-ybgh4uh8Qz007BxmZmmz7Y6rDZb9VPVN3WhfqiQKPvMBa2vV-lXB0J3YVehR7jtdhL3BVQoBz4VfK31dcAnqhyzkLRn9L-cJHZGEmdKozMN_TINYtN_u3xKnGRq30PvO-dkPv3rhop2xKj2h9Wc1MQVcGw97nGr3MCo9tADAh2EywJy9vWm0mCRCNsXPhGi-GM7HRkTWiXKh26Jb7Vj1sCqeYl3E6SwLYpkAjNuVyOpoJRHJbT4UEe5WGj827TpQKR6GFY4vYi9ZdclXGlxiB5Go8rehTY_QrNePUYHE46bJ0gkppuNppslppuB6Waj6Waj6T5Fi48fFu9P8pjCI-8lFzmzTGFpCC4MjMxLArdrlBSaCWCZkloYjGiiW9soaanSCqvCWkzagrcl49zQZ2h_uVra5yizXCipKlmYljPhpnPbklDesILhxip2hGRoeH0ZZFrqO0N-hI7hUdWmcyV2sGFaVhyYPwOyW4oX9z_1S3Swe3teof3terDHwGK3-rW3r9-ZPZVm
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Pairwise+Comparisons+for+Survival+Analysis&rft.jtitle=Journal+of+the+Japan+Statistical+Society%2C+Japanese+Issue&rft.au=Fukuda%2C+Musashi&rft.au=Oba%2C+Koji&rft.au=Sakamaki%2C+Kentaro&rft.date=2023-03-01&rft.pub=Japan+Statistical+Society&rft.issn=0389-5602&rft.eissn=2189-1478&rft.volume=52&rft.issue=2&rft.spage=319&rft.epage=354&rft_id=info:doi/10.11329%2Fjjssj.52.319&rft.externalDocID=article_jjssj_52_2_52_319_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0389-5602&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0389-5602&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0389-5602&client=summon