Generalized Pairwise Comparisons for Survival Analysis
The Net Benefit and the Win Ratio are the effect measures used in clinical trials with survival endpoints such as oncology and cardiology. These measures are based on generalized pairwise comparisons. In a randomized trial, the statistical methods estimate the ‘win’ probability that a subject random...
Saved in:
| Published in | Journal of the Japan Statistical Society, Japanese Issue Vol. 52; no. 2; pp. 319 - 354 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | Japanese |
| Published |
Japan Statistical Society
01.03.2023
一般社団法人 日本統計学会 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0389-5602 2189-1478 |
| DOI | 10.11329/jjssj.52.319 |
Cover
| Abstract | The Net Benefit and the Win Ratio are the effect measures used in clinical trials with survival endpoints such as oncology and cardiology. These measures are based on generalized pairwise comparisons. In a randomized trial, the statistical methods estimate the ‘win’ probability that a subject randomly selected from the new treatment group has a better outcome than a subject from the control group and the ‘loss’ probability in the opposite situation. The Net Benefit is the difference between these probabilities, and the Win Ratio is the ratio between them. In this study, we review several estimators of the win/loss probability in terms of generalized pairwise comparisons, and the variance of those estimators based on U-statistic theory. Especially, we explain how to deal with the censored data to estimate those probabilities. Finally, we illustrate using the actual data to implement those statistical methods by R-packages. |
|---|---|
| AbstractList | The Net Benefit and the Win Ratio are the effect measures used in clinical trials with survival endpoints such as oncology and cardiology. These measures are based on generalized pairwise comparisons. In a randomized trial, the statistical methods estimate the ‘win’ probability that a subject randomly selected from the new treatment group has a better outcome than a subject from the control group and the ‘loss’ probability in the opposite situation. The Net Benefit is the difference between these probabilities, and the Win Ratio is the ratio between them. In this study, we review several estimators of the win/loss probability in terms of generalized pairwise comparisons, and the variance of those estimators based on U-statistic theory. Especially, we explain how to deal with the censored data to estimate those probabilities. Finally, we illustrate using the actual data to implement those statistical methods by R-packages. The Net Benefit and the Win Ratio are the effect measures used in clinical trials with survival endpoints such as oncology and cardiology. These measures are based on generalized pairwise comparisons. In a randomized trial, the statistical methods estimate the ‘win’ probability that a subject randomly selected from the new treatment group has a better outcome than a subject from the control group and the ‘loss’ probability in the opposite situation. The Net Benefit is the difference between these probabilities, and the Win Ratio is the ratio between them. In this study, we review several estimators of the win/loss probability in terms of generalized pairwise comparisons, and the variance of those estimators based on U-statistic theory. Especially, we explain how to deal with the censored data to estimate those probabilities. Finally, we illustrate using the actual data to implement those statistical methods by R-packages. 生存時間を評価項目とするがん領域や循環器領域の医学系研究で,治療効果の指標としてNet BenefitやWin Ratioが利用されている.これらは一般化ペアワイズ比較に基づく指標として整理できる.一般化ペアワイズ比較では,新治療と標準治療を比較するランダム化比較試験の場合,各群から1人ずつをランダムに選んでできるペアに対する勝ち負けの確率を評価する.このとき,評価項目の大小関係に基づく様々な勝ち負けのルールを考えることができる.Net Benefitは勝ち負けの確率の差,Win Ratioは比として定義される指標である.本稿では,勝ち負けの確率,Net BenefitとWin Ratioの推定方法を一般化ペアワイズ比較の観点から整理し,U統計量理論から導かれる漸近分散を説明する.また,打ち切りを含む生存時間における推定の問題と対処方法を説明する.最後に,Rパッケージによる実装方法を例示する. |
| Author | Sakamaki, Kentaro Fukuda, Musashi Oba, Koji |
| Author_FL | 福田 武蔵 坂巻 顕太郎 大庭 幸治 |
| Author_FL_xml | – sequence: 1 fullname: 福田 武蔵 – sequence: 2 fullname: 坂巻 顕太郎 – sequence: 3 fullname: 大庭 幸治 |
| Author_xml | – sequence: 1 fullname: Fukuda, Musashi – sequence: 1 fullname: Oba, Koji – sequence: 1 fullname: Sakamaki, Kentaro |
| BackLink | https://cir.nii.ac.jp/crid/1390013795251461376$$DView record in CiNii |
| BookMark | eNo9UMFKAzEUDFLBWnv0vgevW_OSTTY5SSlahYKCvYe327eaZZstSa3Ur3e14mVmYIZhmEs2Cn0gxq6BzwCksLdtm1I7U2ImwZ6xsQBjcyhKM2JjLgetNBcXbJqSrzhXloOVcsz0kgJF7PwXbbIX9PHTJ8oW_XaH0ac-pKzpY_b6EQ_-gF02D9gdk09X7LzBLtH0jyds_XC_Xjzmq-fl02K-ylujdF5QgWBqAbwWpizFsLNGo6tCCyuNJMXLSlQNbdCQxAoBORGIhqumLJSq5YTdnGqD9672PwjScg6ytEooKPSg9BC7O8XatMc3crvotxiPDuPe1x2532ucEk78wPDPv1O_Y3QU5DcU3l-3 |
| ContentType | Journal Article |
| Copyright | 2023 Japan Statistical Society |
| Copyright_xml | – notice: 2023 Japan Statistical Society |
| DBID | RYH |
| DOI | 10.11329/jjssj.52.319 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| DocumentTitleAlternate | 一般化ペアワイズ比較による生存時間解析 |
| DocumentTitle_FL | 一般化ペアワイズ比較による生存時間解析 |
| EISSN | 2189-1478 |
| EndPage | 354 |
| ExternalDocumentID | article_jjssj_52_2_52_319_article_char_en |
| GroupedDBID | 2WC 3K4 5GY ABDBF ACGFO ACIWK AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS E3Z EBS EJD GX1 JSF JSH KQ8 OK1 OVT P2P RJT TN5 TR2 XSB RYH |
| ID | FETCH-LOGICAL-j856-4e4a18c210c28772132ca86b4629383e507b2bfeda8e3aba1a0ee12f05f7455c3 |
| ISSN | 0389-5602 |
| IngestDate | Thu Jun 26 22:46:46 EDT 2025 Wed Sep 03 06:31:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | Japanese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-j856-4e4a18c210c28772132ca86b4629383e507b2bfeda8e3aba1a0ee12f05f7455c3 |
| ORCID | 0000-0001-5468-8988 |
| OpenAccessLink | https://www.jstage.jst.go.jp/article/jjssj/52/2/52_319/_article/-char/en |
| PageCount | 36 |
| ParticipantIDs | nii_cinii_1390013795251461376 jstage_primary_article_jjssj_52_2_52_319_article_char_en |
| PublicationCentury | 2000 |
| PublicationDate | 2023/03/01 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023/03/01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of the Japan Statistical Society, Japanese Issue |
| PublicationTitleAlternate | Journal of the Japan Statistical Society, Japanese Issue |
| PublicationTitle_FL | 日本統計学会和文誌 Journal of the Japan Statistical Society, Japanese Issue 日本統計学会誌 Journal of the Japan Statistical Society |
| PublicationYear | 2023 |
| Publisher | Japan Statistical Society 一般社団法人 日本統計学会 |
| Publisher_xml | – name: Japan Statistical Society – name: 一般社団法人 日本統計学会 |
| References | Rotolo, F., Paoletti, X. and Michiels, S. (2018). surrosurv: an R package for the evaluation of failure time surrogate endpoints in individual patient data meta-analyses of randomized clinical trials, Computer Methods and Programs in Biomedicine, 155, 189–198. Dong, G., Mao, L., Huang, B., Gamalo-Siebers, M., Wang, J., Yu, G. and Hoaglin, D. C. (2020c). The inverse-probability-of-censoring weighting (IPCW) adjusted win ratio statistic: an unbiased estimator in the presence of independent censoring, Journal of Biopharmaceutical Statistics, 30, 882–899. Péron, J., Roy, P., Ozenne, B., Roche, L. and Buyse, M. (2016b). The net chance of a longer survival as a patient-oriented measure of treatment benefit in randomized clinical trials, JAMA Oncology, 2, 901–905. Bebu, I. and Lachin, J. M. (2016). Large sample inference for a win ratio analysis of a composite outcome based on prioritized components, Biostatistics, 17, 178–187. Luo, X., Qiu, J., Bai, S. and Tian, H. (2017). Weighted win loss approach for analyzing prioritized outcomes, Statistics in Medicine, 36, 2452–2465. Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other, The Annals of Mathematical Statistics, 18, 50–60. Maurer, M. S., Schwartz, J. H., Gundapaneni, B., Elliott, P. M., Merlini, G., Waddington-Cruz, M., Kristen, A. V., Grogan, M., Witteles, R., Damy, T., Drachman, B. M., Shah, S. J., Hanna, M., Judge, D. P., Barsdorf, A. I., Huber, P., Patterson, T. A., Riley, S., Schumacher, J., Stewart, M., Sultan, M. B., Rapezzi, C. and ATTR-ACT Study Investigators (2018). Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy, The New England Journal of Medicine, 379, 1007–1016. European Medicines Agency (2011). Benefit-risk methodology project. Work package 1 report: description of the current practice of benefit-risk assessment for centralised procedure products in the EU regulatory network, https://www.ema.europa.eu/en/documents/report/benefit-risk-methodology-project-work-package-1-report-description-current-practice-benefit-risk_en.pdf. Buyse, M., Saad, E. D., Burzykowski, T. and Péron, J. (2020). Assessing treatment benefit in immuno-oncology, Statistics in Biosciences, 12, 83–103. Fergusson, N. A., Ramsay, T., Chassé, M., English, S. W. and Knoll, G. A. (2018). The win ratio approach did not alter study conclusions and may mitigate concerns regarding unequal composite end points in kidney transplant trials, Journal of Clinical Epidemiology, 98, 9–15. Péron, J., Idlhaj, M., Maucort-Boulch, D., Giai, J., Roy, P., Collette, L., Buyse, M. and Ozenne, B. (2021). Correcting the bias of the net benefit estimator due to right-censored observations, Biometrical Journal, 63, 893–906. Péron, J., Roy, P., Conroy, T., Desseigne, F., Ychou, M., Gourgou-Bourgade, S., Stanbury, T., Roche, L., Ozenne, B. and Buyse, M. (2016a). An assessment of the benefit-risk balance of FOLFIRINOX in metastatic pancreatic adenocarcinoma, Oncotarget, 7, 82953–82960. Finkelstein, D. M. and Schoenfeld, D. A. (1999). Combining mortality and longitudinal measures in clinical trials, Statistics in Medicine, 18, 1341–1354. Van Cutsem, E., Moiseyenko, V. M., Tjulandin, S., Majlis, A., Constenla, M., Boni, C., Rodrigues, A., Fodor, M., Chao, Y., Voznyi, E., Risse, M. L., Ajani, J. A. and V325 Study Group (2006). Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: a report of the V325 Study Group, Journal of Clinical Oncology, 24, 4991–4997. Verbeeck, J., Ozenne, B. and Anderson, W. N. (2020). Evaluation of inferential methods for the net benefit and win ratio statistics, Journal of Biopharmaceutical Statistics, 30, 765–782. Rauch, G., Jahn-Eimermacher, A., Brannath, W. and Kieser, M. (2014). Opportunities and challenges of combined effect measures based on prioritized outcomes, Statistics in Medicine, 33, 1104–1120. Mao, L., Kim, K. and Miao, X. (2021). Sample size formula for general win ratio analysis, Biometrics, https://doi.org/10.1111/biom.13501. Cantagallo, E., De Backer, M., Kicinski, M., Ozenne, B., Collette, L., Legrand, C., Buyse, M. and Péron, J. (2021). A new measure of treatment effect in clinical trials involving competing risks based on generalized pairwise comparisons, Biometrical Journal, 63, 272–288. Dong, G., Hoaglin, D. C., Qiu, J., Matsouaka, R. A., Chang, Y. W., Wang, J. and Vandemeulebroecke, M. (2020a). The win ratio: on interpretation and handling of ties, Statistics in Biopharmaceutical Research, 12, 99–106. Kotalik, A., Eaton, A., Lian, Q., Serrano, C., Connett, J. and Neaton, J. D. (2019). A win ratio approach to the re-analysis of Multiple Risk Factor Intervention Trial, Clinical Trials, 16, 626–634. Voors, A. A., Angermann, C. E., Teerlink, J. R., Collins, S. P., Kosiborod, M., Biegus, J., Ferreira, J. P., Nassif, M. E., Psotka, M. A., Tromp, J., Borleffs, C., Ma, C., Comin-Colet, J., Fu, M., Janssens, S. P., Kiss, R. G., Mentz, R. J., Sakata, Y., Schirmer, H., Schou, M., Schulze, P. C., Spinarova, L., Volterrani, M., Wranicz, J. K., Zeymer, U., Zieroth, S., Brueckmann, M., Blatchford, J. P., Salsali, A. and Ponikowski, P. (2022). The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial, Nature Medicine, 28, 568–574. Cui, Y. and Huang, B. (2022). WINS: The R WINS package, R package version 1.3.2. Efron, B. (1967). The two sample problem with censored data, Proc Fifth Berkeley Symp Math Stat Probab, 4, 831–853. Luo, X., Tian, H., Mohanty, S. and Tsai, W. Y. (2015). An alternative approach to confidence interval estimation for the win ratio statistic, Biometrics, 71, 139–145. Ozenne, B. and Péron, J. (2022). BuyseTest: implementation of the generalized pairwise comparisons, R package version 2.3.11. Mao, L., Kim, K. and Li, Y. (2022). On recurrent-event win ratio, Statistical Methods in Medical Research, 31, 1120–1134. Food and Drug Administration (2021). Benefit-risk assessment for new drug and biological products, https://www.fda.gov/regulatory-information/search-fda-guidance-documents/benefit-risk-assessment-new-drug-and-biological-products. Pocock, S. J., Ariti, C. A., Collier, T. J. and Wang, D. (2012). The win ratio: a new approach to the analysis of composite endpoints in clinical trials based on clinical priorities, European Heart Journal, 33, 176–182. Buyse, M. (2010). Generalized pairwise comparisons of prioritized outcomes in the two-sample problem, Statistics in Medicine, 29, 3245–3257. Ozenne, B., Budtz-Jørgensen, E. and Péron, J. (2021). The asymptotic distribution of the net benefit estimator in presence of right-censoring, Statistical Methods in Medical Research, 30, 2399–2412. Acion, L., Peterson, J. J., Temple, S. and Arndt, S. (2006). Probabilistic index: an intuitive non-parametric approach to measuring the size of treatment effects, Statistics in Medicine, 25, 591–602. Buyse, M. and Péron, J. (2020). Generalized pairwise comparisons for prioritized outcomes, Principles and Practice of Clinical Trials, Piantadosi, S. and Meinert, C. L. ed., Springer, 1–25. Péron, J., Roy, J., Ding, P., Parulekar, W. R., Roche, L. and Buyse, M. (2015). Assessing the benefit–risk of new treatments using generalised pairwise comparisons: the case of erlotinib in pancreatic cancer, British Journal of Cancer, 112, 971–976. Oakes, D. (2016). On the win-ratio statistic in clinical trials with multiple types of event, Biometrika, 103, 742–745. Saad, E. D., Zalcberg, J. R., Pcron, J., Coart, E., Burzykowski, T. and Buyse, M. (2018). Understanding and communicating measures of treatment effect on survival: can we do better?, Journal of the National Cancer Institute, 110, 232–240. Finkelstein, D. M. and Schoenfeld, D. A. (2019). Graphing the win ratio and its components over time, Statistics in Medicine, 38, 53–61. Redfors, B., Gregson, J., Crowley, A., McAndrew, T., Ben-Yehuda, O., Stone, G. W. and Pocock, S. J. (2020). The win ratio approach for composite endpoints: practical guidance based on previous experience, European Heart Journal, 41, 4391–4399. Dong, G., Huang, B., Wang, D., Verbeeck, J., Wang, J. and Hoaglin, D. C. (2021). Adjusting win statistics for dependent censoring, Pharmaceutical Statistics, 20, 440–450. Péron, J., Giai, J., Maucort-Boulch, D. and Buyse, M. (2019a). The benefit-risk balance of nab-paclitaxel in metastatic pancreatic adenocarcinoma, Pancreas, 48, 275–280. Dobler, D. and Pauly, M. (2018). Bootstrap- and permutation-based inference for the Mann–Whitney effect for right-censored and tied data, Test, 27, 639–658. Chamseddine, A. N., Oba, K., Buyse, M., Boku, N., Bouché, O., Satar, T., Auperin, A. and Paoletti, X. (2021). Impact of follow-up on generalized pairwise comparisons for estimating the irinotecan benefit in advanced/metastatic gastric cancer, Contemporary Clinical Trials, 105, 106400. Péron, J., Buyse, M., Ozenne, B., Roche, L. and Roy, P. (2018). An extension of generalized pairwise comparisons for prioritized outcomes in the presence of censoring, Statistical Methods in Medical Research, 27, 1230–1239. Yang, S., Troendle, J., Pak, D. and Leifer, E. (2022). Event-specific win ratios for inference with terminal and non-terminal events, Statistics in Medicine, 41, 1225–1241. O'Connor, C. M., Whellan, D. J., Lee, K. L., Keteyian, S. J., Cooper, L. S., Ellis, S. J., Leifer, E. S., Kraus, W. E., Kitzman, D. W., Blumenthal, J. A., Rendall, D. S., Miller, N. H., Fleg, J. L., Schulman, K. A., McKelvie, R. S., Zannad, F., Piña, I. L. and HF-ACTION Investigators (2009). Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial, JAMA: the journal of the American Medical Association, 301, 1439–1450. Dong, G., Li, D., Ballerstedt, S. and Vandemeulebroecke, M. (2016). A generalized analytic solution to the win ratio to analyze a composite endpoint considering the clinical importan |
| References_xml | – reference: Finkelstein, D. M. and Schoenfeld, D. A. (2019). Graphing the win ratio and its components over time, Statistics in Medicine, 38, 53–61. – reference: Tsuchikawa, M. and Sakamaki, K. (2022). Estimands for continuous longitudinal outcomes in the presence of treatment discontinuation—a simulation study in hyperkalemia treatments, Statistics in Biopharmaceutical Research, https://doi.org/10.1080/19466315.2022.2050289. – reference: Kotalik, A., Eaton, A., Lian, Q., Serrano, C., Connett, J. and Neaton, J. D. (2019). A win ratio approach to the re-analysis of Multiple Risk Factor Intervention Trial, Clinical Trials, 16, 626–634. – reference: Mao, L. and Wang, T. (2021). A class of proportional win-fractions regression models for composite outcomes, Biometrics, 77, 1265–1275. – reference: Buyse, M., Saad, E. D., Péron, J., Chiem, J. C., De Backer, M., Cantagallo, E. and Ciani, O. (2021). The net benefit of a treatment should take the correlation between benefits and harms into account, Journal of Clinical Epidemiology, 137, 148–158. – reference: Dong, G., Hoaglin, D. C., Qiu, J., Matsouaka, R. A., Chang, Y. W., Wang, J. and Vandemeulebroecke, M. (2020a). The win ratio: on interpretation and handling of ties, Statistics in Biopharmaceutical Research, 12, 99–106. – reference: European Medicines Agency (2011). Benefit-risk methodology project. Work package 1 report: description of the current practice of benefit-risk assessment for centralised procedure products in the EU regulatory network, https://www.ema.europa.eu/en/documents/report/benefit-risk-methodology-project-work-package-1-report-description-current-practice-benefit-risk_en.pdf. – reference: Rotolo, F., Paoletti, X. and Michiels, S. (2018). surrosurv: an R package for the evaluation of failure time surrogate endpoints in individual patient data meta-analyses of randomized clinical trials, Computer Methods and Programs in Biomedicine, 155, 189–198. – reference: Dong, G., Huang, B., Wang, D., Verbeeck, J., Wang, J. and Hoaglin, D. C. (2021). Adjusting win statistics for dependent censoring, Pharmaceutical Statistics, 20, 440–450. – reference: Péron, J., Buyse, M., Ozenne, B., Roche, L. and Roy, P. (2018). An extension of generalized pairwise comparisons for prioritized outcomes in the presence of censoring, Statistical Methods in Medical Research, 27, 1230–1239. – reference: Giai, J., Maucort-Boulch, D., Ozenne, B., Chiêm, J. C., Buyse, M. and Péron, J. (2021). Net benefit in the presence of correlated prioritized outcomes using generalized pairwise comparisons: a simulation study, Statistics in Medicine, 40, 553–565. – reference: Luo, X., Tian, H., Mohanty, S. and Tsai, W. Y. (2015). An alternative approach to confidence interval estimation for the win ratio statistic, Biometrics, 71, 139–145. – reference: Péron, J., Giai, J., Maucort-Boulch, D. and Buyse, M. (2019a). The benefit-risk balance of nab-paclitaxel in metastatic pancreatic adenocarcinoma, Pancreas, 48, 275–280. – reference: Mao, L., Kim, K. and Miao, X. (2021). Sample size formula for general win ratio analysis, Biometrics, https://doi.org/10.1111/biom.13501. – reference: Saad, E. D., Zalcberg, J. R., Pcron, J., Coart, E., Burzykowski, T. and Buyse, M. (2018). Understanding and communicating measures of treatment effect on survival: can we do better?, Journal of the National Cancer Institute, 110, 232–240. – reference: Fergusson, N. A., Ramsay, T., Chassé, M., English, S. W. and Knoll, G. A. (2018). The win ratio approach did not alter study conclusions and may mitigate concerns regarding unequal composite end points in kidney transplant trials, Journal of Clinical Epidemiology, 98, 9–15. – reference: Rauch, G., Jahn-Eimermacher, A., Brannath, W. and Kieser, M. (2014). Opportunities and challenges of combined effect measures based on prioritized outcomes, Statistics in Medicine, 33, 1104–1120. – reference: Buyse, M., Saad, E. D., Burzykowski, T. and Péron, J. (2020). Assessing treatment benefit in immuno-oncology, Statistics in Biosciences, 12, 83–103. – reference: Bebu, I. and Lachin, J. M. (2016). Large sample inference for a win ratio analysis of a composite outcome based on prioritized components, Biostatistics, 17, 178–187. – reference: Dong, G., Li, D., Ballerstedt, S. and Vandemeulebroecke, M. (2016). A generalized analytic solution to the win ratio to analyze a composite endpoint considering the clinical importance order among components, Pharmaceutical Statistics, 15, 430–437. – reference: Dong, G., Qiu, J., Wang, D. and Vandemeulebroecke, M. (2018). The stratified win ratio, Journal of Biopharmaceutical Statistics, 28, 778–796. – reference: Luo, X., Qiu, J., Bai, S. and Tian, H. (2017). Weighted win loss approach for analyzing prioritized outcomes, Statistics in Medicine, 36, 2452–2465. – reference: Ozenne, B. and Péron, J. (2022). BuyseTest: implementation of the generalized pairwise comparisons, R package version 2.3.11. – reference: Péron, J., Idlhaj, M., Maucort-Boulch, D., Giai, J., Roy, P., Collette, L., Buyse, M. and Ozenne, B. (2021). Correcting the bias of the net benefit estimator due to right-censored observations, Biometrical Journal, 63, 893–906. – reference: Péron, J., Lambert, A., Munier, S., Ozenne, B., Giai, J., Roy, P., Dalle, S., Machingura, A., Maucort-Boulch, D. and Buyse, M. (2019b). Assessing long-term survival benefits of immune checkpoint inhibitors using the net survival benefit, Journal of the National Cancer Institute, 111, 1186–1191. – reference: Efron, B. (1967). The two sample problem with censored data, Proc Fifth Berkeley Symp Math Stat Probab, 4, 831–853. – reference: Chamseddine, A. N., Oba, K., Buyse, M., Boku, N., Bouché, O., Satar, T., Auperin, A. and Paoletti, X. (2021). Impact of follow-up on generalized pairwise comparisons for estimating the irinotecan benefit in advanced/metastatic gastric cancer, Contemporary Clinical Trials, 105, 106400. – reference: Yang, S., Troendle, J., Pak, D. and Leifer, E. (2022). Event-specific win ratios for inference with terminal and non-terminal events, Statistics in Medicine, 41, 1225–1241. – reference: Food and Drug Administration (2021). Benefit-risk assessment for new drug and biological products, https://www.fda.gov/regulatory-information/search-fda-guidance-documents/benefit-risk-assessment-new-drug-and-biological-products. – reference: Acion, L., Peterson, J. J., Temple, S. and Arndt, S. (2006). Probabilistic index: an intuitive non-parametric approach to measuring the size of treatment effects, Statistics in Medicine, 25, 591–602. – reference: Cui, Y. and Huang, B. (2022). WINS: The R WINS package, R package version 1.3.2. – reference: Voors, A. A., Angermann, C. E., Teerlink, J. R., Collins, S. P., Kosiborod, M., Biegus, J., Ferreira, J. P., Nassif, M. E., Psotka, M. A., Tromp, J., Borleffs, C., Ma, C., Comin-Colet, J., Fu, M., Janssens, S. P., Kiss, R. G., Mentz, R. J., Sakata, Y., Schirmer, H., Schou, M., Schulze, P. C., Spinarova, L., Volterrani, M., Wranicz, J. K., Zeymer, U., Zieroth, S., Brueckmann, M., Blatchford, J. P., Salsali, A. and Ponikowski, P. (2022). The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial, Nature Medicine, 28, 568–574. – reference: Zhang, D. and Jeong, J. H. (2021). Inference on win ratio for cluster-randomized semi-competing risk data, Japanese Journal of Statistics and Data Science, 4, 1263–1292. – reference: Buyse, M. and Péron, J. (2020). Generalized pairwise comparisons for prioritized outcomes, Principles and Practice of Clinical Trials, Piantadosi, S. and Meinert, C. L. ed., Springer, 1–25. – reference: Yang, S. and Troendle, J. (2021). Event-specific win ratios and testing with terminal and non-terminal events, Clinical Trials, 18, 180–187. – reference: Buyse, M. (2010). Generalized pairwise comparisons of prioritized outcomes in the two-sample problem, Statistics in Medicine, 29, 3245–3257. – reference: Maurer, M. S., Schwartz, J. H., Gundapaneni, B., Elliott, P. M., Merlini, G., Waddington-Cruz, M., Kristen, A. V., Grogan, M., Witteles, R., Damy, T., Drachman, B. M., Shah, S. J., Hanna, M., Judge, D. P., Barsdorf, A. I., Huber, P., Patterson, T. A., Riley, S., Schumacher, J., Stewart, M., Sultan, M. B., Rapezzi, C. and ATTR-ACT Study Investigators (2018). Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy, The New England Journal of Medicine, 379, 1007–1016. – reference: Ozenne, B., Budtz-Jørgensen, E. and Péron, J. (2021). The asymptotic distribution of the net benefit estimator in presence of right-censoring, Statistical Methods in Medical Research, 30, 2399–2412. – reference: Péron, J., Roy, P., Conroy, T., Desseigne, F., Ychou, M., Gourgou-Bourgade, S., Stanbury, T., Roche, L., Ozenne, B. and Buyse, M. (2016a). An assessment of the benefit-risk balance of FOLFIRINOX in metastatic pancreatic adenocarcinoma, Oncotarget, 7, 82953–82960. – reference: Péron, J., Roy, J., Ding, P., Parulekar, W. R., Roche, L. and Buyse, M. (2015). Assessing the benefit–risk of new treatments using generalised pairwise comparisons: the case of erlotinib in pancreatic cancer, British Journal of Cancer, 112, 971–976. – reference: Dong, G., Huang, B., Chang, Y. W., Seifu, Y., Song, J. and Hoaglin, D. C. (2020b). The win ratio: impact of censoring and follow-up time and use with nonproportional hazards, Pharmaceutical Statistics, 19, 168–177. – reference: Ferreira, J. P., Jhund, P. S., Duarte, K., Claggett, B. L., Solomon, S. D., Pocock, S., Petrie, M. C., Zannad, F. and McMurray, J. J. V. (2020). Use of the win ratio in cardiovascular trials, JACC. Heart failure, 8, 441–450. – reference: Redfors, B., Gregson, J., Crowley, A., McAndrew, T., Ben-Yehuda, O., Stone, G. W. and Pocock, S. J. (2020). The win ratio approach for composite endpoints: practical guidance based on previous experience, European Heart Journal, 41, 4391–4399. – reference: Verbeeck, J., Ozenne, B. and Anderson, W. N. (2020). Evaluation of inferential methods for the net benefit and win ratio statistics, Journal of Biopharmaceutical Statistics, 30, 765–782. – reference: Mao, L., Kim, K. and Li, Y. (2022). On recurrent-event win ratio, Statistical Methods in Medical Research, 31, 1120–1134. – reference: Finkelstein, D. M. and Schoenfeld, D. A. (1999). Combining mortality and longitudinal measures in clinical trials, Statistics in Medicine, 18, 1341–1354. – reference: O'Connor, C. M., Whellan, D. J., Lee, K. L., Keteyian, S. J., Cooper, L. S., Ellis, S. J., Leifer, E. S., Kraus, W. E., Kitzman, D. W., Blumenthal, J. A., Rendall, D. S., Miller, N. H., Fleg, J. L., Schulman, K. A., McKelvie, R. S., Zannad, F., Piña, I. L. and HF-ACTION Investigators (2009). Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial, JAMA: the journal of the American Medical Association, 301, 1439–1450. – reference: Dong, G., Mao, L., Huang, B., Gamalo-Siebers, M., Wang, J., Yu, G. and Hoaglin, D. C. (2020c). The inverse-probability-of-censoring weighting (IPCW) adjusted win ratio statistic: an unbiased estimator in the presence of independent censoring, Journal of Biopharmaceutical Statistics, 30, 882–899. – reference: Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other, The Annals of Mathematical Statistics, 18, 50–60. – reference: Pocock, S. J., Ariti, C. A., Collier, T. J. and Wang, D. (2012). The win ratio: a new approach to the analysis of composite endpoints in clinical trials based on clinical priorities, European Heart Journal, 33, 176–182. – reference: Oakes, D. (2016). On the win-ratio statistic in clinical trials with multiple types of event, Biometrika, 103, 742–745. – reference: Dobler, D. and Pauly, M. (2018). Bootstrap- and permutation-based inference for the Mann–Whitney effect for right-censored and tied data, Test, 27, 639–658. – reference: Péron, J., Roy, P., Ozenne, B., Roche, L. and Buyse, M. (2016b). The net chance of a longer survival as a patient-oriented measure of treatment benefit in randomized clinical trials, JAMA Oncology, 2, 901–905. – reference: Cantagallo, E., De Backer, M., Kicinski, M., Ozenne, B., Collette, L., Legrand, C., Buyse, M. and Péron, J. (2021). A new measure of treatment effect in clinical trials involving competing risks based on generalized pairwise comparisons, Biometrical Journal, 63, 272–288. – reference: Van Cutsem, E., Moiseyenko, V. M., Tjulandin, S., Majlis, A., Constenla, M., Boni, C., Rodrigues, A., Fodor, M., Chao, Y., Voznyi, E., Risse, M. L., Ajani, J. A. and V325 Study Group (2006). Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: a report of the V325 Study Group, Journal of Clinical Oncology, 24, 4991–4997. – reference: Verbeeck, J., Spitzer, E., de Vries, T., van Es, G. A., Anderson, W. N., Van Mieghem, N. M., Leon, M. B., Molenberghs, G. and Tijssen, J. (2019). Generalized pairwise comparison methods to analyze (non)prioritized composite endpoints, Statistics in Medicine, 38, 5641–5656. |
| SSID | ssib005901933 ssib023160829 ssib023160828 ssib000650024 ssib023157179 ssj0033564 ssib000936966 ssib002223900 ssib000936967 ssib022230570 |
| Score | 2.3370588 |
| Snippet | The Net Benefit and the Win Ratio are the effect measures used in clinical trials with survival endpoints such as oncology and cardiology. These measures are... |
| SourceID | nii jstage |
| SourceType | Publisher |
| StartPage | 319 |
| SubjectTerms | Net Benefit U統計量 Win Ratio 一般化ペアワイズ比較 打ち切り 生存時間解析 |
| Title | Generalized Pairwise Comparisons for Survival Analysis |
| URI | https://www.jstage.jst.go.jp/article/jjssj/52/2/52_319/_article/-char/en https://cir.nii.ac.jp/crid/1390013795251461376 |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Journal of the Japan Statistical Society, Japanese Issue, 2023/03/01, Vol.52(2), pp.319-354 |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2189-1478 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033564 issn: 0389-5602 databaseCode: KQ8 dateStart: 19700101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2189-1478 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033564 issn: 0389-5602 databaseCode: KQ8 dateStart: 19950101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2189-1478 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033564 issn: 0389-5602 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWmZdMNKi9RoCgLthniZ5wlQqCqFQjEIHUX2Y4jJRUz1cwEpP5B_5rrRzIuUKl0Y02cTBLn3Fwfx9fnIvQGYy2wEjA60Q3JGatkrrEluTaGF6YqOWl8lO9ncfKdnZ7z89nsOolaGrZ6bq7-ua7kPqhCHeDqVsn-B7LTSaECfgO-UALCUN4J46gZ3V0Ba_yiuvWvbmPDG-4zC3qpBXAN4A1-OiSi_sgtfNQx0FPoOn1K363Xb3ZKISGqMwTUwk4LV_AZ-ybgh4uh8Qz007BxmZmmz7Y6rDZb9VPVN3WhfqiQKPvMBa2vV-lXB0J3YVehR7jtdhL3BVQoBz4VfK31dcAnqhyzkLRn9L-cJHZGEmdKozMN_TINYtN_u3xKnGRq30PvO-dkPv3rhop2xKj2h9Wc1MQVcGw97nGr3MCo9tADAh2EywJy9vWm0mCRCNsXPhGi-GM7HRkTWiXKh26Jb7Vj1sCqeYl3E6SwLYpkAjNuVyOpoJRHJbT4UEe5WGj827TpQKR6GFY4vYi9ZdclXGlxiB5Go8rehTY_QrNePUYHE46bJ0gkppuNppslppuB6Waj6Waj6T5Fi48fFu9P8pjCI-8lFzmzTGFpCC4MjMxLArdrlBSaCWCZkloYjGiiW9soaanSCqvCWkzagrcl49zQZ2h_uVra5yizXCipKlmYljPhpnPbklDesILhxip2hGRoeH0ZZFrqO0N-hI7hUdWmcyV2sGFaVhyYPwOyW4oX9z_1S3Swe3teof3terDHwGK3-rW3r9-ZPZVm |
| linkProvider | Colorado Alliance of Research Libraries |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Pairwise+Comparisons+for+Survival+Analysis&rft.jtitle=Journal+of+the+Japan+Statistical+Society%2C+Japanese+Issue&rft.au=Fukuda%2C+Musashi&rft.au=Oba%2C+Koji&rft.au=Sakamaki%2C+Kentaro&rft.date=2023-03-01&rft.pub=Japan+Statistical+Society&rft.issn=0389-5602&rft.eissn=2189-1478&rft.volume=52&rft.issue=2&rft.spage=319&rft.epage=354&rft_id=info:doi/10.11329%2Fjjssj.52.319&rft.externalDocID=article_jjssj_52_2_52_319_article_char_en |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0389-5602&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0389-5602&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0389-5602&client=summon |