Low-Density Parity-Check Codes Celebrating Receipt of Japan Prize by Prof. Robert G. Gallager

Robert G. Gallager, Professor Emeritus at Massachusetts Institute of Technology, was awarded the 2020 Japan Prize. The low-density parity-check code (LDPC code), the award's subject, is an error correction code proposed by Professor, Gallager in his doctoral thesis in 1960. It has now become an...

Full description

Saved in:
Bibliographic Details
Published inDenshi Jouhou Tsuushin Gakkai Kiso, Kyoukai Sosaieti fundamentals review Vol. 14; no. 3; pp. 217 - 228
Main Author UCHIKAWA, Hironori
Format Journal Article
LanguageJapanese
Published Tokyo The Institute of Electronics, Information and Communication Engineers 01.01.2021
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1882-0875
DOI10.1587/essfr.14.3_217

Cover

Abstract Robert G. Gallager, Professor Emeritus at Massachusetts Institute of Technology, was awarded the 2020 Japan Prize. The low-density parity-check code (LDPC code), the award's subject, is an error correction code proposed by Professor, Gallager in his doctoral thesis in 1960. It has now become an essential fundamental technology that supports our modern digital life. In this article, we describe the LDPC codes that can derive the optimal decoding algorithm in probabilistic inference. Furthermore, in this article we also introduce a practical LDPC code construction.
AbstractList Robert G. Gallager, Professor Emeritus at Massachusetts Institute of Technology, was awarded the 2020 Japan Prize. The low-density parity-check code (LDPC code), the award's subject, is an error correction code proposed by Professor, Gallager in his doctoral thesis in 1960. It has now become an essential fundamental technology that supports our modern digital life. In this article, we describe the LDPC codes that can derive the optimal decoding algorithm in probabilistic inference. Furthermore, in this article we also introduce a practical LDPC code construction.
Author UCHIKAWA, Hironori
Author_xml – sequence: 1
  fullname: UCHIKAWA, Hironori
  organization: Institute of Memory Technology R&D, Kioxia Corporation
BookMark eNo9j0tPwzAQhC0EEqX0yhFV4uzi9aPenBAKTykSHHq37GRDE0pS7FSo_55AEXPYOcynHc0ZO-76jhi7ALEAg_aaUqrjAvRCOQn2iE0AUXKB1pyyWUqtGLUUSlicsMui_-J31KVm2M9ffRyN52sq3-d5X1E6Zye13ySa_fmUrR7uV_kTL14en_PbgreokXs0dRV0IOmroFSmvBHaeALwqDISEkStRQ0ogwzLGkwmLSKUVSAV9MhP2dXh7Tb2nztKg2v7XezGRie11cZCJnGkbg5Umwb_Rm4bmw8f987HoSk35H53O9BO_Zxx-n9Srn101KlvgFRV9Q
ContentType Journal Article
Copyright 2021 The Institute of Electronics, Information and Communication Engineers
Copyright Japan Science and Technology Agency 2020
Copyright_xml – notice: 2021 The Institute of Electronics, Information and Communication Engineers
– notice: Copyright Japan Science and Technology Agency 2020
DBID 7SP
8FD
L7M
DOI 10.1587/essfr.14.3_217
DatabaseName Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1882-0875
EndPage 228
ExternalDocumentID article_essfr_14_3_14_217_article_char_en
GroupedDBID ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
OK1
RJT
7SP
8FD
L7M
ID FETCH-LOGICAL-j848-a85fdb4be2adb3393a5045ae11a839e0210f40f182b2b6f15927881cdbe3b4393
IngestDate Mon Jun 30 06:46:06 EDT 2025
Wed Sep 03 06:31:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 3
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j848-a85fdb4be2adb3393a5045ae11a839e0210f40f182b2b6f15927881cdbe3b4393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/essfr/14/3/14_217/_article/-char/en
PQID 2474571928
PQPubID 2048427
PageCount 12
ParticipantIDs proquest_journals_2474571928
jstage_primary_article_essfr_14_3_14_217_article_char_en
PublicationCentury 2000
PublicationDate 2021/01/01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021/01/01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Denshi Jouhou Tsuushin Gakkai Kiso, Kyoukai Sosaieti fundamentals review
PublicationTitleAlternate IEICE Fundamentals Review
PublicationYear 2021
Publisher The Institute of Electronics, Information and Communication Engineers
Japan Science and Technology Agency
Publisher_xml – name: The Institute of Electronics, Information and Communication Engineers
– name: Japan Science and Technology Agency
References 24) T.J. Richardson and R. Urbanke, Modern Coding Theory, Cambridge University Press, 2008.
17) A.K. Pradhan, A. Subramanian, and A. Thangaraj, “Deterministic constructions for large girth protograph LDPC codes,” IEEE International Symposium on Information Theory (ISIT), pp. 1680-1684, July 2013.
19) R. Smarandache and P.O. Vontobel, “Quasi-cyclic LDPC codes: Influence of proto- and Tanner-graph structure on minimum hamming distance upper bounds,” IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 585-607, Feb. 2012.
3) R.G. Gallager, Low-Density Parity-Check Codes, MIT Press, 1963.
18) M.P.C. Fossorier, “Quasi-cyclic low-density parity-check codes from circulant permutation matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1788-1793, 2004.
22) T.J. Richardson, “Error floors of LDPC codes,” 41st Annual Allerton Conference on Communications, pp. 1426-1435, 2003.
23) S. Lin and D.J. Costello, Error Control Coding, 2 edition, Prentice Hall, 2004.
14) T.J. Richardson and R. Urbanke, “Multi-edge type LDPC codes,” 2004. https://www.researchgate.net/publication/37439748_Multi-edge_type_LDPC_codes
10) J. Thorpe, “Low density parity check (LDPC) codes constructed from protographs,” JPL IPN Progress Report, 42-154, pp. 1-7, Aug. 2003.
6) T.J. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 619-637, 2001.
12) Y. Fang, G. Bi, Y.L. Guan, and F.C.M. Lau, “A survey on protograph LDPC codes and their applications,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 1989-2016, 2015.
2) C.E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, no. 3, pp. 379-423, 1948.
20) D.M. Arnold, E. Eleftheriou, and X.Y. Hu, “Progressive edge-growth Tanner graphs,” IEEE Global Telecommunications Conference (GLOBECOM), vol. 2, pp. 995-1001, 2001.
13) D. Divsalar, S. Dolinar, C.R. Jones, and K. Andrews, “Capacity-approaching protograph codes,” IEEE J. Sel. Areas Commun., vol. 27, no. 6, pp. 876-888, 2009.
1) 萩原学(編著),進化する符号理論,日本評論社,2016.
25) W.E. Ryan and S. Lin, Channel Codes: Classical and Modern, Cambridge University Press, 2009.
8) 笠原正雄,“リード・ソロモン符号の半世紀,” 信学FR誌,vol. 5, no. 1, pp. 28-41, 2011.
7) R. Gallager, “A simple derivation of the coding theorem and some applications,” IEEE Trans. Inf. Theory, vol. 11, no. 1, pp. 3-18, Jan. 1965.
5) T.J. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 599-618, 2001.
26) 笠井健太,“多元LDPC符号とその応用,” 信学技報,vol. 110, no. 205, pp. 1-6, Sept. 2010.
21) T. Tian, C. Jones, J. Villasenor, and R.D. Wesel, “Selective avoidance of cycles in irregular LDPC code construction,” IEEE Trans. Commun., vol. 52, no. 8, pp. 1242-1247, 2004.
9) “Robert G. Gallager Wins the 1999 Harvey Prize.” https://wayback.archive-it.org/all/20070417175505/ http://www.ee.ucla.edu/~congshen/robert_gallager.pdf
15) T.V. Nguyen, A. Nosratinia, and D. Divsalar, “The design of rate-compatible protograph LDPC codes,” IEEE Trans. Commun., vol. 60, no. 10, pp. 2841-2850, 2012.
16) H. Uchikawa, “Design of non-precoded protograph-based LDPC codes,” IEEE International Symposium on Information Theory (ISIT), pp. 2779-2783, June 2014.
27) 笠井健太,“空間結合符号とその応用,” 信学技報,vol. 111, no. 220, pp. 1-8, Sept. 2011.
4) D.J.C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399-431, March 1999.
11) G. Liva and M. Chiani, “Protograph LDPC codes design based on EXIT analysis,” IEEE Global Telecommunications Conference (GLOBECOM), pp. 3250-3254, Nov. 2007.
References_xml – reference: 26) 笠井健太,“多元LDPC符号とその応用,” 信学技報,vol. 110, no. 205, pp. 1-6, Sept. 2010.
– reference: 11) G. Liva and M. Chiani, “Protograph LDPC codes design based on EXIT analysis,” IEEE Global Telecommunications Conference (GLOBECOM), pp. 3250-3254, Nov. 2007.
– reference: 13) D. Divsalar, S. Dolinar, C.R. Jones, and K. Andrews, “Capacity-approaching protograph codes,” IEEE J. Sel. Areas Commun., vol. 27, no. 6, pp. 876-888, 2009.
– reference: 18) M.P.C. Fossorier, “Quasi-cyclic low-density parity-check codes from circulant permutation matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1788-1793, 2004.
– reference: 27) 笠井健太,“空間結合符号とその応用,” 信学技報,vol. 111, no. 220, pp. 1-8, Sept. 2011.
– reference: 6) T.J. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 619-637, 2001.
– reference: 8) 笠原正雄,“リード・ソロモン符号の半世紀,” 信学FR誌,vol. 5, no. 1, pp. 28-41, 2011.
– reference: 14) T.J. Richardson and R. Urbanke, “Multi-edge type LDPC codes,” 2004. https://www.researchgate.net/publication/37439748_Multi-edge_type_LDPC_codes
– reference: 9) “Robert G. Gallager Wins the 1999 Harvey Prize.” https://wayback.archive-it.org/all/20070417175505/ http://www.ee.ucla.edu/~congshen/robert_gallager.pdf
– reference: 16) H. Uchikawa, “Design of non-precoded protograph-based LDPC codes,” IEEE International Symposium on Information Theory (ISIT), pp. 2779-2783, June 2014.
– reference: 21) T. Tian, C. Jones, J. Villasenor, and R.D. Wesel, “Selective avoidance of cycles in irregular LDPC code construction,” IEEE Trans. Commun., vol. 52, no. 8, pp. 1242-1247, 2004.
– reference: 1) 萩原学(編著),進化する符号理論,日本評論社,2016.
– reference: 12) Y. Fang, G. Bi, Y.L. Guan, and F.C.M. Lau, “A survey on protograph LDPC codes and their applications,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 1989-2016, 2015.
– reference: 25) W.E. Ryan and S. Lin, Channel Codes: Classical and Modern, Cambridge University Press, 2009.
– reference: 22) T.J. Richardson, “Error floors of LDPC codes,” 41st Annual Allerton Conference on Communications, pp. 1426-1435, 2003.
– reference: 3) R.G. Gallager, Low-Density Parity-Check Codes, MIT Press, 1963.
– reference: 2) C.E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, no. 3, pp. 379-423, 1948.
– reference: 17) A.K. Pradhan, A. Subramanian, and A. Thangaraj, “Deterministic constructions for large girth protograph LDPC codes,” IEEE International Symposium on Information Theory (ISIT), pp. 1680-1684, July 2013.
– reference: 19) R. Smarandache and P.O. Vontobel, “Quasi-cyclic LDPC codes: Influence of proto- and Tanner-graph structure on minimum hamming distance upper bounds,” IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 585-607, Feb. 2012.
– reference: 7) R. Gallager, “A simple derivation of the coding theorem and some applications,” IEEE Trans. Inf. Theory, vol. 11, no. 1, pp. 3-18, Jan. 1965.
– reference: 10) J. Thorpe, “Low density parity check (LDPC) codes constructed from protographs,” JPL IPN Progress Report, 42-154, pp. 1-7, Aug. 2003.
– reference: 23) S. Lin and D.J. Costello, Error Control Coding, 2 edition, Prentice Hall, 2004.
– reference: 4) D.J.C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399-431, March 1999.
– reference: 15) T.V. Nguyen, A. Nosratinia, and D. Divsalar, “The design of rate-compatible protograph LDPC codes,” IEEE Trans. Commun., vol. 60, no. 10, pp. 2841-2850, 2012.
– reference: 5) T.J. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 599-618, 2001.
– reference: 20) D.M. Arnold, E. Eleftheriou, and X.Y. Hu, “Progressive edge-growth Tanner graphs,” IEEE Global Telecommunications Conference (GLOBECOM), vol. 2, pp. 995-1001, 2001.
– reference: 24) T.J. Richardson and R. Urbanke, Modern Coding Theory, Cambridge University Press, 2008.
SSID ssj0000603078
ssib005296245
ssib005492307
Score 1.8447651
Snippet Robert G. Gallager, Professor Emeritus at Massachusetts Institute of Technology, was awarded the 2020 Japan Prize. The low-density parity-check code (LDPC...
SourceID proquest
jstage
SourceType Aggregation Database
Publisher
StartPage 217
SubjectTerms Algorithms
Awards & honors
Binary system
Codes
Decoding
Density
Differential evolution
Error correcting codes
Error correction
LDPC codes
Low density parity check codes
Maximum a posteriori decoding
Parity
Probabilistic inference
Protograph
Quasi-cyclic LDPC codes
Sum-product decoding
Subtitle Celebrating Receipt of Japan Prize by Prof. Robert G. Gallager
Title Low-Density Parity-Check Codes
URI https://www.jstage.jst.go.jp/article/essfr/14/3/14_217/_article/-char/en
https://www.proquest.com/docview/2474571928
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX IEICE ESS Fundamentals Review, 2021/01/01, Vol.14(3), pp.217-228
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  databaseCode: KQ8
  dateStart: 20070101
  customDbUrl:
  isFulltext: true
  eissn: 1882-0875
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssj0000603078
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLY2dmEHxAZo_Kp62A0ZGttJnGNVWrXrhoRUBLfITmxGJ7VTKULir-c9xwSn3YFxiao0jVy_58_fs_29R8h3abLIltrQQvCCikhbmqkioTxLhJEdlSYlaod_XSTDK_HjJr55rbHp1CVLfVo8_VNX8h6rwj2wK6pk_8Oy9UvhBnwG-8IVLAzXN9n45_yRnuMJdNT5KSxDR3u_TfEHRnnpzwZ63jnqj3r9E6yvMUDpR5XR_35lZ-CqNxyNu9ddNx2h_G2-uAtXBVi0sirgStSHpw36dVEdDz61NtJtUjTUKHUqRJ8uvUJGpOKY_r4BnSJwEd7AwTSYUlml_15D6xjXOwaA6HYBiH3K8_pnjQzYvn9z9yDEKjnHCzybv3yDCjVwiI_kEwNwxwoe48sgSxnLEhZsnrqkdD7qrSZsRDrpU3pCo86aTQJyMgWqfrs-XzsSMtkmWz56aHerBn0hH6bqK_kc5JTcIa3AKdqhU7SdU-ySyaA_6Q2pL4JBp1JIqmQMQ0low1SpOc-4ioGEKxNFCqitwYjdio6FKFEznVggpwwLBBQw_LgGssn3yMZsPjPfSDs10jDLOhZIuYBu0pG1QEY7HGC8yMpon8jqb-Z_q0Qn-Zs7fp8cvXRM7sfHfc5EKuIUIgh58P43H5LNV_c-IhvLxYM5Bhq41C1n5Gfk5GGq
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Density+Parity-Check+Codes&rft.jtitle=IEICE+ESS+Fundamentals+Review&rft.au=UCHIKAWA%2C+Hironori&rft.date=2021-01-01&rft.pub=The+Institute+of+Electronics%2C+Information+and+Communication+Engineers&rft.eissn=1882-0875&rft.volume=14&rft.issue=3&rft.spage=217&rft.epage=228&rft_id=info:doi/10.1587%2Fessfr.14.3_217&rft.externalDocID=article_essfr_14_3_14_217_article_char_en