Leaf area measurement of green wall plants using deep learning with terrestrial laser

Green wall plants have various functionality such as mitigating heat island, creating green space, and absorbing carbon in an urban area. A method to evaluate the various functionality is needed for construction field. This study focuses on the plant structure and deep learning was introduced to est...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Japanese Society of Revegetation Technology Vol. 48; no. 1; pp. 9 - 14
Main Authors ASANO, Ryota, HIKOSAKA, Shoko, UEYANAGI, Ryohei, KURIKI, Shigeru, YAMAGUCHI, Jun, OSHIMA, Kaori, KATO, Akira
Format Journal Article
LanguageJapanese
Published Tokyo JAPANESE SOCIETY OF REVEGETATION TECHNOLOGY 31.08.2022
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0916-7439
0916-7439
DOI10.7211/jjsrt.48.9

Cover

Abstract Green wall plants have various functionality such as mitigating heat island, creating green space, and absorbing carbon in an urban area. A method to evaluate the various functionality is needed for construction field. This study focuses on the plant structure and deep learning was introduced to estimate the leaf area and counting leaves automatically. To achieve this, the panorama distant image was created from 3D data acquired by terrestrial laser to prepare for the deep learning model. The model for the presence or absence of leaves had 90% accuracy and the counting leaves had 72% accuracy and leaf area estimated through deep learning had 27% error compared to the destructively sampled data.
AbstractList Green wall plants have various functionality such as mitigating heat island, creating green space, and absorbing carbon in an urban area. A method to evaluate the various functionality is needed for construction field. This study focuses on the plant structure and deep learning was introduced to estimate the leaf area and counting leaves automatically. To achieve this, the panorama distant image was created from 3D data acquired by terrestrial laser to prepare for the deep learning model. The model for the presence or absence of leaves had 90% accuracy and the counting leaves had 72% accuracy and leaf area estimated through deep learning had 27% error compared to the destructively sampled data.
Author YAMAGUCHI, Jun
KATO, Akira
ASANO, Ryota
KURIKI, Shigeru
OSHIMA, Kaori
HIKOSAKA, Shoko
UEYANAGI, Ryohei
Author_xml – sequence: 1
  fullname: ASANO, Ryota
  organization: Technology Research Institute, Toda Corporation
– sequence: 1
  fullname: HIKOSAKA, Shoko
  organization: Graduate School of Horticulture, Chiba University
– sequence: 1
  fullname: UEYANAGI, Ryohei
  organization: Technology Research Institute, Toda Corporation
– sequence: 1
  fullname: KURIKI, Shigeru
  organization: Technology Research Institute, Toda Corporation
– sequence: 1
  fullname: YAMAGUCHI, Jun
  organization: Faculty of Horticulture, Chiba University
– sequence: 1
  fullname: OSHIMA, Kaori
  organization: Technology Research Institute, Toda Corporation
– sequence: 1
  fullname: KATO, Akira
  organization: Graduate School of Horticulture, Chiba University
BookMark eNpNUMtOwzAQtFCRKKUXvsAS5xQ_ktg-cEAVL6kSl3KONsmmTeQ6wXZU8fekFCEuuzuj0ezsXpOZ6x0ScsvZSgnO77su-LhK9cpckDkzPE9UKs3s33xFliG0JWNCCGmkmpOPDUJDwSPQA0IYPR7QRdo3dOcRHT2CtXSw4GKgY2jdjtaIA7UI3p3QsY17GtF7DNG3YKmFgP6GXDZgAy5_-4Jsn5-269dk8_7ytn7cJJ0WJsmakmUaSwDIeG5khlVW16bmWSk4K7UoVZZhjYYhLysNUkte5ZhzpbSSTMgFuTvbDr7_HKcERdeP3k0bC6FSNV1pmJlUD2dVFyLssBh8ewD_VYCPbWWx-HlbkeqCn4r546s9-AKd_AYLC2wU
ContentType Journal Article
Copyright 2022 Japanese Society of Revegetation Technology
Copyright Japan Science and Technology Agency 2022
Copyright_xml – notice: 2022 Japanese Society of Revegetation Technology
– notice: Copyright Japan Science and Technology Agency 2022
DOI 10.7211/jjsrt.48.9
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
EISSN 0916-7439
EndPage 14
ExternalDocumentID article_jjsrt_48_1_48_9_article_char_en
GroupedDBID 2WC
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
OK1
RJT
ID FETCH-LOGICAL-j829-5fb058ebaaa516935ec5dd9d15b210b82b755ede90e1bc8a3831c6e6177873023
ISSN 0916-7439
IngestDate Mon Jun 30 15:47:08 EDT 2025
Wed Sep 03 06:31:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j829-5fb058ebaaa516935ec5dd9d15b210b82b755ede90e1bc8a3831c6e6177873023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/jjsrt/48/1/48_9/_article/-char/en
PQID 2747022909
PQPubID 2028966
PageCount 6
ParticipantIDs proquest_journals_2747022909
jstage_primary_article_jjsrt_48_1_48_9_article_char_en
PublicationCentury 2000
PublicationDate 2022/08/31
PublicationDateYYYYMMDD 2022-08-31
PublicationDate_xml – month: 08
  year: 2022
  text: 2022/08/31
  day: 31
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of the Japanese Society of Revegetation Technology
PublicationTitleAlternate J.Jpn.Soc.Reveget.Tech.
PublicationYear 2022
Publisher JAPANESE SOCIETY OF REVEGETATION TECHNOLOGY
Japan Science and Technology Agency
Publisher_xml – name: JAPANESE SOCIETY OF REVEGETATION TECHNOLOGY
– name: Japan Science and Technology Agency
References 7) 加藤 顕・田村 太壱・市橋 新・小林 達明・高橋 輝昌 (2019) 地上レーザーを用いた階層構造と植被率の自動解析手法. 日本緑化工学会誌, 45(1): 121-126
8) Ki, D., and Lee, S. (2021) Analyzing the effects of Green View Index of neighborhood streets on walking time using Google Street View and deep learning. Landscape and Urban Planning, 205: 103920
4) Hirose, T. (2005) Development of the Monsi-Saeki theory on canopy structure and function. Annals of Botany, 95(3): 483-494
21) Yin, H., Kong F., Middel, A., Dronova, I., Xu, H., James P. (2017) Cooling effect of direct green façades during hot summer days: An observational study in Nanjing, China using TIR and 3DPC data. Building and Environment, 116: 195e206
3) 彦坂幸毅 (2016) 植物の光合成・物質生産の測定とモデリング. 共立出版, pp. 30-33
6) 加藤 顕,・安藤 祐樹・吉田 俊也・梶原 康司・本多 嘉明・小林 達明 (2014) 簡易型地上レーザーを用いた毎木調査法. 日本緑化工学会誌, 40(1): 136-141
13) 森本幸裕・小林達明 (2007) 最新 環境緑化工学. 朝倉書店
19) 鈴木弘孝・三坂育正・田代順孝 (2007) 蒸散効率を指標とした壁面緑化の蒸散特性. ランドスケープ研究, 70(5): 401-406
12) Moorthy, I., Miller, J.R., Berni, J.A.J., Zarco-Tejada, P., Hu, B., Chen, J. (2011) Field characterization of olive (Oleaeuropaea L.) tree crown architecture using terrestrial laser scanning data, Agricultural Forest. Meteorology. 151: 204e214
10) Kong, F.H., Yan, W.J., Zheng, G., Yin, H.W., Cavan, G., Zhan, W.F., Zhang, N. Cheng, L. (2016) Retrieval of three-dimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agricultural Forest Meteorology, 217: 22e34
2) Goodfellow, I., Bengio,Y., and Courville, A. (2016) Deep Learning. The MIT Press
16) Sony Neural Network Console, https://dl.sony.com/ja/ (参照: 2022年2月7日)
17) 鈴木弘孝・三坂育正・村野直康・田代順孝 (2005) 壁面緑化による建物外部の温熱環境改善効果に関する研究. ランドスケープ研究, 68(2): 503-508
20) 竹中優揮・村江行忠・栗木 茂・伊藤 優・市川勇太 (2021) 環境配慮型事務所建築に関する研究(第1報)カーボンマイナスを目指したグリーンオフィス棟の概要. 戸田建設株式会社技術研究報告, 47: 1-4
22) 渡部俊太郎・大西信徳・皆川まり・伊勢武史 (2020) 深層学習による画像認識技術の生態学への応用-植物種と植生の識別を中心に-. 保全生態学研究, 25: 43-56
9) Li, W., H. Fu, L. Yu, and A. Cracknell. (2016) Deep learning based oil palm tree detection and counting for high-resolution remote sensing images. Remote Sensing, 9(1): 22–35
5) Hoelscher, M-T., Nehls, T., Jänicke, B., and Wessolek, G. (2016) Quantifying cooling effects of facade greening: Shading, transpiration and insulation. Energy and Buildings, 114: 283–290
11) Manso, M., Teot´onio, I., Silva, C.M., and Cruz, C.O. (2021) Green roof and green wall benefits and costs: A review of the quantitative evidence. Renewable and Sustainable Energy Reviews, 135: 110111
14) 野島義照・鈴木弘孝 (2004) 壁面緑化による夏季の壁面から屋内への熱流および熱流量の軽減効果. ランドスケープ研究, 67(5): 447-452
1) Djedjig, R., Belarbi, R., and Bozonnet, E. (2017) Green wall impacts inside and outside buildings: experimental study. Energy Procedia, 139: 578-583
15) Sanz, R., Rosell, J.,R., Llorens, J., Gil, E., Planas, S. (2013) Relationship between tree row LIDAR-volume and leaf area density for fruit orchards and vineyards obtained with a LIDAR 3D dynamic measurement system. Agricultural Forest Meteorology 171: 153e162.
18) 鈴木弘孝・三坂育正・水谷敦司・田代順孝 (2006) WBGT,SET*による壁面緑化の温熱環境改善効果の評価. ランドスケープ研究, 69(5): 441-446.
References_xml – reference: 18) 鈴木弘孝・三坂育正・水谷敦司・田代順孝 (2006) WBGT,SET*による壁面緑化の温熱環境改善効果の評価. ランドスケープ研究, 69(5): 441-446.
– reference: 5) Hoelscher, M-T., Nehls, T., Jänicke, B., and Wessolek, G. (2016) Quantifying cooling effects of facade greening: Shading, transpiration and insulation. Energy and Buildings, 114: 283–290
– reference: 9) Li, W., H. Fu, L. Yu, and A. Cracknell. (2016) Deep learning based oil palm tree detection and counting for high-resolution remote sensing images. Remote Sensing, 9(1): 22–35
– reference: 10) Kong, F.H., Yan, W.J., Zheng, G., Yin, H.W., Cavan, G., Zhan, W.F., Zhang, N. Cheng, L. (2016) Retrieval of three-dimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agricultural Forest Meteorology, 217: 22e34
– reference: 19) 鈴木弘孝・三坂育正・田代順孝 (2007) 蒸散効率を指標とした壁面緑化の蒸散特性. ランドスケープ研究, 70(5): 401-406
– reference: 7) 加藤 顕・田村 太壱・市橋 新・小林 達明・高橋 輝昌 (2019) 地上レーザーを用いた階層構造と植被率の自動解析手法. 日本緑化工学会誌, 45(1): 121-126
– reference: 1) Djedjig, R., Belarbi, R., and Bozonnet, E. (2017) Green wall impacts inside and outside buildings: experimental study. Energy Procedia, 139: 578-583
– reference: 15) Sanz, R., Rosell, J.,R., Llorens, J., Gil, E., Planas, S. (2013) Relationship between tree row LIDAR-volume and leaf area density for fruit orchards and vineyards obtained with a LIDAR 3D dynamic measurement system. Agricultural Forest Meteorology 171: 153e162.
– reference: 2) Goodfellow, I., Bengio,Y., and Courville, A. (2016) Deep Learning. The MIT Press
– reference: 8) Ki, D., and Lee, S. (2021) Analyzing the effects of Green View Index of neighborhood streets on walking time using Google Street View and deep learning. Landscape and Urban Planning, 205: 103920
– reference: 16) Sony Neural Network Console, https://dl.sony.com/ja/ (参照: 2022年2月7日)
– reference: 3) 彦坂幸毅 (2016) 植物の光合成・物質生産の測定とモデリング. 共立出版, pp. 30-33
– reference: 12) Moorthy, I., Miller, J.R., Berni, J.A.J., Zarco-Tejada, P., Hu, B., Chen, J. (2011) Field characterization of olive (Oleaeuropaea L.) tree crown architecture using terrestrial laser scanning data, Agricultural Forest. Meteorology. 151: 204e214
– reference: 11) Manso, M., Teot´onio, I., Silva, C.M., and Cruz, C.O. (2021) Green roof and green wall benefits and costs: A review of the quantitative evidence. Renewable and Sustainable Energy Reviews, 135: 110111
– reference: 13) 森本幸裕・小林達明 (2007) 最新 環境緑化工学. 朝倉書店
– reference: 21) Yin, H., Kong F., Middel, A., Dronova, I., Xu, H., James P. (2017) Cooling effect of direct green façades during hot summer days: An observational study in Nanjing, China using TIR and 3DPC data. Building and Environment, 116: 195e206
– reference: 6) 加藤 顕,・安藤 祐樹・吉田 俊也・梶原 康司・本多 嘉明・小林 達明 (2014) 簡易型地上レーザーを用いた毎木調査法. 日本緑化工学会誌, 40(1): 136-141
– reference: 14) 野島義照・鈴木弘孝 (2004) 壁面緑化による夏季の壁面から屋内への熱流および熱流量の軽減効果. ランドスケープ研究, 67(5): 447-452
– reference: 22) 渡部俊太郎・大西信徳・皆川まり・伊勢武史 (2020) 深層学習による画像認識技術の生態学への応用-植物種と植生の識別を中心に-. 保全生態学研究, 25: 43-56
– reference: 4) Hirose, T. (2005) Development of the Monsi-Saeki theory on canopy structure and function. Annals of Botany, 95(3): 483-494
– reference: 20) 竹中優揮・村江行忠・栗木 茂・伊藤 優・市川勇太 (2021) 環境配慮型事務所建築に関する研究(第1報)カーボンマイナスを目指したグリーンオフィス棟の概要. 戸田建設株式会社技術研究報告, 47: 1-4
– reference: 17) 鈴木弘孝・三坂育正・村野直康・田代順孝 (2005) 壁面緑化による建物外部の温熱環境改善効果に関する研究. ランドスケープ研究, 68(2): 503-508
SSID ssib002223937
ssib005901931
ssj0060815
ssib023160877
ssib000936968
Score 2.3203483
Snippet Green wall plants have various functionality such as mitigating heat island, creating green space, and absorbing carbon in an urban area. A method to evaluate...
SourceID proquest
jstage
SourceType Aggregation Database
Publisher
StartPage 9
SubjectTerms carbon neutral
Data acquisition
Deep learning
energy efficient building
Green infrastructure
green wall
Heat islands
Image acquisition
Leaf area
Leaves
Plant structures
Plants
terrestrial laser
Urban areas
Urban heat islands
Title Leaf area measurement of green wall plants using deep learning with terrestrial laser
URI https://www.jstage.jst.go.jp/article/jjsrt/48/1/48_9/_article/-char/en
https://www.proquest.com/docview/2747022909
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of the Japanese Society of Revegetation Technology, 2022/08/31, Vol.48(1), pp.9-14
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 0916-7439
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060815
  issn: 0916-7439
  databaseCode: KQ8
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXKcuGCQIBYWJAPiEuVkqRxah-j1S7tpmwFpFI5RXFil-3CtnRTIfGb-JHM2PlCrRBwsVpXilzPy8zzzHiGkFcSKDQXnnZyrjHMKENH5nngjHKeaaCwQ88Ue353GY7nwcWCLXq9n52spV0pB_mPg_dK_keqMAdyxVuy_yDZ5qEwAZ9BvjCChGH8KxlPVab7GdC-_tfW1Yf0b4nZNP3vGHbefDGZLjvjEyiU2tSNImofrDLtOUzzDmDSVbLuPl1FgnoBlhU7VhpPu7K5HFgCalnnLJZ7jvo4SmZG_1xfbRsL8Ak0_dv56Xhi74U0-BxP4tnHKI6MS_bz-nrdPGX-YRJP7PTVUm13XWcFnHMr72ttSHCZjdbCyEAbQOhH5rJp10PphQ6el6ypOjBXKfCA7wHVamNxyEbgkRdtxOp2Ww4CPhCtJayj_5ez9Hw-nabJ2SJ5vfnmYI8yjOVXDVvukLv-KAyxX0b8vkNmTW_EzuHNx_Jyv9_yFW3MFYh1iNUYa94AX2y_jfov2mK6uNw37WKBKK3g2LDc5w6GECUPyP0KGjSysHxIeqvsEZkjJClCknYgSdeaGkhShCS1kKQGkhQhSWtIUoQk7UCSGkg-Jsn5WXI6dqrOHc6K-8JhWrqMK5llGYZhh0zlrChE4THpe67kvhwxpgolXOVJUApDPvTyUAGZBvOBXayekKOb9Y16SqhfiJGrGXe1DgPko6BCFJgpTzOhhZLHJLT7kW5sdZa0ehtTs2dpwFMPB9HM421GUB7H5KTev7R6pW9TdNG42AFBPPvzz8_JvRbeJ-So3O7UC2CnpXxpQPELI5aSZw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leaf+area+measurement+of+green+wall+plants+using+deep+learning+with+terrestrial+laser&rft.jtitle=Journal+of+the+Japanese+society+of+revegetation+technology&rft.au=KATO%2C+Akira&rft.au=YAMAGUCHI%2C+Jun&rft.au=HIKOSAKA%2C+Shoko&rft.au=KURIKI%2C+Shigeru&rft.date=2022-08-31&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0916-7439&rft.eissn=0916-7439&rft.volume=48&rft.issue=1&rft.spage=9&rft_id=info:doi/10.7211%2Fjjsrt.48.9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7439&client=summon