Effects of different cognitive functions on unanticipated cutting motion using the Trail Making Test
Objective: The purpose of this study was to examine the effects of differences in cognitive function assessed the Trail Making Test (TMT) on lower limb joint angles and joint moments during unanticipated cutting motion.Methods: The subjects were 15 female college athletes, and lower limb joint angle...
Saved in:
Published in | Japanese Journal of Sports Physical Therapy Vol. 3; no. 1; pp. 97 - 105 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Japanese |
Published |
Japanese Society of Sports Physical Therapy
2025
一般社団法人 日本スポーツ理学療法学会 |
Subjects | |
Online Access | Get full text |
ISSN | 2758-4356 |
DOI | 10.57495/jjspt.3.1_97 |
Cover
Abstract | Objective: The purpose of this study was to examine the effects of differences in cognitive function assessed the Trail Making Test (TMT) on lower limb joint angles and joint moments during unanticipated cutting motion.Methods: The subjects were 15 female college athletes, and lower limb joint angles and joint moments were measured during unanticipated cutting motion from the 30-cm high box. Cognitive function was calculated by subtracting the time required for TMT-A from TMT-B (⊿TMT), and subjects were divided into two groups, low and high groups. The maximum value of each parameter and the amount of change in joint angle within the interval during the first 30 % of the stance phase of the cutting motion were subjected to analysis. For statistical analysis, a t-test was used for inter-group comparisons, and the significant level was set at 5 %.Results: The maximum value of the knee joint valgus angle (p=0.040) and the amount of change in the knee joint valgus angle (p=0.020) were significantly greater in the low group, and the amount of change in the ankle joint dorsiflexion angle (p=0.019) was significantly greater in the high group.Conclusion: Low cognitive function assessed by TMT was found to be associated with motor characteristics such as increased knee joint valgus angle. |
---|---|
AbstractList | Objective: The purpose of this study was to examine the effects of differences in cognitive function assessed the Trail Making Test (TMT) on lower limb joint angles and joint moments during unanticipated cutting motion.Methods: The subjects were 15 female college athletes, and lower limb joint angles and joint moments were measured during unanticipated cutting motion from the 30-cm high box. Cognitive function was calculated by subtracting the time required for TMT-A from TMT-B (⊿TMT), and subjects were divided into two groups, low and high groups. The maximum value of each parameter and the amount of change in joint angle within the interval during the first 30 % of the stance phase of the cutting motion were subjected to analysis. For statistical analysis, a t-test was used for inter-group comparisons, and the significant level was set at 5 %.Results: The maximum value of the knee joint valgus angle (p=0.040) and the amount of change in the knee joint valgus angle (p=0.020) were significantly greater in the low group, and the amount of change in the ankle joint dorsiflexion angle (p=0.019) was significantly greater in the high group.Conclusion: Low cognitive function assessed by TMT was found to be associated with motor characteristics such as increased knee joint valgus angle.
【目的】Trail Making Test(以下,TMT)で評価した認知機能の違いが非予測的なカッティング動作中の下肢関節角度,関節モーメントおよび下肢筋活動に与える影響を検討することを目的とした。【方法】対象者は大学生女性アスリート15名とし,非予測的なカッティング動作中の下肢関節角度,関節モーメント,筋活動を測定した。認知機能はTMT-BからTMT-Aの所要時間を引いた⊿TMTで評価し,対象者をLow群とHigh群の2群に分けた。カッティング動作中の接地期前半30 %の区間中での,各パラメータの最大値と区間内での関節角度変化量を分析対象とし,群間比較に対応のないt検定を用いた。なお,有意水準は5 %とした。【結果】膝関節外反角度の最大値(p=0.024),膝関節外反角度変化量(p=0.002)はLow群が有意に大きく,足関節背屈角度変化量(p=0.019)はHigh群が有意に大きかった。【結論】TMTで評価した認知機能の低さは,膝関節外反角度の増大といった運動特性に関連することが明らかとなった。 Objective: The purpose of this study was to examine the effects of differences in cognitive function assessed the Trail Making Test (TMT) on lower limb joint angles and joint moments during unanticipated cutting motion.Methods: The subjects were 15 female college athletes, and lower limb joint angles and joint moments were measured during unanticipated cutting motion from the 30-cm high box. Cognitive function was calculated by subtracting the time required for TMT-A from TMT-B (⊿TMT), and subjects were divided into two groups, low and high groups. The maximum value of each parameter and the amount of change in joint angle within the interval during the first 30 % of the stance phase of the cutting motion were subjected to analysis. For statistical analysis, a t-test was used for inter-group comparisons, and the significant level was set at 5 %.Results: The maximum value of the knee joint valgus angle (p=0.040) and the amount of change in the knee joint valgus angle (p=0.020) were significantly greater in the low group, and the amount of change in the ankle joint dorsiflexion angle (p=0.019) was significantly greater in the high group.Conclusion: Low cognitive function assessed by TMT was found to be associated with motor characteristics such as increased knee joint valgus angle. |
Author | Shibata, Satoshi Takemura, Masahiro |
Author_FL | 柴田 聡 竹村 雅裕 |
Author_FL_xml | – sequence: 1 fullname: 柴田 聡 – sequence: 2 fullname: 竹村 雅裕 |
Author_xml | – sequence: 1 fullname: Shibata, Satoshi organization: Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences – sequence: 1 fullname: Takemura, Masahiro organization: Faculty of Health and Sport Sciences, University of Tsukuba |
BackLink | https://cir.nii.ac.jp/crid/1390022100791697024$$DView record in CiNii |
BookMark | eNo9kElPwzAQhS0EEqX0yN0Hrine4kXigqqySEVccrcc20kdWqeKHST-PQlFHObNzNOnJ83cgMvYRw_AHUbrUjBVPnRdOuU1XWOtxAVYEFHKgtGSX4NVSqFGJVOKcEEWwG2bxtucYN9AF6Z58DFD27cx5PDlYTNGm0MfJyDCMZqYgw0nk72Ddsw5xBYe-xmAY5qXvPewGkw4wHfzORuVT_kWXDXmkPzqry9B9bytNq_F7uPlbfO0KzpJWMG5Kp0rOZempohKhwSrhcG2lkR6aY2zXBGmmLDCGao4biginNQCMWyFp0twf46NIWgbZsVUIUQIRkgozJVAhE3Y4xnrUjat16chHM3wrc0w3Xbw-vd5mmo8lRL_tt2bQftIfwAxdW5P |
ContentType | Journal Article |
Copyright | 2025 Japanese Society of Sports Physical Therapy |
Copyright_xml | – notice: 2025 Japanese Society of Sports Physical Therapy |
DBID | RYH |
DOI | 10.57495/jjspt.3.1_97 |
DatabaseName | CiNii Complete |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | Trail Making Testを用いた認知機能の違いが非予測的なカッティング動作に与える影響 |
DocumentTitle_FL | Trail Making Testを用いた認知機能の違いが非予測的なカッティング動作に与える影響 |
EISSN | 2758-4356 |
EndPage | 105 |
ExternalDocumentID | article_jjspt_3_1_3_97_article_char_en |
GroupedDBID | JSF RJT RYH |
ID | FETCH-LOGICAL-j824-6695dd5668ab3038d074b7a1cb828e8cadc6924947c7da3961f30262b7041c7e3 |
IngestDate | Thu Jun 26 23:13:12 EDT 2025 Wed Sep 03 06:30:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 1 |
Language | Japanese |
License | https://creativecommons.org/licenses/by/4.0/deed.ja |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j824-6695dd5668ab3038d074b7a1cb828e8cadc6924947c7da3961f30262b7041c7e3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jjspt/3/1/3_97/_article/-char/en |
PageCount | 9 |
ParticipantIDs | nii_cinii_1390022100791697024 jstage_primary_article_jjspt_3_1_3_97_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2025 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025 |
PublicationDecade | 2020 |
PublicationTitle | Japanese Journal of Sports Physical Therapy |
PublicationTitleAlternate | JJSPT |
PublicationTitle_FL | JJSPT スポーツ理学療法学 |
PublicationYear | 2025 |
Publisher | Japanese Society of Sports Physical Therapy 一般社団法人 日本スポーツ理学療法学会 |
Publisher_xml | – name: Japanese Society of Sports Physical Therapy – name: 一般社団法人 日本スポーツ理学療法学会 |
References | 25) Brown SR, Brughelli M, Hume PA: Knee mechanics during planned and unplanned sidestepping: a systematic review and meta-analysis. Sports Med. 2014; 44(11): 1573‒1588. 5) Miller BT, Clapp WC: From Vision to Decision: The Role of Visual Attention in Elite Sports Performance. Eye Contact Lens. 2011; 37(3): 131‒139. 18) Giovagnoli AR, Del Pesce M, Mascheroni S, et al.: Trail Making Test: Normative values from287 normal adult controls. Ital J Neurol Sci. 1996; 17(4): 305‒309. 9) Monfort SM, Pradarelli JJ, Grooms DR, et al.: Visual-Spatial Memory Deficits Are Related to Increased Knee Valgus Angle During a Sport-Specific Sidestep Cut. Am J Sports Med. 2019; 47(6): 1488‒1495. 15) 広田千賀,渡辺美鈴,谷本芳美,他:地域高齢者を対象としたTrail Making Testの意義—身体機能とTrail Making Testの成績についての横断分析から—.日老医誌.2008;45(6):647‒654 7) リチャード・A・シュミット:注意と人間のパフォーマンス.pp. 30‒40;調枝孝治監訳,リチャード・A・シュミット著: 運動学習とパフォーマンス.1994,大修館書店,東京 1) Shultz SJ, Schmitz RJ, Benjaminse A, et al.: ACL Research Retreat VII: An Update on Anterior Cruciate Ligament Injury Risk Factor Identification, Screening, and Prevention. J Athl Train. 2015; 50(10): 1076‒1093. 29) Nedergaard NJ, Dalbo S, Petersen SV, et al.: Biomechanical and neuromuscular comparison of single- and multi-planar jump tests and a side-cutting maneuver: Implications for ACL injury risk assessment. Knee. 2020; 27: 324‒333. 6) McCulloch K: Attention and dual-task conditions: physical therapy implications for individuals with acquired brain injury. J Neurol Phys Ther. 2007; 31(3): 104‒118. 8) Herman CD, Barth JD: Drop-jump landing varies with baseline neurocognition -Implications for anterior cruciate ligament injury risk and prevention. Am J Sports Med. 2016; 44(9): 2347‒2353. 3) Olsen OEE, Myklebust G, Engebretsen L, et al.: Injury mechanisms for anterior cruciate ligament injuries in team handball: A systematic video analysis. Am J Sports Med. 2004; 32(4): 1002‒1012. 27) Lima YL, Ferreira VMLM, de Paula Lima PO, et al.: The association of ankle dorsiflexion and dynamic knee valgus: A systematic review and meta-analysis. Phys Ther Sport. 2018; 29: 61‒69. 30) Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005; 33(4): 492‒501. 20) Moses B, Orchard J, Orchard J: Systematic Review: Annual Incidence of ACL Injury and Surgery in Various Populations. Res Sports Med. 2012; 20(3‒4): 157‒179. 22) McLean SG, Samorezov JE: Fatigue-induced ACL injury risk stems from a degradation in central control. Med Sci Sports Exerc. 2009; 41(8): 1661‒1672. 33) Weir G: Anterior cruciate ligament injury prevention in sport: biomechanically informed approaches. Sports Biomech. 2021; 29: 1‒21. 13) Lezak MD, Howieson DB, Bigler ED, et al.: Neuropsychological Assessment, 5th Edn. In: Oxford University Press. Oxford University Press.; 2012. 4) Besier TF, Lloyd DG, Ackland TR, et al.: Anticipatory effects on knee joint loading during running and cutting maneuvers. Med Sci Sports Exerc. 2001; 33(7): 1176‒1181. 17) Drane DL, Yuspeh RL, Huthwaite JS, et al.: Demographic characteristics and normative observations for derived-trail making test indices. Neuropsychiatry Neuropsychol Behav Neurol. 2002; 15(1): 39‒43. 2) Swanik CB, Covassin T, Stearne DJ, et al.: The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med. 2007; 35(6): 943‒948. 14) 鹿島晴雄,半田貴士,加藤元一郎,他:注意障害と前頭葉損傷.神研の進歩.1986;30(10):847‒848 11) Register-Mihalik JK, Kontos DL, Guskiewicz KM, et al.: Age-related differences and reliability on computerized and paper-and-pencil neurocognitive assessment batteries. J Athl Train. 2012; 47(3): 297‒305. 31) Della Villa F, Buckthorpe M, Grassi A, et al.: Systematic video analysis of ACL injuries in professional male football (soccer): injury mechanisms, situational patterns and biomechanics study on 134 consecutive cases. Br J Sports Med. 2020; 54(23): 1423‒1432. 34) Lee MJC, Lloyd DG, Lay BS, et al: Effects of different visual stimuli on postures and knee moments during sidestepping. Med Sci Sports Exerc. 2013; 45: 1740‒1748. 28) Kristianslund E, Krosshaug T: Comparison of Drop Jumps and Sport-Specific Sidestep Cutting: Implications for Anterior Cruciate Ligament Injury Risk Screening. Am J Sports Med. 2013; 41(3): 684‒688. 23) Kipp K, Brown TN, McLean SG, et al.: Decision making and experience level influence frontal plane knee joint biomechanics during a cutting maneuver. J Appl Biomech. 2013; 29(6): 756‒762. 19) Beynnon BD, Vacel PM, Newell MK, et al.: The Effects of Level of Competition, Sport, and Sex on the Incidence of First-Time Noncontact Anterior Cruciate Ligament Injury. Am J Sports Med. 2014; 42(8): 1806‒1812. 32) Voss MW, Kramer AF, Basak C, et al.: Are expert athletes ‘expert’ in the cognitive laboratory? A meta-analytic review of cognition and sport expertise. Appl Cogn Psychol. 2010; 24(6): 812‒826. 10) Shibata S, Takemura M, Miyakawa S: The influence of differences in neurocognitive function on lower limb kinematics, kinetics, and muscle activity during an unanticipated cutting motion. Phys Ther Res. 2018; 21(2): 44‒52. 21) Chia l, De Oliveila Silva, Whalan M, et al.: Non-contact Anterior Cruciate Ligament Injury Epidemiology in Team-Ball Sports: A Systematic Review with Meta-analysis by Sex, Age, Sport, Participation Level, and Exposure Type. Sports Med. 2022; 52: 2447‒2467. 16) Arbuthnott K, Frank J: Trail making test, part B as a measure of executive control: validation using a set-switching paradigm. J Clin Exp Neuropsychol. 2000; 22(4) :518‒28. 12) Randolph C, McCrea M, Barr WB: Is neuropsychological testing useful in the management of sport-related concussion? J Athl Train. 2005; 40(3): 139‒152. 24) Kadaba MP, Ramakrishnan HK, Wootten ME: Measurement of lower extremity kinematics during level walking. J Orthop. Res. 1990; 8(3): 383‒392. 26) Besier TF, Lloyd DG, Cochrane JL, et al.: External loading of the knee joint during running and cutting maneuvers. Med Sci Sports Exerc. 2001; 33(7): 1168‒1175. |
References_xml | – reference: 30) Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005; 33(4): 492‒501. – reference: 5) Miller BT, Clapp WC: From Vision to Decision: The Role of Visual Attention in Elite Sports Performance. Eye Contact Lens. 2011; 37(3): 131‒139. – reference: 17) Drane DL, Yuspeh RL, Huthwaite JS, et al.: Demographic characteristics and normative observations for derived-trail making test indices. Neuropsychiatry Neuropsychol Behav Neurol. 2002; 15(1): 39‒43. – reference: 25) Brown SR, Brughelli M, Hume PA: Knee mechanics during planned and unplanned sidestepping: a systematic review and meta-analysis. Sports Med. 2014; 44(11): 1573‒1588. – reference: 3) Olsen OEE, Myklebust G, Engebretsen L, et al.: Injury mechanisms for anterior cruciate ligament injuries in team handball: A systematic video analysis. Am J Sports Med. 2004; 32(4): 1002‒1012. – reference: 16) Arbuthnott K, Frank J: Trail making test, part B as a measure of executive control: validation using a set-switching paradigm. J Clin Exp Neuropsychol. 2000; 22(4) :518‒28. – reference: 12) Randolph C, McCrea M, Barr WB: Is neuropsychological testing useful in the management of sport-related concussion? J Athl Train. 2005; 40(3): 139‒152. – reference: 34) Lee MJC, Lloyd DG, Lay BS, et al: Effects of different visual stimuli on postures and knee moments during sidestepping. Med Sci Sports Exerc. 2013; 45: 1740‒1748. – reference: 14) 鹿島晴雄,半田貴士,加藤元一郎,他:注意障害と前頭葉損傷.神研の進歩.1986;30(10):847‒848. – reference: 11) Register-Mihalik JK, Kontos DL, Guskiewicz KM, et al.: Age-related differences and reliability on computerized and paper-and-pencil neurocognitive assessment batteries. J Athl Train. 2012; 47(3): 297‒305. – reference: 27) Lima YL, Ferreira VMLM, de Paula Lima PO, et al.: The association of ankle dorsiflexion and dynamic knee valgus: A systematic review and meta-analysis. Phys Ther Sport. 2018; 29: 61‒69. – reference: 19) Beynnon BD, Vacel PM, Newell MK, et al.: The Effects of Level of Competition, Sport, and Sex on the Incidence of First-Time Noncontact Anterior Cruciate Ligament Injury. Am J Sports Med. 2014; 42(8): 1806‒1812. – reference: 24) Kadaba MP, Ramakrishnan HK, Wootten ME: Measurement of lower extremity kinematics during level walking. J Orthop. Res. 1990; 8(3): 383‒392. – reference: 4) Besier TF, Lloyd DG, Ackland TR, et al.: Anticipatory effects on knee joint loading during running and cutting maneuvers. Med Sci Sports Exerc. 2001; 33(7): 1176‒1181. – reference: 26) Besier TF, Lloyd DG, Cochrane JL, et al.: External loading of the knee joint during running and cutting maneuvers. Med Sci Sports Exerc. 2001; 33(7): 1168‒1175. – reference: 29) Nedergaard NJ, Dalbo S, Petersen SV, et al.: Biomechanical and neuromuscular comparison of single- and multi-planar jump tests and a side-cutting maneuver: Implications for ACL injury risk assessment. Knee. 2020; 27: 324‒333. – reference: 32) Voss MW, Kramer AF, Basak C, et al.: Are expert athletes ‘expert’ in the cognitive laboratory? A meta-analytic review of cognition and sport expertise. Appl Cogn Psychol. 2010; 24(6): 812‒826. – reference: 6) McCulloch K: Attention and dual-task conditions: physical therapy implications for individuals with acquired brain injury. J Neurol Phys Ther. 2007; 31(3): 104‒118. – reference: 33) Weir G: Anterior cruciate ligament injury prevention in sport: biomechanically informed approaches. Sports Biomech. 2021; 29: 1‒21. – reference: 1) Shultz SJ, Schmitz RJ, Benjaminse A, et al.: ACL Research Retreat VII: An Update on Anterior Cruciate Ligament Injury Risk Factor Identification, Screening, and Prevention. J Athl Train. 2015; 50(10): 1076‒1093. – reference: 7) リチャード・A・シュミット:注意と人間のパフォーマンス.pp. 30‒40;調枝孝治監訳,リチャード・A・シュミット著: 運動学習とパフォーマンス.1994,大修館書店,東京. – reference: 28) Kristianslund E, Krosshaug T: Comparison of Drop Jumps and Sport-Specific Sidestep Cutting: Implications for Anterior Cruciate Ligament Injury Risk Screening. Am J Sports Med. 2013; 41(3): 684‒688. – reference: 20) Moses B, Orchard J, Orchard J: Systematic Review: Annual Incidence of ACL Injury and Surgery in Various Populations. Res Sports Med. 2012; 20(3‒4): 157‒179. – reference: 21) Chia l, De Oliveila Silva, Whalan M, et al.: Non-contact Anterior Cruciate Ligament Injury Epidemiology in Team-Ball Sports: A Systematic Review with Meta-analysis by Sex, Age, Sport, Participation Level, and Exposure Type. Sports Med. 2022; 52: 2447‒2467. – reference: 23) Kipp K, Brown TN, McLean SG, et al.: Decision making and experience level influence frontal plane knee joint biomechanics during a cutting maneuver. J Appl Biomech. 2013; 29(6): 756‒762. – reference: 2) Swanik CB, Covassin T, Stearne DJ, et al.: The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med. 2007; 35(6): 943‒948. – reference: 13) Lezak MD, Howieson DB, Bigler ED, et al.: Neuropsychological Assessment, 5th Edn. In: Oxford University Press. Oxford University Press.; 2012. – reference: 31) Della Villa F, Buckthorpe M, Grassi A, et al.: Systematic video analysis of ACL injuries in professional male football (soccer): injury mechanisms, situational patterns and biomechanics study on 134 consecutive cases. Br J Sports Med. 2020; 54(23): 1423‒1432. – reference: 8) Herman CD, Barth JD: Drop-jump landing varies with baseline neurocognition -Implications for anterior cruciate ligament injury risk and prevention. Am J Sports Med. 2016; 44(9): 2347‒2353. – reference: 18) Giovagnoli AR, Del Pesce M, Mascheroni S, et al.: Trail Making Test: Normative values from287 normal adult controls. Ital J Neurol Sci. 1996; 17(4): 305‒309. – reference: 9) Monfort SM, Pradarelli JJ, Grooms DR, et al.: Visual-Spatial Memory Deficits Are Related to Increased Knee Valgus Angle During a Sport-Specific Sidestep Cut. Am J Sports Med. 2019; 47(6): 1488‒1495. – reference: 22) McLean SG, Samorezov JE: Fatigue-induced ACL injury risk stems from a degradation in central control. Med Sci Sports Exerc. 2009; 41(8): 1661‒1672. – reference: 10) Shibata S, Takemura M, Miyakawa S: The influence of differences in neurocognitive function on lower limb kinematics, kinetics, and muscle activity during an unanticipated cutting motion. Phys Ther Res. 2018; 21(2): 44‒52. – reference: 15) 広田千賀,渡辺美鈴,谷本芳美,他:地域高齢者を対象としたTrail Making Testの意義—身体機能とTrail Making Testの成績についての横断分析から—.日老医誌.2008;45(6):647‒654. |
SSID | ssib054992672 ssj0003322196 ssib051867390 |
Score | 2.0055647 |
Snippet | Objective: The purpose of this study was to examine the effects of differences in cognitive function assessed the Trail Making Test (TMT) on lower limb joint... |
SourceID | nii jstage |
SourceType | Publisher |
StartPage | 97 |
SubjectTerms | ACL injury cognitive function motion analysis unanticipated cutting motion 動作解析 膝前十字靭帯損傷 認知機能 非予測的カッティング動作 |
Title | Effects of different cognitive functions on unanticipated cutting motion using the Trail Making Test |
URI | https://www.jstage.jst.go.jp/article/jjspt/3/1/3_97/_article/-char/en https://cir.nii.ac.jp/crid/1390022100791697024 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Japanese Journal of Sports Physical Therapy, 2025, Vol.3(1), pp.97-105 |
journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources databaseCode: M~E dateStart: 20210101 customDbUrl: isFulltext: true eissn: 2758-4356 dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: true ssIdentifier: ssib054992672 providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLa6ceGChgAxYMgHblFKEyd2ckSoaEKAkBqk3SI7cdUUSKc2uXDgt-97cZJmGtKAQ63KlZzK78t737O_ZzP2JojihSmt9o2UC5-2HP0ExNlfCJWukR6E-PektvgiL79FH6_iq9ns00S11DZmXvz6Y13J_1gVfbArVcn-g2XHQdGB77AvWlgY7V_ZeHkUYwwXnTTeURBEMasXutVeS4oXp6AGxyxap3d2l_h47WGomkLsqn54n7s7qrxs2Hsa2CsiK91Y6U1o7MrtOXwd7J3dPqZgtamMbrS3QnJ_2FTHhYLv9me713jSQW-q_W66-uBqlF1MGJ44qEvveaLtfFqI9MQHQ5NTByzu4Mw5Uyfc7cNy0FVn3_H4sUKGRy5_e7hu5mIe5Kk6YQ9CBd5BQs7fy8G7xHR0nzjuCVJiHMq-apjitoBvgz9yB7F2476djgqKsgVhp5MYTuqqmrCQ7Iw96uedv3NYeMxmW_2ElT0O-G7NRxzwEQd8xAHf1fwWDniPA-5wwDsccOCAdzjgDgeccPCUZR-W2ftLv789w98mYeRLmcZlCbKeaAOakpTgikbpoDDIsW1S6LKQlHtHqlClFqkM1gL5eGjUIgoKZcUzdlrvavuc8dLEgRVdDbZFOh6D0RppA4ncYl1GUXrOYjcz-bU7ISXv34i8m79c5AE-qRq7qaAQ7-85u8BE5kVFLTIR4pMk2kHGkipwxxf3_P6SPSRIugWxV-y02bf2AhSxMa87y98A8x9tSg |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+different+cognitive+functions+on+unanticipated+cutting+motion+using+the+Trail+Making+Test&rft.jtitle=Japanese+Journal+of+Sports+Physical+Therapy&rft.au=Shibata+Satoshi&rft.au=Takemura+Masahiro&rft.date=2025&rft.pub=Japanese+Society+of+Sports+Physical+Therapy&rft.eissn=2758-4356&rft.volume=3&rft.issue=1&rft.spage=97&rft.epage=105&rft_id=info:doi/10.57495%2Fjjspt.3.1_97 |