Effects of diabetes on the central nervous system controlling voluntary movement
【緒言】糖尿病患者には下肢筋力の低下やバランス障害などの運動障害が生じ,その原因として糖尿病性末梢神経障害や筋実質の障害がよく知られている.しかし,近年,末梢神経障害や筋障害だけでなく身体運動を制御する中枢神経系もまた糖尿病の影響を受け,それらの異常が運動障害の原因となる可能性が明らかになってきた.本総説では特に糖尿病に関連して生じる大脳皮質運動野や皮質脊髄路などの随意運動の制御に関わる中枢神経の異常に着目し,最新の知見をまとめる. 【糖尿病患者を対象とした研究】糖尿病患者を対象にした研究はMRIや電気生理学的手法を用いて行われ,大脳皮質運動野や皮質脊髄路の体積減少や微細構造の変化と,運動野の...
Saved in:
| Published in | Japanese Journal of Physical Therapy for Diabetes Mellitus Vol. 2; no. 1; pp. 74 - 82 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | Japanese |
| Published |
Japanese Society of Physical Therapy for Diabetes Mellitus
31.03.2023
一般社団法人 日本糖尿病理学療法学会 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2436-6544 |
| DOI | 10.51106/ptdm.2.1_74 |
Cover
| Abstract | 【緒言】糖尿病患者には下肢筋力の低下やバランス障害などの運動障害が生じ,その原因として糖尿病性末梢神経障害や筋実質の障害がよく知られている.しかし,近年,末梢神経障害や筋障害だけでなく身体運動を制御する中枢神経系もまた糖尿病の影響を受け,それらの異常が運動障害の原因となる可能性が明らかになってきた.本総説では特に糖尿病に関連して生じる大脳皮質運動野や皮質脊髄路などの随意運動の制御に関わる中枢神経の異常に着目し,最新の知見をまとめる.
【糖尿病患者を対象とした研究】糖尿病患者を対象にした研究はMRIや電気生理学的手法を用いて行われ,大脳皮質運動野や皮質脊髄路の体積減少や微細構造の変化と,運動野の興奮性低下,可塑性の減少,皮質脊髄路の神経伝導速度低下などが生じることが明らかにされた.
【糖尿病モデル動物を対象とした研究】糖尿病モデル動物を用いた基礎研究では,腰髄以下に投射する皮質脊髄路に優位な軸索変性と興奮伝導障害,運動野後肢領域を中心とした運動野面積の減少が生じることが知られている.
【結論】糖尿病によって生じる随意運動を制御する中枢神経系の障害は糖尿病患者に生じる運動障害の原因を理解する上で新しい視点を与えるものであり,運動障害との関連について今後の研究が望まれる. |
|---|---|
| AbstractList | 【緒言】糖尿病患者には下肢筋力の低下やバランス障害などの運動障害が生じ,その原因として糖尿病性末梢神経障害や筋実質の障害がよく知られている.しかし,近年,末梢神経障害や筋障害だけでなく身体運動を制御する中枢神経系もまた糖尿病の影響を受け,それらの異常が運動障害の原因となる可能性が明らかになってきた.本総説では特に糖尿病に関連して生じる大脳皮質運動野や皮質脊髄路などの随意運動の制御に関わる中枢神経の異常に着目し,最新の知見をまとめる.
【糖尿病患者を対象とした研究】糖尿病患者を対象にした研究はMRIや電気生理学的手法を用いて行われ,大脳皮質運動野や皮質脊髄路の体積減少や微細構造の変化と,運動野の興奮性低下,可塑性の減少,皮質脊髄路の神経伝導速度低下などが生じることが明らかにされた.
【糖尿病モデル動物を対象とした研究】糖尿病モデル動物を用いた基礎研究では,腰髄以下に投射する皮質脊髄路に優位な軸索変性と興奮伝導障害,運動野後肢領域を中心とした運動野面積の減少が生じることが知られている.
【結論】糖尿病によって生じる随意運動を制御する中枢神経系の障害は糖尿病患者に生じる運動障害の原因を理解する上で新しい視点を与えるものであり,運動障害との関連について今後の研究が望まれる. |
| Author | Muramatsu, Ken Tamaki, Toru Ikutomo, Masako |
| Author_FL | 玉木 徹 村松 憲 生友 聖子 |
| Author_FL_xml | – sequence: 1 fullname: 村松 憲 – sequence: 2 fullname: 玉木 徹 – sequence: 3 fullname: 生友 聖子 |
| Author_xml | – sequence: 1 fullname: Muramatsu, Ken – sequence: 1 fullname: Tamaki, Toru – sequence: 1 fullname: Ikutomo, Masako |
| BackLink | https://cir.nii.ac.jp/crid/1390858553269167488$$DView record in CiNii |
| BookMark | eNo9UE1rwzAMNWODdV1v-wE-7Jou_rbZaZR9QWE79B4cR25dEqfEbqH_fh4dO0h6ejyJJ92h6zhGQOiB1EtBSC2fDrkblnRJGsWv0IxyJispOL9Fi5RCW3OlBaPEzND3q_fgcsKjx12wLWQoOOK8A-wg5sn2OMJ0Go8Jp3PKMGA3Fnrs-xC3-DT2x5jtdMbDeIKhDNyjG2_7BIu_Okebt9fN6qNaf71_rl7W1V4TXXliieWdNy2AUo5RS7n3quOG6VaSmhIpGAOtKTANrKuZFxaMEZ5B7WnH5ujxsjaG0LjwmwkztRZalMukIVJxrYvs-SLbp2y30BymMBS3jZ1ycH3py58a2pASiv-zbmenBiL7ARItZyU |
| ContentType | Journal Article |
| Copyright | 2023 Japanese Society of Physical Therapy for Diabetes Mellitus |
| Copyright_xml | – notice: 2023 Japanese Society of Physical Therapy for Diabetes Mellitus |
| DBID | RYH |
| DOI | 10.51106/ptdm.2.1_74 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitleAlternate | 糖尿病が随意運動を制御する中枢神経に与える影響 |
| DocumentTitle_FL | 糖尿病が随意運動を制御する中枢神経に与える影響 |
| EISSN | 2436-6544 |
| EndPage | 82 |
| ExternalDocumentID | article_ptdm_2_1_2_74_article_char_en |
| GroupedDBID | JSF RJT RYH |
| ID | FETCH-LOGICAL-j818-f1a1a4df9bee77c32a24ff7d4938b610216533e882e38e3d03f5ae995f3e0f2d3 |
| IngestDate | Fri Jun 27 00:34:36 EDT 2025 Wed Sep 03 06:30:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 1 |
| Language | Japanese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-j818-f1a1a4df9bee77c32a24ff7d4938b610216533e882e38e3d03f5ae995f3e0f2d3 |
| OpenAccessLink | https://www.jstage.jst.go.jp/article/ptdm/2/1/2_74/_article/-char/en |
| PageCount | 9 |
| ParticipantIDs | nii_cinii_1390858553269167488 jstage_primary_article_ptdm_2_1_2_74_article_char_en |
| PublicationCentury | 2000 |
| PublicationDate | 2023/03/31 2023-03-31 |
| PublicationDateYYYYMMDD | 2023-03-31 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023/03/31 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | Japanese Journal of Physical Therapy for Diabetes Mellitus |
| PublicationTitleAlternate | JJPTDM |
| PublicationTitle_FL | 糖尿病理学療法学 JJPTDM 日本糖尿病理学療法学雑誌 |
| PublicationYear | 2023 |
| Publisher | Japanese Society of Physical Therapy for Diabetes Mellitus 一般社団法人 日本糖尿病理学療法学会 |
| Publisher_xml | – name: Japanese Society of Physical Therapy for Diabetes Mellitus – name: 一般社団法人 日本糖尿病理学療法学会 |
| References | Stranahan AM, Arumugam TV, Cutler RG, et al: Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci 2008; 11: 309–317. Centomo H, Termoz N, Savoie S, et al: Postural control following a self-initiated reaching task in type 2 diabetic patients and age-matched controls. Gait Posture 2007; 25: 509–514. Moglia A, Arrigo A, Maurelli M, et al: Central motor conduction after magnetic stimulation in diabetes. Ital J Neuro Sci 1998; 19: 10–14. Peng B, Chen Z, Ma L, et al: Cerebral alterations of type 2 diabetes mellitus on MRI: A pilot study. Neurosci Lett 2015; 606: 100–105. Hernández-Fonseca JP, Rincón J, Pedreañez A, et al: Structural and Ultrastructural Analysis of Cerebral Cortex, Cerebellum, and Hypothalamus from Diabetic Rats. Exp Diabetes Res 2009; 2009: 329632. Lemon RN: Descending Pathways in Motor Control. Annu Rev Neurosci 2008; 31: 195–218. Uccioli L, Giacomini PG, Monticone G, et al: Body sway in diabetic neuropathy. Diabetes Care 1995; 18: 339–344. Kataoka H, Miyatake N, Murao S, et al: A Randomized Controlled Trial of Short-term Toe Resistance Training to Improve Toe Pinch Force in Patients with Type 2 Diabetes. Acta Med Okayama 2018; 72: 9–15. Erus G, Battapady H, Zhang T, et al: Spatial Patterns of Structural Brain Changes in Type 2 Diabetic Patients and Their Longitudinal Progression With Intensive Control of Blood Glucose. Diabetes Care 2015; 38: 97–104. Uccioli L, Giacomini PG, Pasqualetti P, et al: Contribution of central neuropathy to postural instability in IDDM patients with peripheral neuropathy. Diabetes Care 1997; 20: 929–934. Chen Z, Li L, Sun J, et al: Mapping the brain in type II diabetes: Voxel-based morphometry using DARTEL. Eur J Radiol 2012; 81: 1870–1876. Emerick AJ, Richards MP, Kartje GL, et al: Experimental diabetes attenuates cerebral cortical-evoked forelimb motor responses. Diabetes 2005; 54: 2764–2771. Allet L, Armand S, de Bie RA, et al: Gait alterations of diabetic patients while walking on different surfaces. Gait Posture 2009; 29: 488–493. Dideriksen JL, Vecchio AD, Farina D: Neural and muscular determinants of maximal rate of force development. J Neurophysiol 2020; 123: 149–157. Sacchetti M, Sacchetti MS, Balducci S, et al: Neuromuscular dysfunction in diabetes: role of nerve impairment and training status. Med Sci Sports Exerc 2013; 45: 52–59. Samoilova YG, Matveeva MV, Tonkikh OS, et al: Brain Tractography in Diabetes Mellitus and Cognitive Impairments. Neurosci Behav Physiology 2021; 51: 716–719. Stranahan AM, Lee K, Martin B, et al: Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus 2009; 19: 951–961. Fang P, An J, Tan X, et al: Changes in the cerebellar and cerebro-cerebellar circuit in type 2 diabetes. Brain Res Bull 2017; 130: 95–100. Watanabe K, Gazzoni M, Holobar A, et al: Motor unit firing pattern of vastus lateralis muscle in type 2 diabetes mellitus patients. Muscle Nerve 2013; 48: 806–813. Xiong Y, Sui Y, Xu Z, et al: A Diffusion Tensor Imaging Study on White Matter Abnormalities in Patients with Type 2 Diabetes Using Tract-Based Spatial Statistics. American Journal of Neuroradiology 2016; 37: 1462–1469. Nomura T, Ishiguro T, Ohira M, et al: Diabetic polyneuropathy is a risk factor for decline of lower extremity strength in patients with type 2 diabetes. J Diabetes Investig 2018; 9: 186–192. Maurer MS, Burcham J, Cheng H: Diabetes mellitus is associated with an increased risk of falls in elderly residents of a long-term care facility. J Gerontol A Biol Sci Med Sci 2005; 60: 1157–1162. Zhang D, Qi F, Gao J, et al: Altered Cerebellar-Cerebral Circuits in Patients With Type 2 Diabetes Mellitus. Front Neurosci-Switz 2020; 14: 571210. Liu D, Duan S, Zhang J, et al: Aberrant Brain Regional Homogeneity and Functional Connectivity in Middle-Aged T2DM Patients: A Resting-State Functional MRI Study. Front Hum Neurosci 2016; 10: 539. Hughes TM, Ryan CM, Aizenstein HJ, et al: Frontal gray matter atrophy in middle aged adults with type 1 diabetes is independent of cardiovascular risk factors and diabetes complications. J Diabetes Complications 2013; 27: 558–564. Muller KA, Ryals JM, Feldman EL, et al: Abnormal muscle spindle innervation and large-fiber neuropathy in diabetic mice. Diabetes 2008; 57: 1693–1701. de Senna PN, Xavier LL, Bagatini PB, et al: Physical training improves non-spatial memory, locomotor skills and the blood brain barrier in diabetic rats. Brain Res 2015; 1618: 75–82. Sima AAF: Encephalopathies: the emerging diabetic complications. Acta Diabetol 2010; 47: 279–293. Franc DT, Kodl CT, Mueller BA, et al: High Connectivity Between Reduced Cortical Thickness and Disrupted White Matter Tracts in Long-Standing Type 1 Diabetes. Diabetes 2011; 60: 315–319. Maffiuletti NA, Aagaard P, Blazevich AJ, et al: Rate of force development: physiological and methodological considerations. Eur J Appl Physiol 2016; 116: 1091–1116. Xin H, Fu Y, Feng M, et al: Altered Intrinsic Brain Activity Related to Neurologic and Motor Dysfunction in Diabetic Peripheral Neuropathy Patients. J Clin Endocrinol Metabolism 2022; dgac651. Yoon S, Cho H, Kim J, et al: Brain changes in overweight/obese and normal-weight adults with type 2 diabetes mellitus. Diabetologia 2017; 60: 1207–1217. Perry BD, Caldow MK, Brennan-Speranza TC, et al: Muscle atrophy in patients with Type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise. Exercise Immunology Review 2016; 22: 94–109. Andersen H, Nielsen S, Nielsen JF: Motor cortical excitability remains unaffected of short-term hyperglycemia in Type 1 diabetic patients. Journal of Diabetes and Its Complications 2006; 20: 51–55. Muramatsu K, Ikutomo M, Tamaki T, et al: Effect of streptozotocin-induced diabetes on motor representations in the motor cortex and corticospinal tract in rats. Brain Res 2018; 1680: 115–126. Ochoa N, Gogola GR, Gorniak SL, Contribution of tactile dysfunction to manual motor dysfunction in type II diabetes. Muscle Nerve 2016; 54: 895–902. Andersen H, Nielsen JF, Poulsen PL, et al: Motor pathway function in normoalbuminuric IDDM patients. Diabetologia 1995; 38: 1191–1196. Madsen JG, Østergaard JA, Andersen H, et al: Attenuation of Cortically Evoked Motor-Neuron Potential in Streptozotocin-Induced Diabetic Rats: A Study about the Effect of Diabetes upon Cortical-Initiated Movement. Biomed Res Int 2020; 2020: 1942534. Bardawil MME, Hamid ME, Sawy NE, et al: Postural control and central motor pathway involvement in type 2 diabetes mellitus: Dynamic posturographic and electrophysiologic studies. Alexandria Med J 2013; 49: 299–307. Ferris JK, Inglis JT, Madden KM, et al: Brain and Body: A Review of Central Nervous System Contributions to Movement Impairments in Diabetes. Diabetes 2020; 69: 3–11. Feldman EL, Nave KA, Jensen TS, et al: New Horizons in Diabetic Neuropathy: Mechanisms, Bioenergetics, and Pain. Neuron 2017; 93: 1296–1313. Almurdhi MM, Reeves ND, F.L. Bowling, et al: Reduced Lower-Limb Muscle Strength and Volume in Patients With Type 2 Diabetes in Relation to Neuropathy, Intramuscular Fat, and Vitamin D Levels. Diabetes Care 2016; 39: 441–447. Abbruzzese G, Schenone A, Scramuzza G, et al: Impairment of central motor conduction in diabetic patients. Electroencephalogr Clin Neurophysiol 1993; 89: 335–340. Bean JF, Kiely DK, Herman S, et al: The Relationship Between Leg Power and Physical Performance in Mobility‐Limited Older People. J Am Geriatr Soc 2002; 50: 461–467. Andersen H: Motor function in diabetic neuropathy. Acta Neurol Scand 1999; 100: 211–220. Bernardes G, IJzerman RG, Ten Kulve JS, et al: Cortical and subcortical gray matter structural alterations in normoglycemic obese and type 2 diabetes patients: relationship with adiposity, glucose, and insulin. Metab Brain Dis 2018; 33: 1211–1222. van Bloemendaal L, Ijzerman RG, Ten Kulve JS, et al: Alterations in white matter volume and integrity in obesity and type 2 diabetes. Metab Brain Dis 2016; 31: 621–629. Said G: Diabetic neuropathy–a review. Nat Rev Neurol 2007; 3: 331–340. Gold SM, Dziobek I, Sweat V, et al: Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia 2007; 50: 711–719. Muramatsu K, Shimo S, Tamaki T, et al: Functional and Structural Changes in the Corticospinal Tract of Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2021; 22: 10123. Muramatsu K: Diabetes Mellitus-Related Dysfunction of the Motor System. Int J Mol Sci 2020; 21: 7485. Nomura T, Kawae T, Kataoka H, et al: Loss of lower extremity muscle strength based on diabetic polyneuropathy in older patients with type 2 diabetes: Multicenter Survey of the Isometric Lower Extremity Strength in Type 2 Diabetes: Phase 2 study. J Diabetes Investig 2021; 12(3): 390-397. |
| References_xml | – reference: Erus G, Battapady H, Zhang T, et al: Spatial Patterns of Structural Brain Changes in Type 2 Diabetic Patients and Their Longitudinal Progression With Intensive Control of Blood Glucose. Diabetes Care 2015; 38: 97–104. – reference: Gold SM, Dziobek I, Sweat V, et al: Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia 2007; 50: 711–719. – reference: Fang P, An J, Tan X, et al: Changes in the cerebellar and cerebro-cerebellar circuit in type 2 diabetes. Brain Res Bull 2017; 130: 95–100. – reference: Muramatsu K, Ikutomo M, Tamaki T, et al: Effect of streptozotocin-induced diabetes on motor representations in the motor cortex and corticospinal tract in rats. Brain Res 2018; 1680: 115–126. – reference: Feldman EL, Nave KA, Jensen TS, et al: New Horizons in Diabetic Neuropathy: Mechanisms, Bioenergetics, and Pain. Neuron 2017; 93: 1296–1313. – reference: Lemon RN: Descending Pathways in Motor Control. Annu Rev Neurosci 2008; 31: 195–218. – reference: Samoilova YG, Matveeva MV, Tonkikh OS, et al: Brain Tractography in Diabetes Mellitus and Cognitive Impairments. Neurosci Behav Physiology 2021; 51: 716–719. – reference: van Bloemendaal L, Ijzerman RG, Ten Kulve JS, et al: Alterations in white matter volume and integrity in obesity and type 2 diabetes. Metab Brain Dis 2016; 31: 621–629. – reference: Nomura T, Kawae T, Kataoka H, et al: Loss of lower extremity muscle strength based on diabetic polyneuropathy in older patients with type 2 diabetes: Multicenter Survey of the Isometric Lower Extremity Strength in Type 2 Diabetes: Phase 2 study. J Diabetes Investig 2021; 12(3): 390-397. – reference: Xin H, Fu Y, Feng M, et al: Altered Intrinsic Brain Activity Related to Neurologic and Motor Dysfunction in Diabetic Peripheral Neuropathy Patients. J Clin Endocrinol Metabolism 2022; dgac651. – reference: Ochoa N, Gogola GR, Gorniak SL, Contribution of tactile dysfunction to manual motor dysfunction in type II diabetes. Muscle Nerve 2016; 54: 895–902. – reference: Uccioli L, Giacomini PG, Pasqualetti P, et al: Contribution of central neuropathy to postural instability in IDDM patients with peripheral neuropathy. Diabetes Care 1997; 20: 929–934. – reference: Chen Z, Li L, Sun J, et al: Mapping the brain in type II diabetes: Voxel-based morphometry using DARTEL. Eur J Radiol 2012; 81: 1870–1876. – reference: Muramatsu K: Diabetes Mellitus-Related Dysfunction of the Motor System. Int J Mol Sci 2020; 21: 7485. – reference: Uccioli L, Giacomini PG, Monticone G, et al: Body sway in diabetic neuropathy. Diabetes Care 1995; 18: 339–344. – reference: Madsen JG, Østergaard JA, Andersen H, et al: Attenuation of Cortically Evoked Motor-Neuron Potential in Streptozotocin-Induced Diabetic Rats: A Study about the Effect of Diabetes upon Cortical-Initiated Movement. Biomed Res Int 2020; 2020: 1942534. – reference: Liu D, Duan S, Zhang J, et al: Aberrant Brain Regional Homogeneity and Functional Connectivity in Middle-Aged T2DM Patients: A Resting-State Functional MRI Study. Front Hum Neurosci 2016; 10: 539. – reference: de Senna PN, Xavier LL, Bagatini PB, et al: Physical training improves non-spatial memory, locomotor skills and the blood brain barrier in diabetic rats. Brain Res 2015; 1618: 75–82. – reference: Abbruzzese G, Schenone A, Scramuzza G, et al: Impairment of central motor conduction in diabetic patients. Electroencephalogr Clin Neurophysiol 1993; 89: 335–340. – reference: Maffiuletti NA, Aagaard P, Blazevich AJ, et al: Rate of force development: physiological and methodological considerations. Eur J Appl Physiol 2016; 116: 1091–1116. – reference: Ferris JK, Inglis JT, Madden KM, et al: Brain and Body: A Review of Central Nervous System Contributions to Movement Impairments in Diabetes. Diabetes 2020; 69: 3–11. – reference: Muramatsu K, Shimo S, Tamaki T, et al: Functional and Structural Changes in the Corticospinal Tract of Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2021; 22: 10123. – reference: Kataoka H, Miyatake N, Murao S, et al: A Randomized Controlled Trial of Short-term Toe Resistance Training to Improve Toe Pinch Force in Patients with Type 2 Diabetes. Acta Med Okayama 2018; 72: 9–15. – reference: Andersen H, Nielsen S, Nielsen JF: Motor cortical excitability remains unaffected of short-term hyperglycemia in Type 1 diabetic patients. Journal of Diabetes and Its Complications 2006; 20: 51–55. – reference: Maurer MS, Burcham J, Cheng H: Diabetes mellitus is associated with an increased risk of falls in elderly residents of a long-term care facility. J Gerontol A Biol Sci Med Sci 2005; 60: 1157–1162. – reference: Xiong Y, Sui Y, Xu Z, et al: A Diffusion Tensor Imaging Study on White Matter Abnormalities in Patients with Type 2 Diabetes Using Tract-Based Spatial Statistics. American Journal of Neuroradiology 2016; 37: 1462–1469. – reference: Centomo H, Termoz N, Savoie S, et al: Postural control following a self-initiated reaching task in type 2 diabetic patients and age-matched controls. Gait Posture 2007; 25: 509–514. – reference: Hughes TM, Ryan CM, Aizenstein HJ, et al: Frontal gray matter atrophy in middle aged adults with type 1 diabetes is independent of cardiovascular risk factors and diabetes complications. J Diabetes Complications 2013; 27: 558–564. – reference: Sima AAF: Encephalopathies: the emerging diabetic complications. Acta Diabetol 2010; 47: 279–293. – reference: Zhang D, Qi F, Gao J, et al: Altered Cerebellar-Cerebral Circuits in Patients With Type 2 Diabetes Mellitus. Front Neurosci-Switz 2020; 14: 571210. – reference: Sacchetti M, Sacchetti MS, Balducci S, et al: Neuromuscular dysfunction in diabetes: role of nerve impairment and training status. Med Sci Sports Exerc 2013; 45: 52–59. – reference: Stranahan AM, Arumugam TV, Cutler RG, et al: Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci 2008; 11: 309–317. – reference: Hernández-Fonseca JP, Rincón J, Pedreañez A, et al: Structural and Ultrastructural Analysis of Cerebral Cortex, Cerebellum, and Hypothalamus from Diabetic Rats. Exp Diabetes Res 2009; 2009: 329632. – reference: Yoon S, Cho H, Kim J, et al: Brain changes in overweight/obese and normal-weight adults with type 2 diabetes mellitus. Diabetologia 2017; 60: 1207–1217. – reference: Emerick AJ, Richards MP, Kartje GL, et al: Experimental diabetes attenuates cerebral cortical-evoked forelimb motor responses. Diabetes 2005; 54: 2764–2771. – reference: Allet L, Armand S, de Bie RA, et al: Gait alterations of diabetic patients while walking on different surfaces. Gait Posture 2009; 29: 488–493. – reference: Peng B, Chen Z, Ma L, et al: Cerebral alterations of type 2 diabetes mellitus on MRI: A pilot study. Neurosci Lett 2015; 606: 100–105. – reference: Moglia A, Arrigo A, Maurelli M, et al: Central motor conduction after magnetic stimulation in diabetes. Ital J Neuro Sci 1998; 19: 10–14. – reference: Watanabe K, Gazzoni M, Holobar A, et al: Motor unit firing pattern of vastus lateralis muscle in type 2 diabetes mellitus patients. Muscle Nerve 2013; 48: 806–813. – reference: Said G: Diabetic neuropathy–a review. Nat Rev Neurol 2007; 3: 331–340. – reference: Perry BD, Caldow MK, Brennan-Speranza TC, et al: Muscle atrophy in patients with Type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise. Exercise Immunology Review 2016; 22: 94–109. – reference: Muller KA, Ryals JM, Feldman EL, et al: Abnormal muscle spindle innervation and large-fiber neuropathy in diabetic mice. Diabetes 2008; 57: 1693–1701. – reference: Andersen H, Nielsen JF, Poulsen PL, et al: Motor pathway function in normoalbuminuric IDDM patients. Diabetologia 1995; 38: 1191–1196. – reference: Bardawil MME, Hamid ME, Sawy NE, et al: Postural control and central motor pathway involvement in type 2 diabetes mellitus: Dynamic posturographic and electrophysiologic studies. Alexandria Med J 2013; 49: 299–307. – reference: Stranahan AM, Lee K, Martin B, et al: Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus 2009; 19: 951–961. – reference: Franc DT, Kodl CT, Mueller BA, et al: High Connectivity Between Reduced Cortical Thickness and Disrupted White Matter Tracts in Long-Standing Type 1 Diabetes. Diabetes 2011; 60: 315–319. – reference: Andersen H: Motor function in diabetic neuropathy. Acta Neurol Scand 1999; 100: 211–220. – reference: Dideriksen JL, Vecchio AD, Farina D: Neural and muscular determinants of maximal rate of force development. J Neurophysiol 2020; 123: 149–157. – reference: Bernardes G, IJzerman RG, Ten Kulve JS, et al: Cortical and subcortical gray matter structural alterations in normoglycemic obese and type 2 diabetes patients: relationship with adiposity, glucose, and insulin. Metab Brain Dis 2018; 33: 1211–1222. – reference: Bean JF, Kiely DK, Herman S, et al: The Relationship Between Leg Power and Physical Performance in Mobility‐Limited Older People. J Am Geriatr Soc 2002; 50: 461–467. – reference: Almurdhi MM, Reeves ND, F.L. Bowling, et al: Reduced Lower-Limb Muscle Strength and Volume in Patients With Type 2 Diabetes in Relation to Neuropathy, Intramuscular Fat, and Vitamin D Levels. Diabetes Care 2016; 39: 441–447. – reference: Nomura T, Ishiguro T, Ohira M, et al: Diabetic polyneuropathy is a risk factor for decline of lower extremity strength in patients with type 2 diabetes. J Diabetes Investig 2018; 9: 186–192. |
| SSID | ssib047853219 ssj0003321994 ssib050736131 |
| Score | 1.9314954 |
| Snippet | 【緒言】糖尿病患者には下肢筋力の低下やバランス障害などの運動障害が生じ,その原因として糖尿病性末梢神経障害や筋実質の障害がよく知られている.しかし,近年,末梢神... |
| SourceID | nii jstage |
| SourceType | Publisher |
| StartPage | 74 |
| SubjectTerms | 皮質脊髄路 糖尿病 運動野 |
| Title | Effects of diabetes on the central nervous system controlling voluntary movement |
| URI | https://www.jstage.jst.go.jp/article/ptdm/2/1/2_74/_article/-char/en https://cir.nii.ac.jp/crid/1390858553269167488 |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Japanese Journal of Physical Therapy for Diabetes Mellitus, 2023/03/31, Vol.2(1), pp.74-82 |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources databaseCode: M~E dateStart: 20220101 customDbUrl: isFulltext: true eissn: 2436-6544 dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: true ssIdentifier: ssib050736131 providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJesklNLSlSZqiQ2_GG1uSX8fSbgiFLTm4kJuRLQl2w9oha-eQQ397ZyzLNjSQx2HFIoPW6Ps8-jw7D0K-yUhUcFCUfqZC7QshIl_KTPsp41yrRKZV375t9Tu--iN-3UQ3k0O_zy5py0X1-GReyVtQhTnAFbNkX4HsuChMwHfAF0ZAGMYXYbycgjFGH6p1_ntD0KVXgy3AKFdbsdlFpvc56GiY6haj5rbNwxQB45QqnKLYndKbSdZrB2puaxH0MYo_3S-vsLZn2-1mGErQw7sOk38mD8EWNKuXN_fdyMrbrm22jbeSO3nbzN0QjLu8PHdEuJtywaavuyndWzwmeOzHkS0I6cwz-4-F1tTa5j7u0GZPHQcgJgN0Tdy1artgi7BIxD55x8D-Y5OP1d-lszwiAdXCpsJ2IJI56Jxw9NZxvJoJmznRL3sxWxTUywa0PBZp2K_X65lAyd-TowEm-t3S5JjsbeQHcj1QhDaGOorQpqZAETpQhA4UoZYidEYROlKEOop8JPnlMv9x5Q9NNPwNaDHfhDKUQpms1DpJKs4kE8YkSmQ8LWPs6x6D4NfwnqV5qrkKuImkzrLIcB0YpvgnclA3tf5MaGAiwRNVpShBtQpKrUrOjeaslKyq1AkRdheKO1sopRgejAK3qmBFCJ9EjLOYVghP8Qk5hz0rqjWO8D4S4D_VgEacYYJMmp4-c_2MHE58_EIO2vtOn4NQbMuvPcb_AB2AcZk |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+diabetes+on+the+central+nervous+system+controlling+voluntary+movement&rft.jtitle=Japanese+Journal+of+Physical+Therapy+for+Diabetes+Mellitus&rft.au=Muramatsu+Ken&rft.au=Tamaki+Toru&rft.au=Ikutomo+Masako&rft.date=2023-03-31&rft.pub=Japanese+Society+of+Physical+Therapy+for+Diabetes+Mellitus&rft.eissn=2436-6544&rft.volume=2&rft.issue=1&rft.spage=74&rft.epage=82&rft_id=info:doi/10.51106%2Fptdm.2.1_74 |