Submodular Function Maximization on the Bounded Integer Lattice

We consider the problem of maximizing a submodular function on the bounded integer lattice. As a direct generalization of submodular set functions, f:0,…,Cn→R+ $$f: \{0, \ldots , C\}^n \rightarrow \mathbb {R}_+$$ is submodular, if f(x)+f(y)≥f(x∧y)+f(x∨y) $$f(x) + f(y) \ge f(x \wedge y) + f(x \vee y)...

Full description

Saved in:
Bibliographic Details
Published inApproximation and Online Algorithms Vol. 9499; pp. 133 - 144
Main Authors Gottschalk, Corinna, Peis, Britta
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 01.01.2015
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3319286838
9783319286839
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-28684-6_12

Cover

Abstract We consider the problem of maximizing a submodular function on the bounded integer lattice. As a direct generalization of submodular set functions, f:0,…,Cn→R+ $$f: \{0, \ldots , C\}^n \rightarrow \mathbb {R}_+$$ is submodular, if f(x)+f(y)≥f(x∧y)+f(x∨y) $$f(x) + f(y) \ge f(x \wedge y) + f(x \vee y)$$ for all x,y∈0,…,Cn $$x,y \in \{0, \ldots , C\}^n$$ where ∧ $$\wedge $$ and ∨ $$\vee $$ denote element-wise minimum and maximum. The objective is finding a vector x maximizing f(x). In this paper, we present a deterministic 13 $$\frac{1}{3}$$ -approximation using a framework inspired by [2]. We also provide an example that shows the analysis is tight and yields additional insight into the possibilities of modifying the algorithm. Moreover, we examine some structural differences to maximization of submodular set functions which make our problem harder to solve.
AbstractList We consider the problem of maximizing a submodular function on the bounded integer lattice. As a direct generalization of submodular set functions, f:0,…,Cn→R+ $$f: \{0, \ldots , C\}^n \rightarrow \mathbb {R}_+$$ is submodular, if f(x)+f(y)≥f(x∧y)+f(x∨y) $$f(x) + f(y) \ge f(x \wedge y) + f(x \vee y)$$ for all x,y∈0,…,Cn $$x,y \in \{0, \ldots , C\}^n$$ where ∧ $$\wedge $$ and ∨ $$\vee $$ denote element-wise minimum and maximum. The objective is finding a vector x maximizing f(x). In this paper, we present a deterministic 13 $$\frac{1}{3}$$ -approximation using a framework inspired by [2]. We also provide an example that shows the analysis is tight and yields additional insight into the possibilities of modifying the algorithm. Moreover, we examine some structural differences to maximization of submodular set functions which make our problem harder to solve.
Author Peis, Britta
Gottschalk, Corinna
Author_xml – sequence: 1
  givenname: Corinna
  surname: Gottschalk
  fullname: Gottschalk, Corinna
  email: corinna.gottschalk@oms.rwth-aachen.de
– sequence: 2
  givenname: Britta
  surname: Peis
  fullname: Peis, Britta
BookMark eNqNkMFOwzAMhgMMxDb2Bhz6AgE7TtL2hGBigDTEAThHXZuyji0dbSohnp50A85Iliz_1mdZ34gNXO0sY-cIFwgQX6ZxwokTplwkOpFcGxQHbBJiCuEu04dsiBqRE8n0iI1-F5QM2BAIBE9jSSdshBBroZSU8SmbtO0KAAKnNYkhu3ruFpu66NZZE806l_uqdtFj9lltqq9sN4TySxvd1J0rbBE9OG_fbBPNM--r3J6x4zJbt3by08fsdXb7Mr3n86e7h-n1nK9ISc81SIuQY54WuVCYFag02bhAm2qNYMEqCpnSSSmkKmkBpSx1kgKJhSzyhMZM7O-226Zy4QGzqOv31iCY3pcJYgyZYMDs3JjeV4DkHto29UdnW29sT-XW-SZb58ts623TGk2AEvpD0qCk_2JKpUpC8od9Aydhe74
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2015
Copyright_xml – notice: Springer International Publishing Switzerland 2015
DBID FFUUA
DEWEY 005.1
DOI 10.1007/978-3-319-28684-6_12
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783319286846
3319286846
EISSN 1611-3349
Editor Sanità, Laura
Skutella, Martin
Editor_xml – sequence: 1
  fullname: Sanità, Laura
– sequence: 2
  fullname: Skutella, Martin
EndPage 144
ExternalDocumentID EBC6301400_104_143
EBC5595408_104_143
GroupedDBID 0D6
0DA
38.
AABBV
AAGZE
AAZAK
AAZUS
ABBVZ
ABFTD
ABMNI
ACKNT
ACRRC
AEDXK
AEJLV
AEKFX
AETDV
AEZAY
ALMA_UNASSIGNED_HOLDINGS
APFYR
AZZ
BBABE
CZZ
FFUUA
I4C
IEZ
IY-
LDH
SBO
SFQCF
TMQGW
TPJZQ
TSXQS
TWXRB
Z81
Z83
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
P2P
RSU
~02
ID FETCH-LOGICAL-j354t-604e10c1c9dc251ad1563e7d1e96610e0e53d15568f245f3b0f4f689032b4dc83
ISBN 3319286838
9783319286839
ISSN 0302-9743
IngestDate Tue Jul 29 20:09:54 EDT 2025
Thu May 29 16:13:54 EDT 2025
Thu May 29 00:41:40 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.A43QA76.9.M35
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j354t-604e10c1c9dc251ad1563e7d1e96610e0e53d15568f245f3b0f4f689032b4dc83
Notes Original Abstract: We consider the problem of maximizing a submodular function on the bounded integer lattice. As a direct generalization of submodular set functions, f:{0,…,C}n→R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: \{0, \ldots , C\}^n \rightarrow \mathbb {R}_+$$\end{document} is submodular, if f(x)+f(y)≥f(x∧y)+f(x∨y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x) + f(y) \ge f(x \wedge y) + f(x \vee y)$$\end{document} for all x,y∈{0,…,C}n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y \in \{0, \ldots , C\}^n$$\end{document} where ∧\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\wedge $$\end{document} and ∨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vee $$\end{document} denote element-wise minimum and maximum. The objective is finding a vector x maximizing f(x). In this paper, we present a deterministic 13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{3}$$\end{document}-approximation using a framework inspired by [2]. We also provide an example that shows the analysis is tight and yields additional insight into the possibilities of modifying the algorithm. Moreover, we examine some structural differences to maximization of submodular set functions which make our problem harder to solve.
OCLC 1076255447
PQID EBC5595408_104_143
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_319_28684_6_12
proquest_ebookcentralchapters_6301400_104_143
proquest_ebookcentralchapters_5595408_104_143
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 13th International Workshop, WAOA 2015, Patras, Greece, September 17-18, 2015. Revised Selected Papers
PublicationTitle Approximation and Online Algorithms
PublicationYear 2015
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0001616632
ssj0002792
Score 2.1166599
Snippet We consider the problem of maximizing a submodular function on the bounded integer lattice. As a direct generalization of submodular set functions, f:0,…,Cn→R+...
SourceID springer
proquest
SourceType Publisher
StartPage 133
SubjectTerms Algorithms & data structures
Discrete Convex Analysis
Discrete mathematics
Infinite series
Integer Lattice
Submodular Function
Submodular Maximization
Tight Example
Title Submodular Function Maximization on the Bounded Integer Lattice
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5595408&ppg=143
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6301400&ppg=143
http://link.springer.com/10.1007/978-3-319-28684-6_12
Volume 9499
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBaNeyk9NH3RpmnRoTejsrIe0R6d4DSEpKek5Ca0ktwHjd0kWyj99Z3RSl57MZQUzGKEZGb3W8nz-mYIeY_BpggHP3Kdaib9xDBnVMW886nDsQsG-c7nn_TJpTy9Uld9S7_ELmmbD_7PVl7J_6AKY4ArsmTvgezqR2EAvgO-cAWE4TpQfjfdrF16MVYD__2tox6mGEBXNnQ8_fFlCSb_11yH3BXKR3O9DCnp9Bj-y9KicwfrMxEzRw3Gh9hnKYbkKkRG8JlrS35c8Q5wNfAOFO_gwL-45uKaftywKAVsyYnRpqswVI5IrGCz9bxdT7FAOhQulUzbnBq9Ud6ad_WYBuWtZ4dHYNSA3mgsWIYWJ_28YdgVDKPnuUXKDtkB0Ubk4XR2eva596FpDgoTGtsrsU1XVKm_jTW65DYxNwyLQSw8qRgXu-Qx0k4o8kFA8KfkQVw8I09K0w2az-DnYF2tgKQFSLoOJIUPAEkzkDQDSTOQL8jl8ezi6ITlLhjsu1CyZbqSkVee-zp4UEZdAItbxIPAI1iqvIpVVALGlDbziVRz0VRzOdemrsSkkcEb8ZKMFstFfEWo4041guuoQi1V7R02-OHBmNh4DZvzNWHlYdgUq88Jwr679Ts7QOqf83Uy4Kt-_rg8YYvT72wpmg3QWGEBGpugsQjN3j2leUMe9Ttgn4za21_xLWiMbfMuvzh_AQoCZ6c
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Approximation+and+Online+Algorithms&rft.atitle=Submodular+Function+Maximization+on+the+Bounded+Integer+Lattice&rft.date=2015-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319286839&rft.volume=9499&rft_id=info:doi/10.1007%2F978-3-319-28684-6_12&rft.externalDBID=143&rft.externalDocID=EBC5595408_104_143
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5595408-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6301400-l.jpg