Submodular Function Maximization on the Bounded Integer Lattice
We consider the problem of maximizing a submodular function on the bounded integer lattice. As a direct generalization of submodular set functions, f:0,…,Cn→R+ $$f: \{0, \ldots , C\}^n \rightarrow \mathbb {R}_+$$ is submodular, if f(x)+f(y)≥f(x∧y)+f(x∨y) $$f(x) + f(y) \ge f(x \wedge y) + f(x \vee y)...
Saved in:
| Published in | Approximation and Online Algorithms Vol. 9499; pp. 133 - 144 |
|---|---|
| Main Authors | , |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
01.01.2015
Springer International Publishing |
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 3319286838 9783319286839 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-319-28684-6_12 |
Cover
| Abstract | We consider the problem of maximizing a submodular function on the bounded integer lattice. As a direct generalization of submodular set functions, f:0,…,Cn→R+ $$f: \{0, \ldots , C\}^n \rightarrow \mathbb {R}_+$$ is submodular, if f(x)+f(y)≥f(x∧y)+f(x∨y) $$f(x) + f(y) \ge f(x \wedge y) + f(x \vee y)$$ for all x,y∈0,…,Cn $$x,y \in \{0, \ldots , C\}^n$$ where ∧ $$\wedge $$ and ∨ $$\vee $$ denote element-wise minimum and maximum. The objective is finding a vector x maximizing f(x). In this paper, we present a deterministic 13 $$\frac{1}{3}$$ -approximation using a framework inspired by [2]. We also provide an example that shows the analysis is tight and yields additional insight into the possibilities of modifying the algorithm. Moreover, we examine some structural differences to maximization of submodular set functions which make our problem harder to solve. |
|---|---|
| AbstractList | We consider the problem of maximizing a submodular function on the bounded integer lattice. As a direct generalization of submodular set functions, f:0,…,Cn→R+ $$f: \{0, \ldots , C\}^n \rightarrow \mathbb {R}_+$$ is submodular, if f(x)+f(y)≥f(x∧y)+f(x∨y) $$f(x) + f(y) \ge f(x \wedge y) + f(x \vee y)$$ for all x,y∈0,…,Cn $$x,y \in \{0, \ldots , C\}^n$$ where ∧ $$\wedge $$ and ∨ $$\vee $$ denote element-wise minimum and maximum. The objective is finding a vector x maximizing f(x). In this paper, we present a deterministic 13 $$\frac{1}{3}$$ -approximation using a framework inspired by [2]. We also provide an example that shows the analysis is tight and yields additional insight into the possibilities of modifying the algorithm. Moreover, we examine some structural differences to maximization of submodular set functions which make our problem harder to solve. |
| Author | Peis, Britta Gottschalk, Corinna |
| Author_xml | – sequence: 1 givenname: Corinna surname: Gottschalk fullname: Gottschalk, Corinna email: corinna.gottschalk@oms.rwth-aachen.de – sequence: 2 givenname: Britta surname: Peis fullname: Peis, Britta |
| BookMark | eNqNkMFOwzAMhgMMxDb2Bhz6AgE7TtL2hGBigDTEAThHXZuyji0dbSohnp50A85Iliz_1mdZ34gNXO0sY-cIFwgQX6ZxwokTplwkOpFcGxQHbBJiCuEu04dsiBqRE8n0iI1-F5QM2BAIBE9jSSdshBBroZSU8SmbtO0KAAKnNYkhu3ruFpu66NZZE806l_uqdtFj9lltqq9sN4TySxvd1J0rbBE9OG_fbBPNM--r3J6x4zJbt3by08fsdXb7Mr3n86e7h-n1nK9ISc81SIuQY54WuVCYFag02bhAm2qNYMEqCpnSSSmkKmkBpSx1kgKJhSzyhMZM7O-226Zy4QGzqOv31iCY3pcJYgyZYMDs3JjeV4DkHto29UdnW29sT-XW-SZb58ts623TGk2AEvpD0qCk_2JKpUpC8od9Aydhe74 |
| ContentType | Book Chapter |
| Copyright | Springer International Publishing Switzerland 2015 |
| Copyright_xml | – notice: Springer International Publishing Switzerland 2015 |
| DBID | FFUUA |
| DEWEY | 005.1 |
| DOI | 10.1007/978-3-319-28684-6_12 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9783319286846 3319286846 |
| EISSN | 1611-3349 |
| Editor | Sanità, Laura Skutella, Martin |
| Editor_xml | – sequence: 1 fullname: Sanità, Laura – sequence: 2 fullname: Skutella, Martin |
| EndPage | 144 |
| ExternalDocumentID | EBC6301400_104_143 EBC5595408_104_143 |
| GroupedDBID | 0D6 0DA 38. AABBV AAGZE AAZAK AAZUS ABBVZ ABFTD ABMNI ACKNT ACRRC AEDXK AEJLV AEKFX AETDV AEZAY ALMA_UNASSIGNED_HOLDINGS APFYR AZZ BBABE CZZ FFUUA I4C IEZ IY- LDH SBO SFQCF TMQGW TPJZQ TSXQS TWXRB Z81 Z83 Z88 -DT -~X 29L 2HA 2HV ACGFS ADCXD EJD F5P LAS P2P RSU ~02 |
| ID | FETCH-LOGICAL-j354t-604e10c1c9dc251ad1563e7d1e96610e0e53d15568f245f3b0f4f689032b4dc83 |
| ISBN | 3319286838 9783319286839 |
| ISSN | 0302-9743 |
| IngestDate | Tue Jul 29 20:09:54 EDT 2025 Thu May 29 16:13:54 EDT 2025 Thu May 29 00:41:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| LCCallNum | QA76.9.A43QA76.9.M35 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-j354t-604e10c1c9dc251ad1563e7d1e96610e0e53d15568f245f3b0f4f689032b4dc83 |
| Notes | Original Abstract: We consider the problem of maximizing a submodular function on the bounded integer lattice. As a direct generalization of submodular set functions, f:{0,…,C}n→R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: \{0, \ldots , C\}^n \rightarrow \mathbb {R}_+$$\end{document} is submodular, if f(x)+f(y)≥f(x∧y)+f(x∨y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x) + f(y) \ge f(x \wedge y) + f(x \vee y)$$\end{document} for all x,y∈{0,…,C}n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y \in \{0, \ldots , C\}^n$$\end{document} where ∧\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\wedge $$\end{document} and ∨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vee $$\end{document} denote element-wise minimum and maximum. The objective is finding a vector x maximizing f(x). In this paper, we present a deterministic 13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{3}$$\end{document}-approximation using a framework inspired by [2]. We also provide an example that shows the analysis is tight and yields additional insight into the possibilities of modifying the algorithm. Moreover, we examine some structural differences to maximization of submodular set functions which make our problem harder to solve. |
| OCLC | 1076255447 |
| PQID | EBC5595408_104_143 |
| PageCount | 12 |
| ParticipantIDs | springer_books_10_1007_978_3_319_28684_6_12 proquest_ebookcentralchapters_6301400_104_143 proquest_ebookcentralchapters_5595408_104_143 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-01-01 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Cham |
| PublicationSeriesSubtitle | Theoretical Computer Science and General Issues |
| PublicationSeriesTitle | Lecture Notes in Computer Science |
| PublicationSeriesTitleAlternate | Lect.Notes Computer |
| PublicationSubtitle | 13th International Workshop, WAOA 2015, Patras, Greece, September 17-18, 2015. Revised Selected Papers |
| PublicationTitle | Approximation and Online Algorithms |
| PublicationYear | 2015 |
| Publisher | Springer International Publishing AG Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
| RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Weikum, Gerhard Hutchison, David Tygar, Doug |
| RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug – sequence: 12 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard |
| SSID | ssj0001616632 ssj0002792 |
| Score | 2.1166599 |
| Snippet | We consider the problem of maximizing a submodular function on the bounded integer lattice. As a direct generalization of submodular set functions, f:0,…,Cn→R+... |
| SourceID | springer proquest |
| SourceType | Publisher |
| StartPage | 133 |
| SubjectTerms | Algorithms & data structures Discrete Convex Analysis Discrete mathematics Infinite series Integer Lattice Submodular Function Submodular Maximization Tight Example |
| Title | Submodular Function Maximization on the Bounded Integer Lattice |
| URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5595408&ppg=143 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6301400&ppg=143 http://link.springer.com/10.1007/978-3-319-28684-6_12 |
| Volume | 9499 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBaNeyk9NH3RpmnRoTejsrIe0R6d4DSEpKek5Ca0ktwHjd0kWyj99Z3RSl57MZQUzGKEZGb3W8nz-mYIeY_BpggHP3Kdaib9xDBnVMW886nDsQsG-c7nn_TJpTy9Uld9S7_ELmmbD_7PVl7J_6AKY4ArsmTvgezqR2EAvgO-cAWE4TpQfjfdrF16MVYD__2tox6mGEBXNnQ8_fFlCSb_11yH3BXKR3O9DCnp9Bj-y9KicwfrMxEzRw3Gh9hnKYbkKkRG8JlrS35c8Q5wNfAOFO_gwL-45uKaftywKAVsyYnRpqswVI5IrGCz9bxdT7FAOhQulUzbnBq9Ud6ad_WYBuWtZ4dHYNSA3mgsWIYWJ_28YdgVDKPnuUXKDtkB0Ubk4XR2eva596FpDgoTGtsrsU1XVKm_jTW65DYxNwyLQSw8qRgXu-Qx0k4o8kFA8KfkQVw8I09K0w2az-DnYF2tgKQFSLoOJIUPAEkzkDQDSTOQL8jl8ezi6ITlLhjsu1CyZbqSkVee-zp4UEZdAItbxIPAI1iqvIpVVALGlDbziVRz0VRzOdemrsSkkcEb8ZKMFstFfEWo4041guuoQi1V7R02-OHBmNh4DZvzNWHlYdgUq88Jwr679Ts7QOqf83Uy4Kt-_rg8YYvT72wpmg3QWGEBGpugsQjN3j2leUMe9Ttgn4za21_xLWiMbfMuvzh_AQoCZ6c |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Approximation+and+Online+Algorithms&rft.atitle=Submodular+Function+Maximization+on+the+Bounded+Integer+Lattice&rft.date=2015-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319286839&rft.volume=9499&rft_id=info:doi/10.1007%2F978-3-319-28684-6_12&rft.externalDBID=143&rft.externalDocID=EBC5595408_104_143 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5595408-l.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6301400-l.jpg |