Submodular Function Maximization on the Bounded Integer Lattice

We consider the problem of maximizing a submodular function on the bounded integer lattice. As a direct generalization of submodular set functions, f:0,…,Cn→R+ $$f: \{0, \ldots , C\}^n \rightarrow \mathbb {R}_+$$ is submodular, if f(x)+f(y)≥f(x∧y)+f(x∨y) $$f(x) + f(y) \ge f(x \wedge y) + f(x \vee y)...

Full description

Saved in:
Bibliographic Details
Published inApproximation and Online Algorithms Vol. 9499; pp. 133 - 144
Main Authors Gottschalk, Corinna, Peis, Britta
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 01.01.2015
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3319286838
9783319286839
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-28684-6_12

Cover

More Information
Summary:We consider the problem of maximizing a submodular function on the bounded integer lattice. As a direct generalization of submodular set functions, f:0,…,Cn→R+ $$f: \{0, \ldots , C\}^n \rightarrow \mathbb {R}_+$$ is submodular, if f(x)+f(y)≥f(x∧y)+f(x∨y) $$f(x) + f(y) \ge f(x \wedge y) + f(x \vee y)$$ for all x,y∈0,…,Cn $$x,y \in \{0, \ldots , C\}^n$$ where ∧ $$\wedge $$ and ∨ $$\vee $$ denote element-wise minimum and maximum. The objective is finding a vector x maximizing f(x). In this paper, we present a deterministic 13 $$\frac{1}{3}$$ -approximation using a framework inspired by [2]. We also provide an example that shows the analysis is tight and yields additional insight into the possibilities of modifying the algorithm. Moreover, we examine some structural differences to maximization of submodular set functions which make our problem harder to solve.
Bibliography:Original Abstract: We consider the problem of maximizing a submodular function on the bounded integer lattice. As a direct generalization of submodular set functions, f:{0,…,C}n→R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: \{0, \ldots , C\}^n \rightarrow \mathbb {R}_+$$\end{document} is submodular, if f(x)+f(y)≥f(x∧y)+f(x∨y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x) + f(y) \ge f(x \wedge y) + f(x \vee y)$$\end{document} for all x,y∈{0,…,C}n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y \in \{0, \ldots , C\}^n$$\end{document} where ∧\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\wedge $$\end{document} and ∨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vee $$\end{document} denote element-wise minimum and maximum. The objective is finding a vector x maximizing f(x). In this paper, we present a deterministic 13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{3}$$\end{document}-approximation using a framework inspired by [2]. We also provide an example that shows the analysis is tight and yields additional insight into the possibilities of modifying the algorithm. Moreover, we examine some structural differences to maximization of submodular set functions which make our problem harder to solve.
ISBN:3319286838
9783319286839
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-28684-6_12