経頭蓋直流電気刺激による最大努力踏み台昇降ステッピングパフォーマンスの改善

Saved in:
Bibliographic Details
Published in体力科学 Vol. 71; no. 2; pp. 239 - 247
Main Authors 清水, 菜央, 石井, 智也, 小林, 優里, 笹田, 周作, 小宮山, 伴与志
Format Journal Article
LanguageJapanese
Published 一般社団法人日本体力医学会 01.04.2022
Subjects
Online AccessGet full text
ISSN0039-906X
1881-4751
DOI10.7600/jspfsm.71.239

Cover

Author 石井, 智也
小林, 優里
清水, 菜央
笹田, 周作
小宮山, 伴与志
Author_xml – sequence: 1
  fullname: 清水, 菜央
  organization: 千葉大学教育学部保健体育科教育
– sequence: 1
  fullname: 石井, 智也
  organization: 東京学芸大学大学院連合学校教育学研究科
– sequence: 1
  fullname: 小林, 優里
  organization: 千葉大学教育学部保健体育科教育
– sequence: 1
  fullname: 笹田, 周作
  organization: 相模女子大学短期大学部食物栄養学科
– sequence: 1
  fullname: 小宮山, 伴与志
  organization: 千葉大学教育学部保健体育科教育
BookMark eNo9kE1LAkEAhocwyMxjP2NtZmd3ZudWSF8gdCnotsyua7n4heulm-5EiRYS2RdGdAiiohBKyAr8McOu-i8CjS7vC88Lz-GdB5FCseAAsIhgghIIl1yvlPHyCYoSKmYzIIoMAyka1VEERCHETGGQ7M6BuOdlLYgooioySBQUh72T8f3r6Lw57HyEvdq48x12r4L6VzioytqL9OvSb4a31eDhMWg8B43O6LMla4Og1Q2vj8c3p9LvS3EkhZCiLcW79LtSnElxIf0nKX6kuJvAvqy9he1-cHm4AGYzPOc58b-OgZ211e3khpLaWt9MrqQUF2u4ouiYEqIjSjkkiGKCDQPajoaxpdk6Q9AxLI3wtGbzNM4w1SaUMWo7nNrM0oy0jmNgeep1vQrfc8xSOZvn5QOTlytZO-eY07tMikx1Epj9T_Y-L5sux7_6sI7v
ContentType Journal Article
Copyright 2022 一般社団法人日本体力医学会
Copyright_xml – notice: 2022 一般社団法人日本体力医学会
DOI 10.7600/jspfsm.71.239
DeliveryMethod fulltext_linktorsrc
EISSN 1881-4751
EndPage 247
ExternalDocumentID article_jspfsm_71_2_71_239_article_char_ja
GroupedDBID .55
2WC
53G
5GY
ALMA_UNASSIGNED_HOLDINGS
DIK
E3Z
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
X7M
ID FETCH-LOGICAL-j343t-537665177a0617363880ce433b4c5910e8b46ad4cad3f92c67997cea7c9b48d53
ISSN 0039-906X
IngestDate Wed Sep 03 06:30:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language Japanese
License https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j343t-537665177a0617363880ce433b4c5910e8b46ad4cad3f92c67997cea7c9b48d53
OpenAccessLink https://www.jstage.jst.go.jp/article/jspfsm/71/2/71_239/_article/-char/ja
PageCount 9
ParticipantIDs jstage_primary_article_jspfsm_71_2_71_239_article_char_ja
PublicationCentury 2000
PublicationDate 20220400
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 20220400
PublicationDecade 2020
PublicationTitle 体力科学
PublicationTitleAlternate 体力科学
PublicationYear 2022
Publisher 一般社団法人日本体力医学会
Publisher_xml – name: 一般社団法人日本体力医学会
References 6) Bolzoni F, Jankowska E. Presynaptic and postsynaptic effects of local cathodal DC polarization within the spinal cord in anaesthetized animal preparations. J Physiol 593: 947-966, 2015.
11) Angius L, Pageaux B, Hopker J, Marcora SM, Mauger AR. Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience 339: 363-375, 2016.
16) Sasada S, Endoh T, Ishii T, Komiyama T. Polarity-dependent improvement of maximal-effort sprint cycling performance by direct current stimulation of the central nervous system. Neurosci Lett 657: 97-101, 2017.
15) Tanaka S, Hanakawa T, Honda M, Watanabe K. Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res 196: 459-465, 2009.
26) Taylor JL, Allen GM, Butler JE, Gandevia SC. Supraspinal fatigue during intermittent maximal voluntary contractions of the human elbow flexors. J Appl Physiol 89: 305-313, 2000.
25) Matsuyama K, Drew T. Organization of the projections from the pericruciate cortex to the pontomedullary brainstem of the cat: a study using the anterograde tracer Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 389: 617-641, 1997.
18) Hunter SK, Todd G, Butler JE, Gandevia SC, Taylor JL. Recovery from supraspinal fatigue is slowed in old adults after fatiguing maximal isometric contractions. J Appl Physiol 105: 1199-1209, 2008.
5) Goodall S, Charlton K, Howatson G, Thomas K. Neuromuscular fatigability during repeated-sprint exercise in male athletes. Med Sci Sports Exerc 47: 528-536, 2015.
27) Van Cutsem M, Duchateau J, Hainaut K. Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol 513 (Pt1): 295-305, 1998.
17) Zghal F, Cottin F, Kenoun I, Rebai H, Moalla W, Dogui M, Tabka Z, Martin V. Improved tolerance of peripheral fatigue by the central nervous system after endurance training. Eur J Appl Physiol 115: 1401-1415, 2015.
1) Taylor JL, Gandevia SC. A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. J Appl Physiol 104: 542-550, 2008.
12) Sasada S, Endoh T, Ishii T, Kawashima K, Sato S, Hayashi A, Komiyama T. Differential effects of transcranial direct current stimulation on sprint and endurance cycling. Transl Sports Med 3: 204-212, 2020.
13) Angius L, Mauger AR, Hopker J, Pascual-Leone A, Santarnecchi E, Marcora SM. Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals. Brain Stimul 11: 108-117, 2018.
24) Drew T, Andujar JE, Lajoie K, Yakovenko S. Cortical mechanisms involved in visuomotor coordination during precision walking. Brain Res Rev 57: 199-211, 2008.
28) Knight CA, Kamen G. Adaptations in muscular activation of the knee extensor muscles with strength training in young and older adults. J Electromyogr Kinesiol 11: 405-412, 2001.
20) Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527 Pt 3: 633-639, 2000.
19) Muller-Dahlhaus F, Ziemann U. Metaplasticity in human cortex. Neuroscientist 21: 185-202, 2015.
4) Bigland-Ritchie B, Johansson R, Lippold OC, Smith S, Woods JJ. Changes in motoneurone firing rates during sustained maximal voluntary contractions. J Physiol 340: 335-346, 1983.
2) Gandevia SC, Allen GM, Butler JE, Taylor JL. Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol 490: 529-536, 1996.
23) Roche N, Lackmy A, Achache V, Bussel B, Katz R. Effects of anodal transcranial direct current stimulation over the leg motor area on lumbar spinal network excitability in healthy subjects. J Physiol 589: 2813-2826, 2011.
14) Vitor-Costa M, Okuno NM, Bortolotti H, Bertollo M, Boggio PS, Fregni F, Altimari LR. Improving Cycling Performance: Transcranial Direct Current Stimulation Increases Time to Exhaustion in Cycling. PLoS One 10: e0144916, 2015. doi: 10.1371/journal.pone.0144916.
3) Newham DJ, McCarthy T, Turner J. Voluntary activation of human quadriceps during and after isokinetic exercise. J Appl Physiol 71: 2122-2126, 1991.
22) Miranda PC, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol 117: 1623-1629, 2006.
8) Islam N, Aftabuddin M, Moriwaki A, Hattori Y, Hori Y. Increase in the calcium level following anodal polarization in the rat brain. Brain Res 684: 206-208, 1995.
9) Bindman LJ, Lippold OC, Redfearn JW. The Action of Brief Polarizing Currents on the Cerebral Cortex of the Rat (1) during Current Flow and (2) in the Production of Long-Lasting after-Effects. J Physiol 172: 369-382, 1964.
30) Power HA, Norton JA, Porter CL, Doyle Z, Hui I, Chan KM. Transcranial direct current stimulation of the primary motor cortex affects cortical drive to human musculature as assessed by intermuscular coherence. J Physiol 577: 795-803, 2006.
29) Endoh T, Mitamura M, Nakajima T, Takahashi R, Komiyama T. Central and peripheral fatigue during sustained maximal voluntary contractions in trained and untrained human subjects. Jpn J Phys Fit Sports Med 53: 211-220, 2004.
10) Jeffery DT, Norton JA, Roy FD, Gorassini MA. Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Exp Brain Res 182: 281-287, 2007.
7) Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, Jefferys JG. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol 557: 175-190, 2004.
21) Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist 17: 37-53, 2011.
References_xml – reference: 2) Gandevia SC, Allen GM, Butler JE, Taylor JL. Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol 490: 529-536, 1996.
– reference: 13) Angius L, Mauger AR, Hopker J, Pascual-Leone A, Santarnecchi E, Marcora SM. Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals. Brain Stimul 11: 108-117, 2018.
– reference: 6) Bolzoni F, Jankowska E. Presynaptic and postsynaptic effects of local cathodal DC polarization within the spinal cord in anaesthetized animal preparations. J Physiol 593: 947-966, 2015.
– reference: 18) Hunter SK, Todd G, Butler JE, Gandevia SC, Taylor JL. Recovery from supraspinal fatigue is slowed in old adults after fatiguing maximal isometric contractions. J Appl Physiol 105: 1199-1209, 2008.
– reference: 20) Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527 Pt 3: 633-639, 2000.
– reference: 23) Roche N, Lackmy A, Achache V, Bussel B, Katz R. Effects of anodal transcranial direct current stimulation over the leg motor area on lumbar spinal network excitability in healthy subjects. J Physiol 589: 2813-2826, 2011.
– reference: 9) Bindman LJ, Lippold OC, Redfearn JW. The Action of Brief Polarizing Currents on the Cerebral Cortex of the Rat (1) during Current Flow and (2) in the Production of Long-Lasting after-Effects. J Physiol 172: 369-382, 1964.
– reference: 27) Van Cutsem M, Duchateau J, Hainaut K. Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol 513 (Pt1): 295-305, 1998.
– reference: 14) Vitor-Costa M, Okuno NM, Bortolotti H, Bertollo M, Boggio PS, Fregni F, Altimari LR. Improving Cycling Performance: Transcranial Direct Current Stimulation Increases Time to Exhaustion in Cycling. PLoS One 10: e0144916, 2015. doi: 10.1371/journal.pone.0144916.
– reference: 29) Endoh T, Mitamura M, Nakajima T, Takahashi R, Komiyama T. Central and peripheral fatigue during sustained maximal voluntary contractions in trained and untrained human subjects. Jpn J Phys Fit Sports Med 53: 211-220, 2004.
– reference: 25) Matsuyama K, Drew T. Organization of the projections from the pericruciate cortex to the pontomedullary brainstem of the cat: a study using the anterograde tracer Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 389: 617-641, 1997.
– reference: 26) Taylor JL, Allen GM, Butler JE, Gandevia SC. Supraspinal fatigue during intermittent maximal voluntary contractions of the human elbow flexors. J Appl Physiol 89: 305-313, 2000.
– reference: 24) Drew T, Andujar JE, Lajoie K, Yakovenko S. Cortical mechanisms involved in visuomotor coordination during precision walking. Brain Res Rev 57: 199-211, 2008.
– reference: 19) Muller-Dahlhaus F, Ziemann U. Metaplasticity in human cortex. Neuroscientist 21: 185-202, 2015.
– reference: 1) Taylor JL, Gandevia SC. A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. J Appl Physiol 104: 542-550, 2008.
– reference: 8) Islam N, Aftabuddin M, Moriwaki A, Hattori Y, Hori Y. Increase in the calcium level following anodal polarization in the rat brain. Brain Res 684: 206-208, 1995.
– reference: 30) Power HA, Norton JA, Porter CL, Doyle Z, Hui I, Chan KM. Transcranial direct current stimulation of the primary motor cortex affects cortical drive to human musculature as assessed by intermuscular coherence. J Physiol 577: 795-803, 2006.
– reference: 12) Sasada S, Endoh T, Ishii T, Kawashima K, Sato S, Hayashi A, Komiyama T. Differential effects of transcranial direct current stimulation on sprint and endurance cycling. Transl Sports Med 3: 204-212, 2020.
– reference: 15) Tanaka S, Hanakawa T, Honda M, Watanabe K. Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res 196: 459-465, 2009.
– reference: 17) Zghal F, Cottin F, Kenoun I, Rebai H, Moalla W, Dogui M, Tabka Z, Martin V. Improved tolerance of peripheral fatigue by the central nervous system after endurance training. Eur J Appl Physiol 115: 1401-1415, 2015.
– reference: 11) Angius L, Pageaux B, Hopker J, Marcora SM, Mauger AR. Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience 339: 363-375, 2016.
– reference: 10) Jeffery DT, Norton JA, Roy FD, Gorassini MA. Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Exp Brain Res 182: 281-287, 2007.
– reference: 5) Goodall S, Charlton K, Howatson G, Thomas K. Neuromuscular fatigability during repeated-sprint exercise in male athletes. Med Sci Sports Exerc 47: 528-536, 2015.
– reference: 16) Sasada S, Endoh T, Ishii T, Komiyama T. Polarity-dependent improvement of maximal-effort sprint cycling performance by direct current stimulation of the central nervous system. Neurosci Lett 657: 97-101, 2017.
– reference: 3) Newham DJ, McCarthy T, Turner J. Voluntary activation of human quadriceps during and after isokinetic exercise. J Appl Physiol 71: 2122-2126, 1991.
– reference: 7) Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, Jefferys JG. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol 557: 175-190, 2004.
– reference: 21) Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist 17: 37-53, 2011.
– reference: 28) Knight CA, Kamen G. Adaptations in muscular activation of the knee extensor muscles with strength training in young and older adults. J Electromyogr Kinesiol 11: 405-412, 2001.
– reference: 4) Bigland-Ritchie B, Johansson R, Lippold OC, Smith S, Woods JJ. Changes in motoneurone firing rates during sustained maximal voluntary contractions. J Physiol 340: 335-346, 1983.
– reference: 22) Miranda PC, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol 117: 1623-1629, 2006.
SSID ssib017172186
ssib023159839
ssib002484552
ssib058494479
ssib000936107
ssj0061700
ssib002223886
Score 2.3245327
SourceID jstage
SourceType Publisher
StartPage 239
SubjectTerms direct current stimulation
fatigue
sprint performance
stepping
Title 経頭蓋直流電気刺激による最大努力踏み台昇降ステッピングパフォーマンスの改善
URI https://www.jstage.jst.go.jp/article/jspfsm/71/2/71_239/_article/-char/ja
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 体力科学, 2022/04/01, Vol.71(2), pp.239-247
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1881-4751
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061700
  issn: 0039-906X
  databaseCode: KQ8
  dateStart: 19490101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1881-4751
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061700
  issn: 0039-906X
  databaseCode: DIK
  dateStart: 19500101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFA-lXryIouI3PTjH1E0yk8wcJ9ksVdFTC72tu9nsYcG22O3FU3cjWlqliPWLingQREUpaMGq0D8m7Lb9L3xvMtlNrYeqsIThvTcv835vknkzO3ljGJdjK2Z1qylMq2nHJq0JatZtp2EyD96GTUzgVcMF_Rs33Ykpem2aTY-M3irsWlpo18eju3_8ruRfvAo08Ct-JfsXnh0oBQKUwb9wBQ_D9VA-JqFHfEZ4QEJBZInIMgk5EQ7hPrKET3xKQlfJWCiDFF9RSkR4JAQ6J75UlApueggdlJS-KtjI1QVVSwRKhhFJicyqSyKlLoByuLvPCa9oPaATWRW8HVYHlqeaIQgva82-UAX4uXnB0QVBdcF3cuFSzrLyAtMsmevxg5wVHqgucgND1R6qKIwIl2QnyOVhOgmBVUYkh6Z5aDLelyHOcrCiqcADy5jGFSCHbotQgOGAmIYrHMqDmopqFEXswQIl7yIs6AvVKlEZyjNUi6C6aBPmNEZ5aBhV4AtElQdF_TJQlnnKxFIuD42XPDctKK732HZhmxA-oUqKK29z7AWgENUCMVSafCIdZW_mAWVI1o-geZLpzoK1DgKpOqzvD4BUMgERsjiCOsIUJXX6JMQP2aDJuWVSTycO1qNqdrCOfnvYxSEyS16loy07y7f6-0COfxfjQD4_15y_Pe5Z44Na-3Kj6yevmslVPatqq4sjqjkLP16stmAGdcSGcR8PdylfvV5cz3P3LYBAtMwLCRVtyiljgwmA5eGKyZAPkyMm-DCvLkTzglL83zuLBfG0A50YNkMty_KL1l3ZZxvEvy2YDeY7SVVwO3ncOKZnpWMys-aEMdKqnTRmdzYf7r35tPtkZWf9a3-zs7f-o7_xvLf0vb-9mHY-pt2ltLvSf7XYe_uut_yht7y--2017Wz3Vjf6Lx7svXyUdrfS5H6aJGmyliZf0u5GmjxOk6dp932a_EyT14q4lXY-99e2es_unTKmKuFkMGHq81nMlkOdtomZoFxmeV4NDXVczCsVxdRx6jRiMA2JeZ26tQaNag2nKezI9YTworjmRaJOeYM5p43RmdmZ-IwxxkWpSVlsRxFrUscFt9DI5rHbgPiaRdw6a4gMn-pcloSnenjXn_uPuueNo8Nn8IIx2r6zEF-EWUi7fkl1pF8EV_0F
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%B5%8C%E9%A0%AD%E8%93%8B%E7%9B%B4%E6%B5%81%E9%9B%BB%E6%B0%97%E5%88%BA%E6%BF%80%E3%81%AB%E3%82%88%E3%82%8B%E6%9C%80%E5%A4%A7%E5%8A%AA%E5%8A%9B%E8%B8%8F%E3%81%BF%E5%8F%B0%E6%98%87%E9%99%8D%E3%82%B9%E3%83%86%E3%83%83%E3%83%94%E3%83%B3%E3%82%B0%E3%83%91%E3%83%95%E3%82%A9%E3%83%BC%E3%83%9E%E3%83%B3%E3%82%B9%E3%81%AE%E6%94%B9%E5%96%84&rft.jtitle=%E4%BD%93%E5%8A%9B%E7%A7%91%E5%AD%A6&rft.au=%E6%B8%85%E6%B0%B4%2C+%E8%8F%9C%E5%A4%AE&rft.au=%E7%9F%B3%E4%BA%95%2C+%E6%99%BA%E4%B9%9F&rft.au=%E5%B0%8F%E6%9E%97%2C+%E5%84%AA%E9%87%8C&rft.au=%E7%AC%B9%E7%94%B0%2C+%E5%91%A8%E4%BD%9C&rft.date=2022-04-01&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA%E6%97%A5%E6%9C%AC%E4%BD%93%E5%8A%9B%E5%8C%BB%E5%AD%A6%E4%BC%9A&rft.issn=0039-906X&rft.eissn=1881-4751&rft.volume=71&rft.issue=2&rft.spage=239&rft.epage=247&rft_id=info:doi/10.7600%2Fjspfsm.71.239&rft.externalDocID=article_jspfsm_71_2_71_239_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-906X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-906X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-906X&client=summon