認知症を対象としたアミロイドPET における撮像技術と画像解析
Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), can provide essential and objective information for the early and differential diagnosis of dementia. Amyloid PET...
Saved in:
| Published in | Nippon Hōshasen Gijutsu Gakkai zasshi Vol. 73; no. 4; pp. 298 - 308 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | Japanese |
| Published |
Kyoto
公益社団法人 日本放射線技術学会
01.01.2017
Japan Science and Technology Agency |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0369-4305 1881-4883 |
| DOI | 10.6009/jjrt.2017_JSRT_73.4.298 |
Cover
| Abstract | Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), can provide essential and objective information for the early and differential diagnosis of dementia. Amyloid PET is especially useful to evaluate the amyloid-β pathological process as a biomarker of Alzheimer’s disease. This article reviews critical points about technical considerations on the scanning and image analysis methods for amyloid PET. Each amyloid PET agent has its own proper administration instructions and recommended uptake time, scan duration, and the method of image display and interpretation. In addition, we have introduced general scanning information, including subject positioning, reconstruction parameters, and quantitative and statistical image analysis. We believe that this article could make amyloid PET a more reliable tool in clinical study and practice. |
|---|---|
| AbstractList | Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), can provide essential and objective information for the early and differential diagnosis of dementia. Amyloid PET is especially useful to evaluate the amyloid-β pathological process as a biomarker of Alzheimer’s disease. This article reviews critical points about technical considerations on the scanning and image analysis methods for amyloid PET. Each amyloid PET agent has its own proper administration instructions and recommended uptake time, scan duration, and the method of image display and interpretation. In addition, we have introduced general scanning information, including subject positioning, reconstruction parameters, and quantitative and statistical image analysis. We believe that this article could make amyloid PET a more reliable tool in clinical study and practice. |
| Author | 山本, 泰司 赤松, 剛 千田, 道雄 大西, 章仁 相田, 一樹 井狩, 彌彦 |
| Author_xml | – sequence: 1 fullname: 山本, 泰司 organization: 神戸大学保健管理センター – sequence: 1 fullname: 相田, 一樹 organization: 先端医療センター分子イメージング研究グループ – sequence: 1 fullname: 赤松, 剛 organization: 先端医療センター放射線技術科 – sequence: 1 fullname: 大西, 章仁 organization: 神戸大学医学部附属病院放射線科 – sequence: 1 fullname: 千田, 道雄 organization: 先端医療センター分子イメージング研究グループ – sequence: 1 fullname: 井狩, 彌彦 organization: 先端医療センター分子イメージング研究グループ |
| BookMark | eNpNkM1LAkEYxocwyMy_oaDz2szOzH4cQ-wLoyg9D-N-lIup7eqhW7seIiMqC7wl9kFRVHQO-mcGdf-MRozo8r68D8_zPvCbBYlqreoAMI9gRoPQXPI8v5FRIdLZxu5Ogek4QzKqaUyBJDIMpBDDwAmQhFgzFYIhnQHpICiXoIxKCZIkKMYv56Pe46h7IqLO4OM7_uyL8FmEXRH2RHQnWj3RehPRg2idbucKCyJ8FWFbhFciOht23geti2H7OO5fy8zo5kue8dP98PZyDky7vBI46d-dAsWVXCG7puS3Vtezy3nFw0hTFWpzl6iYcqi6mCLNJbpDdWI5huOWLIIwohqyXUJ0jgjlum1beqlk6tjCJqQ2wimwOPlb92uHTSdoMK_W9KuykkkoFBKqaqp0bU5cXtDgew6r--UD7h8x7jfKVsVhY4gSHSPj8R-mVCTMP5-1z33mcfwDZpuMEw |
| ContentType | Journal Article |
| Copyright | 2017 公益社団法人 日本放射線技術学会 Copyright Japan Science and Technology Agency 2017 |
| Copyright_xml | – notice: 2017 公益社団法人 日本放射線技術学会 – notice: Copyright Japan Science and Technology Agency 2017 |
| DBID | 7QO 7SC 7U5 8FD FR3 JQ2 L7M L~C L~D P64 |
| DOI | 10.6009/jjrt.2017_JSRT_73.4.298 |
| DatabaseName | Biotechnology Research Abstracts Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Biotechnology Research Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1881-4883 |
| EndPage | 308 |
| ExternalDocumentID | article_jjrt_73_4_73_2017_JSRT_73_4_298_article_char_ja |
| GroupedDBID | .LE 2WC ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS KQ8 OK1 RJT 7QO 7SC 7U5 8FD FR3 JQ2 L7M L~C L~D P64 |
| ID | FETCH-LOGICAL-j3162-5daf4235a02f3516f47e574ce8efbc4131561df447a145a7ddc7bb973c3905d13 |
| ISSN | 0369-4305 |
| IngestDate | Sat Sep 20 14:21:23 EDT 2025 Wed Sep 03 06:30:06 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | Japanese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-j3162-5daf4235a02f3516f47e574ce8efbc4131561df447a145a7ddc7bb973c3905d13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.jstage.jst.go.jp/article/jjrt/73/4/73_2017_JSRT_73.4.298/_article/-char/ja |
| PQID | 2015045262 |
| PQPubID | 2048391 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2015045262 jstage_primary_article_jjrt_73_4_73_2017_JSRT_73_4_298_article_char_ja |
| PublicationCentury | 2000 |
| PublicationDate | 20170101 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: 20170101 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kyoto |
| PublicationPlace_xml | – name: Kyoto |
| PublicationTitle | Nippon Hōshasen Gijutsu Gakkai zasshi |
| PublicationTitleAlternate | 日放技学誌 |
| PublicationYear | 2017 |
| Publisher | 公益社団法人 日本放射線技術学会 Japan Science and Technology Agency |
| Publisher_xml | – name: 公益社団法人 日本放射線技術学会 – name: Japan Science and Technology Agency |
| References | 21) Schmidt ME, Chiao P, Klein G, et al. The influence of biological and technical factors on quantitative analysis of amyloid PET: Points to consider and recommendations for controlling variability in longitudinal data. Alzheimers Dement 2015; 11(9): 1050–1068. 54) Edison P, Hinz R, Ramlackhansingh A, et al. Can target-to-pons ratio be used as a reliable method for the analysis of [11C] PIB brain scans? Neuroimage 2012; 60(3): 1716–1723. 17) Rowe CC, Ackerman U, Browne W, et al. Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol 2008; 7(2): 129–135. 2) 厚生労働省.認知症施策推進総合戦略(新オレンジプラン)~認知症高齢者等にやさしい地域づくりに向けて~.2015 年1 月 15) Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004; 55(3): 306–319. 49) Bourgeat P, Villemagne VL, Dore V, et al. Comparison of MR-less PiB SUVR quantification methods. Neurobiol Aging 2015; 36(Suppl 1): S159–166. 43) Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002; 15(1): 273–289. 65) Kemppainen NM, Aalto S, Wilson IA, et al. Voxel-based analysis of PET amyloid ligand [11C]PIB uptake in Alzheimer disease. Neurology 2006; 67(9): 1575–1580. 9) Jack CR, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013; 12(2): 207–216. 35) Lopresti BJ, Klunk WE, Mathis CA, et al. Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 2005; 46 (12): 1959–1972. 63) Klunk WE, Koeppe RA, Price JC, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimer’s Dement 2015; 11(1): 1-15. e1–4. 16) Price JC, Klunk WE, Lopresti BJ, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 2005; 25(11): 1528–1547. 19) Wong DF, Rosenberg PB, Zhou Y, et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18). J Nucl Med 2010; 51(6): 913–920. 8) American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, DSM-5. American Psychiatric Association. 2013. 22) Hsiao IT, Huang CC, Hsieh CJ, et al. Correlation of early-phase 18F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies. Eur J Nucl Med Mol Imaging 2012; 39(4): 613–620. 59) Hatashita S, Yamasaki H, Suzuki Y, et al. [18F]Flutemetamol amyloid-beta PET imaging compared with [11C]PIB across the spectrum of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2014; 41(2): 290–300. 11) Bateman RJ, Xiong C, Benzinger TL, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012; 367(9): 795–804. 10) Jagust WJ, Bandy D, Chen K, et al. The Alzheimer’s Disease Neuroimaging Initiative positron emission tomography core. Alzheimers Dement 2010; 6(3): 221–229. 52) Vandenberghe R, Van Laere K, Ivanoiu A, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol 2010; 68(3): 319–329. 64) Seibyl J, Catafau AM, Barthel H, et al. Impact of training method on the robustness of the visual assessment of 18F-Florbetaben PET scans: Results from a Phase-3 study. J Nucl Med 2016; 57(6): 900–906. 36) Rinne JO, Brooks DJ, Rossor MN, et al. 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 2010; 9(4): 363–372. 40) Zwan MD, Ossenkoppele R, Tolboom N, et al. Comparison of simplified parametric methods for visual interpretation of 11C-Pittsburgh compound-B PET images. J Nucl Med 2014; 55(8): 1305–1307. 20) 日本核医学会.アミロイドイメージング剤を用いた脳PET 撮像の標準的プロトコール.http://www.jsnm.org/system/files/StandardProtocolforAmyloid20150223.pdf (Accessed 2016.11.08 33) Neuraceq full prescribing information. U.S. Food and Drug Administration website. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204677s000lbl.pdf (Accessed 2016.11.08 38) Su Y, Blazey TM, Owen CJ, et al. Quantitative amyloid imaging in autosomal dominant Alzheimer’s disease: Results from the DIAN study group. PLoS ONE 2016; 11 (3): e0152082. 29) ADNI 2 PET Technical Procedures Manual AV-45 (Florbetapir F 18) & FDG. http://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_PET_Tech_Manual_0142011.pdf (Accessed 2016.11.08 53) Barthel H, Gertz HJ, Dresel S, et al. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 2011; 10(5): 424–435. 58) Becker GA, Ichise M, Barthel H, et al. PET quantification of 18F-florbetaben binding to β-amyloid deposits in human brains. J Nucl Med 2013; 54(5): 723–731. 26) Ikari Y, Akamatsu G, Nishio T, et al. Phantom criteria for qualification of brain FDG and amyloid PET across different cameras. EJNMMI Phys 2016; 3(1): 23. 50) Akamatsu G, Ikari Y, Ohnishi A, et al. Automated PET-only quantification of amyloid deposition with adaptive template and empirically pre-defined ROI. Phys Med Biol 2016; 61 (15): 5768–5780. 55) Villemagne VL, Mulligan RS, Pejoska S, et al. Comparison of 11C-PiB and 18F-florbetaben for Aβ imaging in ageing and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2012; 39(6): 983–989. 24) Iwatsubo T. Japanese Alzheimer’s Disease Neuroimaging Initiative: present status and future. Alzheimers Dement 2010; 6(3): 297–299. 57) Su Y, D’Angelo GM, Vlassenko AG, et al. Quantitative analysis of PiB-PET with FreeSurfer ROIs. PLoS ONE 2013; 8(11): e73377. 32) Vizamyl full prescribing information. U.S. Food and Drug Administration website. http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/203137s000lbl.pdf (Accessed 2016.11.08 44) Hutton C, Declerck J, Mintun MA, et al. Quantification of 18F-florbetapir PET: comparison of two analysis methods. Eur J Nucl Med Mol Imaging 2015; 42(5): 725–732. 66) Mikhno A, Devanand D, Pelton G, et al. Voxel-based analysis of 11C-PIB scans for diagnosing Alzheimer’s disease. J Nucl Med 2008; 49(8): 1262–1269. 7) McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263–269. 41) Hosokawa C, Ishii K, Kimura Y, et al. Performance of 11C-Pittsburgh compound B PET binding potential images in the detection of amyloid deposits on equivocal static images. J Nucl Med 2015; 56(12): 1910–1915. 31) Amyvid full prescribing information. U.S. Food and Drug Administration website. http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/202008s000lbl.pdf (Accessed 2016.11.08 61) Tuszynski T, Rullmann M, Luthardt J, et al. Evaluation of software tools for automated identification of neuroanatomical structures in quantitative β-amyloid PET imaging to diagnose Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2016; 43(6): 1077–1087. 42) Evans AC, Janke AL, Collins DL, et al. Brain templates and atlases. Neuroimage 2012; 62(2): 911–922. 67) Ng S, Villemagne VL, Berlangieri S, et al. Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer’s disease. J Nucl Med 2007; 48(4): 547–552. 70) Lilja J, Thurfjell L, Sörensen J. Visualization and quantification of 3-dimensional stereotactic surface projections for 18F-flutemetamol PET using variable depth. J Nucl Med 2016; 57(7): 1078–1083. 23) Trembath L, Newell M, Devous MD. Technical considerations in brain amyloid PET imaging with 18F-Florbetapir. J Nucl Med Technol 2015; 43(3): 175–184. 12) 日本核医学会,日本認知症学会,日本神経学会編.アミロイドPET イメージング剤合成装置の適正使用ガイドライン.厚生労働省研究班「アミロイドイメージングを用いたアルツハイマー病発症リスク予測法の実用化に関する多施設臨床研究」.2015 年4 月 18) Nelissen N, Van Laere K, Thurfjell L, et al. Phase 1 study of the Pittsburgh compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J Nucl Med 2009; 50(8): 1251–1259. 34) Clark CM, Pontecorvo MJ, Beach TG, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol 2012; 11(8): 669––678. 48) Lundqvist R, Lilja J, Thomas BA, et al. Implementation and validation of an adaptive template registration method for 18F-flutemetamol imaging data. J Nucl Med 2013; 54 (8): 1472–1478. 60) Chen K, Roontiva A, Thiyyagura P, et al. Improved power for characterizing longitudinal amyloid-β PET changes and evaluating amyloid-modifying treatments with a cerebral white matter reference region. J Nucl Med 2015; 56(4): 560–566. 5) McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34(7): 939–944. 62) Thurfjell L, Lilja J, Lundqvist R, et al. Automated quantification of 18F-flutemetamol PET activity for categorizing scans as negative or positive for brain amyloid: concordance with visual image reads. J Nucl Med 2014; 55(10): 1623–1628. 25) Jagust WJ, Landau SM, Koeppe RA, et al. The Alzheimer’s disease neuroimaging initiative 2 PET core: 2015. Alzheimers Dement 2015; 11(7): 757–771. 45) Hsiao IT, Huang CC, Hsieh CJ, et al. Perfusion-like template and standardized normalization-based brain image analysis using 18F-florbetapir (AV-45/Amyvid) PET. Eur J Nucl Med Mol Imaging 2013; 40(6): 908–920. 27) 日本核医学会.18F-FDG とアミロイドイメージング剤を用いた脳PET 撮像のためのファントム試験手順書.http://www.jsnm.org/system/files/DementiaPhantomTest20151217.pdf (Accessed 2016.11.08 47) Zhou L, Salvado O, Dore V, et al. MR-less s |
| References_xml | – reference: 42) Evans AC, Janke AL, Collins DL, et al. Brain templates and atlases. Neuroimage 2012; 62(2): 911–922. – reference: 14) Mangialasche F, Solomon A, Winblad B, et al. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 2010; 9(7): 702–716. – reference: 70) Lilja J, Thurfjell L, Sörensen J. Visualization and quantification of 3-dimensional stereotactic surface projections for 18F-flutemetamol PET using variable depth. J Nucl Med 2016; 57(7): 1078–1083. – reference: 4) 日本神経学会監修.認知症疾患治療ガイドライン2010.東京:医学書院. – reference: 29) ADNI 2 PET Technical Procedures Manual AV-45 (Florbetapir F 18) & FDG. http://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_PET_Tech_Manual_0142011.pdf (Accessed 2016.11.08) – reference: 24) Iwatsubo T. Japanese Alzheimer’s Disease Neuroimaging Initiative: present status and future. Alzheimers Dement 2010; 6(3): 297–299. – reference: 12) 日本核医学会,日本認知症学会,日本神経学会編.アミロイドPET イメージング剤合成装置の適正使用ガイドライン.厚生労働省研究班「アミロイドイメージングを用いたアルツハイマー病発症リスク予測法の実用化に関する多施設臨床研究」.2015 年4 月. – reference: 22) Hsiao IT, Huang CC, Hsieh CJ, et al. Correlation of early-phase 18F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies. Eur J Nucl Med Mol Imaging 2012; 39(4): 613–620. – reference: 64) Seibyl J, Catafau AM, Barthel H, et al. Impact of training method on the robustness of the visual assessment of 18F-Florbetaben PET scans: Results from a Phase-3 study. J Nucl Med 2016; 57(6): 900–906. – reference: 71) Villemagne VL, Fodero-Tavoletti MT, Masters CL, et al. Tau imaging: early progress and future directions. Lancet Neurol 2015; 14(1): 114–124. – reference: 47) Zhou L, Salvado O, Dore V, et al. MR-less surface-based amyloid assessment based on 11C PiB PET. PLoS ONE 2014; 9(1): e84777. – reference: 65) Kemppainen NM, Aalto S, Wilson IA, et al. Voxel-based analysis of PET amyloid ligand [11C]PIB uptake in Alzheimer disease. Neurology 2006; 67(9): 1575–1580. – reference: 52) Vandenberghe R, Van Laere K, Ivanoiu A, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol 2010; 68(3): 319–329. – reference: 68) Ziolko SK, Weissfeld LA, Klunk WE, et al. Evaluation of voxel-based methods for the statistical analysis of PIB PET amyloid imaging studies in Alzheimer’s disease. Neuroimage 2006; 33(1): 94–102. – reference: 7) McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263–269. – reference: 41) Hosokawa C, Ishii K, Kimura Y, et al. Performance of 11C-Pittsburgh compound B PET binding potential images in the detection of amyloid deposits on equivocal static images. J Nucl Med 2015; 56(12): 1910–1915. – reference: 50) Akamatsu G, Ikari Y, Ohnishi A, et al. Automated PET-only quantification of amyloid deposition with adaptive template and empirically pre-defined ROI. Phys Med Biol 2016; 61 (15): 5768–5780. – reference: 6) American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, DSM-IV. American Psychiatric Association. 1994. – reference: 61) Tuszynski T, Rullmann M, Luthardt J, et al. Evaluation of software tools for automated identification of neuroanatomical structures in quantitative β-amyloid PET imaging to diagnose Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2016; 43(6): 1077–1087. – reference: 60) Chen K, Roontiva A, Thiyyagura P, et al. Improved power for characterizing longitudinal amyloid-β PET changes and evaluating amyloid-modifying treatments with a cerebral white matter reference region. J Nucl Med 2015; 56(4): 560–566. – reference: 26) Ikari Y, Akamatsu G, Nishio T, et al. Phantom criteria for qualification of brain FDG and amyloid PET across different cameras. EJNMMI Phys 2016; 3(1): 23. – reference: 39) Heurling K, Buckley C, Van Laere K, et al. Parametric imaging and quantitative analysis of the PET amyloid ligand [(18)F] flutemetamol. Neuroimage 2015; 121: 184–192. – reference: 49) Bourgeat P, Villemagne VL, Dore V, et al. Comparison of MR-less PiB SUVR quantification methods. Neurobiol Aging 2015; 36(Suppl 1): S159–166. – reference: 59) Hatashita S, Yamasaki H, Suzuki Y, et al. [18F]Flutemetamol amyloid-beta PET imaging compared with [11C]PIB across the spectrum of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2014; 41(2): 290–300. – reference: 9) Jack CR, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013; 12(2): 207–216. – reference: 23) Trembath L, Newell M, Devous MD. Technical considerations in brain amyloid PET imaging with 18F-Florbetapir. J Nucl Med Technol 2015; 43(3): 175–184. – reference: 45) Hsiao IT, Huang CC, Hsieh CJ, et al. Perfusion-like template and standardized normalization-based brain image analysis using 18F-florbetapir (AV-45/Amyvid) PET. Eur J Nucl Med Mol Imaging 2013; 40(6): 908–920. – reference: 10) Jagust WJ, Bandy D, Chen K, et al. The Alzheimer’s Disease Neuroimaging Initiative positron emission tomography core. Alzheimers Dement 2010; 6(3): 221–229. – reference: 37) Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016; 537(7618): 50–56. – reference: 38) Su Y, Blazey TM, Owen CJ, et al. Quantitative amyloid imaging in autosomal dominant Alzheimer’s disease: Results from the DIAN study group. PLoS ONE 2016; 11 (3): e0152082. – reference: 18) Nelissen N, Van Laere K, Thurfjell L, et al. Phase 1 study of the Pittsburgh compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J Nucl Med 2009; 50(8): 1251–1259. – reference: 31) Amyvid full prescribing information. U.S. Food and Drug Administration website. http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/202008s000lbl.pdf (Accessed 2016.11.08) – reference: 63) Klunk WE, Koeppe RA, Price JC, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimer’s Dement 2015; 11(1): 1-15. e1–4. – reference: 15) Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004; 55(3): 306–319. – reference: 16) Price JC, Klunk WE, Lopresti BJ, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 2005; 25(11): 1528–1547. – reference: 36) Rinne JO, Brooks DJ, Rossor MN, et al. 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 2010; 9(4): 363–372. – reference: 5) McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34(7): 939–944. – reference: 32) Vizamyl full prescribing information. U.S. Food and Drug Administration website. http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/203137s000lbl.pdf (Accessed 2016.11.08) – reference: 46) Edison P, Carter SF, Rinne JO, et al. Comparison of MRI based and PET template based approaches in the quantitative analysis of amyloid imaging with PIB-PET. Neuroimage 2013; 70: 423–433. – reference: 11) Bateman RJ, Xiong C, Benzinger TL, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012; 367(9): 795–804. – reference: 28) Akamatsu G, Ikari Y, Nishio T, et al. Optimization of image reconstruction conditions with phantoms for brain FDG and amyloid PET imaging. Ann Nucl Med 2016; 30(1): 18–28. – reference: 51) Rowe CC, Ellis KA, Rimajova M, et al. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging 2010; 31(8): 1275–1283. – reference: 44) Hutton C, Declerck J, Mintun MA, et al. Quantification of 18F-florbetapir PET: comparison of two analysis methods. Eur J Nucl Med Mol Imaging 2015; 42(5): 725–732. – reference: 53) Barthel H, Gertz HJ, Dresel S, et al. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 2011; 10(5): 424–435. – reference: 69) Minoshima S, Frey KA, Koeppe RA, et al. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 1995; 36(7): 1238–1248. – reference: 2) 厚生労働省.認知症施策推進総合戦略(新オレンジプラン)~認知症高齢者等にやさしい地域づくりに向けて~.2015 年1 月. – reference: 20) 日本核医学会.アミロイドイメージング剤を用いた脳PET 撮像の標準的プロトコール.http://www.jsnm.org/system/files/StandardProtocolforAmyloid20150223.pdf (Accessed 2016.11.08) – reference: 57) Su Y, D’Angelo GM, Vlassenko AG, et al. Quantitative analysis of PiB-PET with FreeSurfer ROIs. PLoS ONE 2013; 8(11): e73377. – reference: 48) Lundqvist R, Lilja J, Thomas BA, et al. Implementation and validation of an adaptive template registration method for 18F-flutemetamol imaging data. J Nucl Med 2013; 54 (8): 1472–1478. – reference: 1) 朝田 隆.都市部における認知症有病率と認知症の生活機能障害への対応.厚生労働科学研究費補助金認知症対策総合研究事業.2013 年3 月. – reference: 8) American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, DSM-5. American Psychiatric Association. 2013. – reference: 67) Ng S, Villemagne VL, Berlangieri S, et al. Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer’s disease. J Nucl Med 2007; 48(4): 547–552. – reference: 34) Clark CM, Pontecorvo MJ, Beach TG, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol 2012; 11(8): 669––678. – reference: 13) Herscovitch P. Amyloid imaging coverage with evidence development and the IDEAS study. J Nucl Med 2015; 56(5): 20N. – reference: 54) Edison P, Hinz R, Ramlackhansingh A, et al. Can target-to-pons ratio be used as a reliable method for the analysis of [11C] PIB brain scans? Neuroimage 2012; 60(3): 1716–1723. – reference: 35) Lopresti BJ, Klunk WE, Mathis CA, et al. Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 2005; 46 (12): 1959–1972. – reference: 19) Wong DF, Rosenberg PB, Zhou Y, et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18). J Nucl Med 2010; 51(6): 913–920. – reference: 25) Jagust WJ, Landau SM, Koeppe RA, et al. The Alzheimer’s disease neuroimaging initiative 2 PET core: 2015. Alzheimers Dement 2015; 11(7): 757–771. – reference: 55) Villemagne VL, Mulligan RS, Pejoska S, et al. Comparison of 11C-PiB and 18F-florbetaben for Aβ imaging in ageing and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2012; 39(6): 983–989. – reference: 17) Rowe CC, Ackerman U, Browne W, et al. Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol 2008; 7(2): 129–135. – reference: 33) Neuraceq full prescribing information. U.S. Food and Drug Administration website. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204677s000lbl.pdf (Accessed 2016.11.08) – reference: 43) Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002; 15(1): 273–289. – reference: 27) 日本核医学会.18F-FDG とアミロイドイメージング剤を用いた脳PET 撮像のためのファントム試験手順書.http://www.jsnm.org/system/files/DementiaPhantomTest20151217.pdf (Accessed 2016.11.08) – reference: 30) Mirra SS, Heyman A, McKeel D, et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 1991; 41(4): 479–486. – reference: 66) Mikhno A, Devanand D, Pelton G, et al. Voxel-based analysis of 11C-PIB scans for diagnosing Alzheimer’s disease. J Nucl Med 2008; 49(8): 1262–1269. – reference: 3) Akatsu H, Takahashi M, Matsukawa N, et al. Subtype analysis of neuropathologically diagnosed patients in a Japanese geriatric hospital. J Neurol Sci 2002; 196(1–2): 63–69. – reference: 21) Schmidt ME, Chiao P, Klein G, et al. The influence of biological and technical factors on quantitative analysis of amyloid PET: Points to consider and recommendations for controlling variability in longitudinal data. Alzheimers Dement 2015; 11(9): 1050–1068. – reference: 58) Becker GA, Ichise M, Barthel H, et al. PET quantification of 18F-florbetaben binding to β-amyloid deposits in human brains. J Nucl Med 2013; 54(5): 723–731. – reference: 56) Joshi AD, Pontecorvo MJ, Clark CM, et al. Performance characteristics of amyloid PET with florbetapir F 18 in patients with alzheimer’s disease and cognitively normal subjects. J Nucl Med 2012; 53(3): 378–384. – reference: 62) Thurfjell L, Lilja J, Lundqvist R, et al. Automated quantification of 18F-flutemetamol PET activity for categorizing scans as negative or positive for brain amyloid: concordance with visual image reads. J Nucl Med 2014; 55(10): 1623–1628. – reference: 40) Zwan MD, Ossenkoppele R, Tolboom N, et al. Comparison of simplified parametric methods for visual interpretation of 11C-Pittsburgh compound-B PET images. J Nucl Med 2014; 55(8): 1305–1307. |
| SSID | ssib000936904 ssib002223925 ssj0055458 ssib005879721 ssib031740840 ssib000959831 ssib000753122 ssib008799587 ssib002484555 ssib023160873 |
| Score | 2.1162398 |
| Snippet | Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron... |
| SourceID | proquest jstage |
| SourceType | Aggregation Database Publisher |
| StartPage | 298 |
| SubjectTerms | amyloid PET Biomarkers Brain Computation Computed tomography Dementia Dementia disorders Differential diagnosis Image analysis Image processing Image reconstruction Imaging techniques Magnetic resonance imaging Medical imaging Neuroimaging NMR Nuclear magnetic resonance Photon emission Positron emission Positron emission tomography Quantitative analysis Scanning Single photon emission computed tomography statistical image analysis Tomography |
| Title | 認知症を対象としたアミロイドPET における撮像技術と画像解析 |
| URI | https://www.jstage.jst.go.jp/article/jjrt/73/4/73_2017_JSRT_73.4.298/_article/-char/ja https://www.proquest.com/docview/2015045262 |
| Volume | 73 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | 日本放射線技術学会雑誌, 2017, Vol.73(4), pp.298-308 |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1881-4883 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055458 issn: 0369-4305 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1Na9VAMJQK4kX8xGqVHtxTSU2yu9nNMXnNo1QqfrxCb-HlS3iHKrW9ePK9dxArolahN0v9QFFUPAv-mdD2_QxndpPX1FbQUghhM5mZzMwmmZlkd9YwrgqWiNSNXTNncWqyFB6ptkgSM815ZkmW0bbA-c5zN9yZeTa7wBdGRju1UUsry_FU8vDAeSWH6VWAQb_iLNn_6NkhUwBAG_oX9tDDsP-nPiahJL5P5DQJBfGaxOeqIQhk-CEl0iGeQ0JO_CYJQkQObOLb6hQ0ZNnwRNVollS-oxq0glDiT1enWAmR3s2wNVnxCsqG9Ctedkkg4ZSLcvghioKUTYQAprSUAoBMazKBAowEQQ0ZcATxqeITEr3uZxVQK6BQmkOjQfyGajClMCeBRSRDngGw9Q-6LkfdfJeEQNJQOB7xAiW_Nu7wM7LiZ-M2vBTcn3gQULwQCgyGlrv4AjkFQ50sjc8QhDK4qG_g7eLDEVcWBv7TqIHCB7YoUl0MwAGToIAgUlOjCewF31L8A6JXqKm-59jij-85iitX1lJCYr8JZKvNBhBtb9DM44qlD9vkkVu75oeo65lYGU6HDNpPSmmb8O6ndUeq16QpXxis7hX1QuNlgEVVIY99vhsibyx92-ks4RBnW0Szd263IkGn2NSQfk9h9PKxi5AC8CKGuzolQIAyqvBwGmPUgVzqmAMRAC7zcv2WrIfO1K6XssSVLut1izzuydofc4yrPWdPaUDG63O8pfDqpQclVl7cTYUgrXIBNvSNEMYzS9Vd0lEkxx_aepyFNr4em4pGuvYXE0EM3YGM8u7-sFLFyq1TxskyyZ3wtUlOGyOd9hnj-Fw5jOesMT_4_Gxn48PO-uOit7b1_dfgx2bR_VR014vuRtF7W_Q3iv7Xove-6D-Bl8xE0f1SdFeL7sui93R77dtW__n26qPB5iug2Xn9Ew4HH99tv3lxzphvhq3GjFmu72J2QHvH5Gk7h2yOty0np9x2cyYyDs4jk1keJxBd25DcpTljom0zDk4jTUQce4Im1LN4atPzxujivcXsgjHRFrkb27HMWAYpEksk5lXUiu1UcCcW1pjR1LaJ7usiPtEh754xY7yybVR6ggdIxnFpCte5eFTXuWSc2H05jBujy0sr2WVIf5bjK-q-_Q3-DxHD |
| linkProvider | Colorado Alliance of Research Libraries |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%AA%8D%E7%9F%A5%E7%97%87%E3%82%92%E5%AF%BE%E8%B1%A1%E3%81%A8%E3%81%97%E3%81%9F%E3%82%A2%E3%83%9F%E3%83%AD%E3%82%A4%E3%83%89PET+%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E6%92%AE%E5%83%8F%E6%8A%80%E8%A1%93%E3%81%A8%E7%94%BB%E5%83%8F%E8%A7%A3%E6%9E%90&rft.jtitle=%E6%97%A5%E6%9C%AC%E6%94%BE%E5%B0%84%E7%B7%9A%E6%8A%80%E8%A1%93%E5%AD%A6%E4%BC%9A%E9%9B%91%E8%AA%8C&rft.au=%E5%B1%B1%E6%9C%AC%2C+%E6%B3%B0%E5%8F%B8&rft.au=%E7%9B%B8%E7%94%B0%2C+%E4%B8%80%E6%A8%B9&rft.au=%E8%B5%A4%E6%9D%BE%2C+%E5%89%9B&rft.au=%E5%A4%A7%E8%A5%BF%2C+%E7%AB%A0%E4%BB%81&rft.date=2017-01-01&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E6%94%BE%E5%B0%84%E7%B7%9A%E6%8A%80%E8%A1%93%E5%AD%A6%E4%BC%9A&rft.issn=0369-4305&rft.eissn=1881-4883&rft.volume=73&rft.issue=4&rft.spage=298&rft.epage=308&rft_id=info:doi/10.6009%2Fjjrt.2017_JSRT_73.4.298&rft.externalDocID=article_jjrt_73_4_73_2017_JSRT_73_4_298_article_char_ja |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0369-4305&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0369-4305&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0369-4305&client=summon |