Computing Longest (Common) Lyndon Subsequences
Given a string T with length n whose characters are drawn from an ordered alphabet of size σ $$\sigma $$ , its longest Lyndon subsequence is a longest subsequence of T that is a Lyndon word. We propose algorithms for finding such a subsequence in O(n3) $$\mathcal {O}(n^3)$$ time with O(n) $$\mathcal...
        Saved in:
      
    
          | Published in | Combinatorial Algorithms Vol. 13270; pp. 128 - 142 | 
|---|---|
| Main Authors | , , , , | 
| Format | Book Chapter | 
| Language | English | 
| Published | 
        Switzerland
          Springer International Publishing AG
    
        2022
     Springer International Publishing  | 
| Series | Lecture Notes in Computer Science | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 3031066774 9783031066771  | 
| ISSN | 0302-9743 1611-3349  | 
| DOI | 10.1007/978-3-031-06678-8_10 | 
Cover
| Summary: | Given a string T with length n whose characters are drawn from an ordered alphabet of size σ $$\sigma $$ , its longest Lyndon subsequence is a longest subsequence of T that is a Lyndon word. We propose algorithms for finding such a subsequence in O(n3) $$\mathcal {O}(n^3)$$ time with O(n) $$\mathcal {O}(n)$$ space, or online in O(n3σ) $$\mathcal {O}(n^3 \sigma )$$ space and time. Our first result can be extended to find the longest common Lyndon subsequence of two strings of length n in O(n4σ) $$\mathcal {O}(n^4 \sigma )$$ time using O(n3) $$\mathcal {O}(n^3)$$ space. | 
|---|---|
| Bibliography: | Original Abstract: Given a string T with length n whose characters are drawn from an ordered alphabet of size σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, its longest Lyndon subsequence is a longest subsequence of T that is a Lyndon word. We propose algorithms for finding such a subsequence in O(n3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(n^3)$$\end{document} time with O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(n)$$\end{document} space, or online in O(n3σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(n^3 \sigma )$$\end{document} space and time. Our first result can be extended to find the longest common Lyndon subsequence of two strings of length n in O(n4σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(n^4 \sigma )$$\end{document} time using O(n3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(n^3)$$\end{document} space. | 
| ISBN: | 3031066774 9783031066771  | 
| ISSN: | 0302-9743 1611-3349  | 
| DOI: | 10.1007/978-3-031-06678-8_10 |