RIM1 and RIM2 redundantly determine Ca2+ channel density and readily releasable pool size at a large hindbrain synapse

The localization and density of voltage-gated Ca(2+) channels at active zones are essential for the amount and kinetics of transmitter release at synapses. RIM proteins are scaffolding proteins at the active zone that bind to several other presynaptic proteins, including voltage-gated Ca(2+) channel...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 113; no. 1; pp. 255 - 263
Main Authors Han, Yunyun, Babai, Norbert, Kaeser, Pascal, Südhof, Thomas C, Schneggenburger, Ralf
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.01.2015
Subjects
Online AccessGet full text
ISSN1522-1598
0022-3077
1522-1598
DOI10.1152/jn.00488.2014

Cover

Abstract The localization and density of voltage-gated Ca(2+) channels at active zones are essential for the amount and kinetics of transmitter release at synapses. RIM proteins are scaffolding proteins at the active zone that bind to several other presynaptic proteins, including voltage-gated Ca(2+) channel α-subunits. The long isoforms of RIM proteins, which contain NH2-terminal Rab3- and Munc13-interacting domains, as well as a central PDZ domain and two COOH-terminal C2 domains, are encoded by two genes, Rim1 and Rim2. Here, we used the ideal accessibility of the large calyx of Held synapse for direct presynaptic electrophysiology to investigate whether the two Rim genes have redundant, or separate, functions in determining the presynaptic Ca(2+) channel density, and the size of a readily releasable vesicle pool (RRP). Quantitative PCR showed that cochlear nucleus neurons, which include calyx of Held generating neurons, express both RIM1 and RIM2. Conditional genetic inactivation of RIM2 at the calyx of Held led to a subtle reduction in presynaptic Ca(2+) current density, whereas deletion of RIM1 was ineffective. The release efficiency of brief presynaptic Ca(2+) "tail" currents and the RRP were unaffected in conditional single RIM1 and RIM2 knockout (KO) mice, whereas both parameters were strongly reduced in RIM1/2 double KO mice. Thus, despite a somewhat more decisive role for RIM2 in determining presynaptic Ca(2+) channel density, RIM1 and RIM2 can overall replace each other's presynaptic functions at a large relay synapse in the hindbrain, the calyx of Held.
AbstractList The localization and density of voltage-gated Ca 2+ channels at active zones are essential for the amount and kinetics of transmitter release at synapses. RIM proteins are scaffolding proteins at the active zone that bind to several other presynaptic proteins, including voltage-gated Ca 2+ channel α-subunits. The long isoforms of RIM proteins, which contain NH 2 -terminal Rab3- and Munc13-interacting domains, as well as a central PDZ domain and two COOH-terminal C2 domains, are encoded by two genes, Rim1 and Rim2 . Here, we used the ideal accessibility of the large calyx of Held synapse for direct presynaptic electrophysiology to investigate whether the two Rim genes have redundant, or separate, functions in determining the presynaptic Ca 2+ channel density, and the size of a readily releasable vesicle pool (RRP). Quantitative PCR showed that cochlear nucleus neurons, which include calyx of Held generating neurons, express both RIM1 and RIM2. Conditional genetic inactivation of RIM2 at the calyx of Held led to a subtle reduction in presynaptic Ca 2+ current density, whereas deletion of RIM1 was ineffective. The release efficiency of brief presynaptic Ca 2+ “tail” currents and the RRP were unaffected in conditional single RIM1 and RIM2 knockout (KO) mice, whereas both parameters were strongly reduced in RIM1/2 double KO mice. Thus, despite a somewhat more decisive role for RIM2 in determining presynaptic Ca 2+ channel density, RIM1 and RIM2 can overall replace each other's presynaptic functions at a large relay synapse in the hindbrain, the calyx of Held.
The localization and density of voltage-gated Ca(2+) channels at active zones are essential for the amount and kinetics of transmitter release at synapses. RIM proteins are scaffolding proteins at the active zone that bind to several other presynaptic proteins, including voltage-gated Ca(2+) channel α-subunits. The long isoforms of RIM proteins, which contain NH2-terminal Rab3- and Munc13-interacting domains, as well as a central PDZ domain and two COOH-terminal C2 domains, are encoded by two genes, Rim1 and Rim2. Here, we used the ideal accessibility of the large calyx of Held synapse for direct presynaptic electrophysiology to investigate whether the two Rim genes have redundant, or separate, functions in determining the presynaptic Ca(2+) channel density, and the size of a readily releasable vesicle pool (RRP). Quantitative PCR showed that cochlear nucleus neurons, which include calyx of Held generating neurons, express both RIM1 and RIM2. Conditional genetic inactivation of RIM2 at the calyx of Held led to a subtle reduction in presynaptic Ca(2+) current density, whereas deletion of RIM1 was ineffective. The release efficiency of brief presynaptic Ca(2+) "tail" currents and the RRP were unaffected in conditional single RIM1 and RIM2 knockout (KO) mice, whereas both parameters were strongly reduced in RIM1/2 double KO mice. Thus, despite a somewhat more decisive role for RIM2 in determining presynaptic Ca(2+) channel density, RIM1 and RIM2 can overall replace each other's presynaptic functions at a large relay synapse in the hindbrain, the calyx of Held.
The localization and density of voltage-gated Ca(2+) channels at active zones are essential for the amount and kinetics of transmitter release at synapses. RIM proteins are scaffolding proteins at the active zone that bind to several other presynaptic proteins, including voltage-gated Ca(2+) channel α-subunits. The long isoforms of RIM proteins, which contain NH2-terminal Rab3- and Munc13-interacting domains, as well as a central PDZ domain and two COOH-terminal C2 domains, are encoded by two genes, Rim1 and Rim2. Here, we used the ideal accessibility of the large calyx of Held synapse for direct presynaptic electrophysiology to investigate whether the two Rim genes have redundant, or separate, functions in determining the presynaptic Ca(2+) channel density, and the size of a readily releasable vesicle pool (RRP). Quantitative PCR showed that cochlear nucleus neurons, which include calyx of Held generating neurons, express both RIM1 and RIM2. Conditional genetic inactivation of RIM2 at the calyx of Held led to a subtle reduction in presynaptic Ca(2+) current density, whereas deletion of RIM1 was ineffective. The release efficiency of brief presynaptic Ca(2+) "tail" currents and the RRP were unaffected in conditional single RIM1 and RIM2 knockout (KO) mice, whereas both parameters were strongly reduced in RIM1/2 double KO mice. Thus, despite a somewhat more decisive role for RIM2 in determining presynaptic Ca(2+) channel density, RIM1 and RIM2 can overall replace each other's presynaptic functions at a large relay synapse in the hindbrain, the calyx of Held.The localization and density of voltage-gated Ca(2+) channels at active zones are essential for the amount and kinetics of transmitter release at synapses. RIM proteins are scaffolding proteins at the active zone that bind to several other presynaptic proteins, including voltage-gated Ca(2+) channel α-subunits. The long isoforms of RIM proteins, which contain NH2-terminal Rab3- and Munc13-interacting domains, as well as a central PDZ domain and two COOH-terminal C2 domains, are encoded by two genes, Rim1 and Rim2. Here, we used the ideal accessibility of the large calyx of Held synapse for direct presynaptic electrophysiology to investigate whether the two Rim genes have redundant, or separate, functions in determining the presynaptic Ca(2+) channel density, and the size of a readily releasable vesicle pool (RRP). Quantitative PCR showed that cochlear nucleus neurons, which include calyx of Held generating neurons, express both RIM1 and RIM2. Conditional genetic inactivation of RIM2 at the calyx of Held led to a subtle reduction in presynaptic Ca(2+) current density, whereas deletion of RIM1 was ineffective. The release efficiency of brief presynaptic Ca(2+) "tail" currents and the RRP were unaffected in conditional single RIM1 and RIM2 knockout (KO) mice, whereas both parameters were strongly reduced in RIM1/2 double KO mice. Thus, despite a somewhat more decisive role for RIM2 in determining presynaptic Ca(2+) channel density, RIM1 and RIM2 can overall replace each other's presynaptic functions at a large relay synapse in the hindbrain, the calyx of Held.
Author Kaeser, Pascal
Schneggenburger, Ralf
Han, Yunyun
Südhof, Thomas C
Babai, Norbert
Author_xml – sequence: 1
  givenname: Yunyun
  surname: Han
  fullname: Han, Yunyun
  organization: Laboratory of Synaptic Mechanisms, Brain-Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; and
– sequence: 2
  givenname: Norbert
  surname: Babai
  fullname: Babai, Norbert
  organization: Laboratory of Synaptic Mechanisms, Brain-Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; and
– sequence: 3
  givenname: Pascal
  surname: Kaeser
  fullname: Kaeser, Pascal
  organization: Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California
– sequence: 4
  givenname: Thomas C
  surname: Südhof
  fullname: Südhof, Thomas C
  organization: Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California
– sequence: 5
  givenname: Ralf
  surname: Schneggenburger
  fullname: Schneggenburger, Ralf
  email: ralf.schneggenburger@epfl.ch
  organization: Laboratory of Synaptic Mechanisms, Brain-Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; and ralf.schneggenburger@epfl.ch
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25343783$$D View this record in MEDLINE/PubMed
BookMark eNpVUF1rGzEQFCWhcdw-5jXoMRDsrKTTfbwEgknagEsgpM_H6rQXy8g6RzoH3F8f0bohgYUdZmZnYU7ZURgCMXYmYC6EllfrMAco6nouQRRf2CRzciZ0Ux99wCfsNKU1AFQa5Fd2IrUqVFWrCXt9vP8lOAbLM5A8kt0Fi2H0e25ppLhxgfgC5SXvVhgC-UyH5Mb935tIaF22RvKECY0nvh0Gz5P7QxxHjtxjfCa-csGaiC7wtA-4TfSNHffoE30_7Cn7fXf7tPg5Wz78uF_cLGdrBWKcoSo722MFvW6AyIAqulKbrEFpaiNkVdmyK3trewBd9k1TG0QtTR7RlKSm7Ppf7nZnNmQ7CmNE326j22DctwO69rMS3Kp9Hl7bQtW51SoHXBwC4vCyozS2G5c68h4DDbvUirIQta4agGw9__jr_cn_stUbdcyEQg
ContentType Journal Article
Copyright Copyright © 2015 the American Physiological Society.
Copyright © 2015 the American Physiological Society 2015 American Physiological Society
Copyright_xml – notice: Copyright © 2015 the American Physiological Society.
– notice: Copyright © 2015 the American Physiological Society 2015 American Physiological Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1152/jn.00488.2014
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 263
ExternalDocumentID PMC4380487
25343783
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: K01 DA029044
GroupedDBID ---
-DZ
-~X
.55
18M
29L
2WC
39C
4.4
53G
5GY
5VS
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADIYS
AENEX
AFFNX
AFOSN
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMOBN
F5P
FRP
GX1
H13
H~9
ITBOX
KQ8
L7B
NPM
OK1
P2P
RAP
RHF
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
VXZ
W8F
WH7
WOQ
WOW
X7M
XSW
YBH
YQT
YSK
7X8
ADHGD
AETEA
5PM
ID FETCH-LOGICAL-j301t-a36cdfa70f590eeb034c65b30106b8b1277d6c6fddf0056f998baa52b52b196e3
ISSN 1522-1598
0022-3077
IngestDate Thu Aug 21 18:45:52 EDT 2025
Thu Sep 04 20:14:53 EDT 2025
Wed Feb 19 01:56:15 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords presynaptic proteins
auditory brainstem
protein isoforms
protein domains
calyx of Held
active zone
Language English
License Copyright © 2015 the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j301t-a36cdfa70f590eeb034c65b30106b8b1277d6c6fddf0056f998baa52b52b196e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1152/jn.00488.2014
PMID 25343783
PQID 1641857900
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4380487
proquest_miscellaneous_1641857900
pubmed_primary_25343783
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2015
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References 9539117 - Neuron. 1998 Mar;20(3):389-99
22753485 - Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11830-5
10212483 - Philos Trans R Soc Lond B Biol Sci. 1999 Feb 28;354(1381):347-55
11160425 - J Neurosci. 2001 Jan 15;21(2):444-61
15843616 - J Neurosci. 2005 Apr 20;25(16):4131-40
17977745 - Mol Cell Neurosci. 2008 Jan;37(1):153-69
18799741 - Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14680-5
12904466 - J Neurosci. 2003 Aug 6;23(18):7059-68
17496890 - Nat Neurosci. 2007 Jun;10(6):691-701
22794257 - Neuron. 2012 Jul 12;75(1):11-25
12787867 - Brain Res Bull. 2003 Jun 15;60(5-6):457-74
20231872 - PLoS Biol. 2010 Mar;8(3):e1000325
11559854 - Nat Neurosci. 2001 Oct;4(10):997-1005
12620390 - Genomics. 2003 Feb;81(2):126-37
19741118 - J Neurosci. 2009 Sep 9;29(36):11123-33
11343654 - Neuron. 2001 Apr;30(1):183-96
11588162 - J Neurosci. 2001 Oct 15;21(20):7889-900
17124501 - EMBO J. 2006 Dec 13;25(24):5852-63
9252191 - Nature. 1997 Aug 7;388(6642):593-8
24995587 - Eur J Neurosci. 2014 Sep;40(6):2867-77
16052212 - EMBO J. 2005 Aug 17;24(16):2839-50
12495627 - Neuron. 2002 Dec 19;36(6):1127-43
21262468 - Neuron. 2011 Jan 27;69(2):304-16
11797009 - Nature. 2002 Jan 17;415(6869):321-6
11683999 - Neuron. 2001 Oct 25;32(2):301-13
10686605 - Genesis. 2000 Feb;26(2):123-6
23999086 - Nat Commun. 2013;4:2392
1359647 - Science. 1992 Nov 27;258(5087):1498-501
20452978 - J Biol Chem. 2010 Jul 9;285(28):21750-67
15207234 - Neuron. 2004 Jun 24;42(6):889-96
11797010 - Nature. 2002 Jan 17;415(6869):327-30
21262469 - Neuron. 2011 Jan 27;69(2):317-31
21241895 - Cell. 2011 Jan 21;144(2):282-95
23070699 - J Physiol. 2013 Jan 1;591(Pt 1):219-39
16865347 - Cell Tissue Res. 2006 Nov;326(2):379-91
19074017 - J Neurosci. 2008 Dec 10;28(50):13435-47
20470891 - Mol Cell Neurosci. 2010 Aug;44(4):374-85
References_xml – reference: 15843616 - J Neurosci. 2005 Apr 20;25(16):4131-40
– reference: 11588162 - J Neurosci. 2001 Oct 15;21(20):7889-900
– reference: 9252191 - Nature. 1997 Aug 7;388(6642):593-8
– reference: 16865347 - Cell Tissue Res. 2006 Nov;326(2):379-91
– reference: 11797009 - Nature. 2002 Jan 17;415(6869):321-6
– reference: 10686605 - Genesis. 2000 Feb;26(2):123-6
– reference: 11160425 - J Neurosci. 2001 Jan 15;21(2):444-61
– reference: 11559854 - Nat Neurosci. 2001 Oct;4(10):997-1005
– reference: 11797010 - Nature. 2002 Jan 17;415(6869):327-30
– reference: 15207234 - Neuron. 2004 Jun 24;42(6):889-96
– reference: 10212483 - Philos Trans R Soc Lond B Biol Sci. 1999 Feb 28;354(1381):347-55
– reference: 11683999 - Neuron. 2001 Oct 25;32(2):301-13
– reference: 19074017 - J Neurosci. 2008 Dec 10;28(50):13435-47
– reference: 21262469 - Neuron. 2011 Jan 27;69(2):317-31
– reference: 20452978 - J Biol Chem. 2010 Jul 9;285(28):21750-67
– reference: 12495627 - Neuron. 2002 Dec 19;36(6):1127-43
– reference: 11343654 - Neuron. 2001 Apr;30(1):183-96
– reference: 12787867 - Brain Res Bull. 2003 Jun 15;60(5-6):457-74
– reference: 21262468 - Neuron. 2011 Jan 27;69(2):304-16
– reference: 22794257 - Neuron. 2012 Jul 12;75(1):11-25
– reference: 17977745 - Mol Cell Neurosci. 2008 Jan;37(1):153-69
– reference: 24995587 - Eur J Neurosci. 2014 Sep;40(6):2867-77
– reference: 1359647 - Science. 1992 Nov 27;258(5087):1498-501
– reference: 12904466 - J Neurosci. 2003 Aug 6;23(18):7059-68
– reference: 18799741 - Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14680-5
– reference: 23999086 - Nat Commun. 2013;4:2392
– reference: 20470891 - Mol Cell Neurosci. 2010 Aug;44(4):374-85
– reference: 21241895 - Cell. 2011 Jan 21;144(2):282-95
– reference: 17496890 - Nat Neurosci. 2007 Jun;10(6):691-701
– reference: 9539117 - Neuron. 1998 Mar;20(3):389-99
– reference: 23070699 - J Physiol. 2013 Jan 1;591(Pt 1):219-39
– reference: 12620390 - Genomics. 2003 Feb;81(2):126-37
– reference: 16052212 - EMBO J. 2005 Aug 17;24(16):2839-50
– reference: 20231872 - PLoS Biol. 2010 Mar;8(3):e1000325
– reference: 22753485 - Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11830-5
– reference: 19741118 - J Neurosci. 2009 Sep 9;29(36):11123-33
– reference: 17124501 - EMBO J. 2006 Dec 13;25(24):5852-63
SSID ssj0007502
Score 2.3094203
Snippet The localization and density of voltage-gated Ca(2+) channels at active zones are essential for the amount and kinetics of transmitter release at synapses. RIM...
The localization and density of voltage-gated Ca 2+ channels at active zones are essential for the amount and kinetics of transmitter release at synapses. RIM...
SourceID pubmedcentral
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 255
SubjectTerms Animals
Calcium - metabolism
Calcium Channels - metabolism
Cellular and Molecular Properties of Neurons
Cochlear Nucleus - drug effects
Cochlear Nucleus - physiology
Glutamic Acid - metabolism
GTP-Binding Proteins - genetics
GTP-Binding Proteins - metabolism
Mice, Knockout
Patch-Clamp Techniques
Presynaptic Terminals - drug effects
Presynaptic Terminals - physiology
rab3 GTP-Binding Proteins - genetics
rab3 GTP-Binding Proteins - metabolism
Synapses - drug effects
Synapses - physiology
Synaptic Vesicles - drug effects
Synaptic Vesicles - physiology
Tissue Culture Techniques
Title RIM1 and RIM2 redundantly determine Ca2+ channel density and readily releasable pool size at a large hindbrain synapse
URI https://www.ncbi.nlm.nih.gov/pubmed/25343783
https://www.proquest.com/docview/1641857900
https://pubmed.ncbi.nlm.nih.gov/PMC4380487
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFMcalMJCRgJcoJXWcSx_XCtQhdSqwSeOpsmNH3dSlVZMidT-S38Q5jptL2QNMqqzKcZrW5-vx7TvfIeQ9DGlaBzJ0B1x5Lh-k2o0ZFFpx6ad4EBNhcPLkLBxf8K-XwWWn87vBWtoUspfc3hlXch-rQh3YFaNk_8Oy1YdCBbwH-0IJFobyn2z8_XTSLyMMTyfMWWuMCIOeWmwdZVku2hkJ9oENTYBvphdwITMsDEMrRwI9NMa8KSI3MVSYccvJr241BjkKZ4E8cWcO63aJqSRQ30Cs8jZ7qJ7RGm1Ms1XS2qsfl3usPzfZdlNBcShkmQj7bLlGbnfl-IXOSxRNRZ6Iiv_xA0_0hyM1X6Y1r8kZ9Zq7Fv1gb9eiOo6a7r6UgaRlqjYdNgYbeDbTi7Y-GupgFha3nHgZ0dpCq3XJpQywHd1Z6U7_HjgCFKK9znrGpSHljzfbgd1XNwZFLPC5H5XJd_aUuqeTEer3wxLwAXnIIpjLIUngW61eD7OzWr0eftRO8zVgn1pPRoVq-5i7Fj77_N3GhOj8CXls7U5PSlgeko7OnpKjk0wUy5st_UirPt8ekV-IVAqYo4hU2kAqrZBKAakOtTilFqfmHotTWuOUIk4p4pSKggpqcEornFKL02fk4svn89HYtRk_3GsYaApX-GGiUhF5aTDwtJaez5MwkD5uXMhY9lkUqTAJU6VS1LAFXxJLIQIm4QVDifafk4NsmemXhErB0kEoOI9RFNALBSxUeCwkV36ahEp1ybtdx87Ao-Ixmcj0cpPP-iEKOkUDz-uSF2VHz1al9MtsZ5YuiVomqBqgWnv7SnY1N6rtFhqv7n3na_Ko_icdk4NivdFvYEZcyLcGZn8AMpG7YA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RIM1+and+RIM2+redundantly+determine+Ca2%2B+channel+density+and+readily+releasable+pool+size+at+a+large+hindbrain+synapse&rft.jtitle=Journal+of+neurophysiology&rft.au=Han%2C+Yunyun&rft.au=Babai%2C+Norbert&rft.au=Kaeser%2C+Pascal&rft.au=S%C3%BCdhof%2C+Thomas+C.&rft.date=2015-01-01&rft.pub=American+Physiological+Society&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=113&rft.issue=1&rft.spage=255&rft.epage=263&rft_id=info:doi/10.1152%2Fjn.00488.2014&rft_id=info%3Apmid%2F25343783&rft.externalDocID=PMC4380487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-1598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-1598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-1598&client=summon