Template‐Assisted Synthesis of Metallic 1T′‐Sn0.3W0.7S2 Nanosheets for Hydrogen Evolution Reaction

Crystal phase control still remains a challenge for the precise synthesis of 2D layered metal dichalcogenide (LMD) materials. The T′ phase structure has profound influences on enhancing electrical conductivity, increasing active sites, and improving intrinsic catalytic activity, which are urgently n...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 5
Main Authors Shao, Gonglei, Xue, Xiong‐Xiong, Wu, Binbin, Lin, Yung‐Chang, Ouzounian, Miray, Hu, Travis Shihao, Xu, Yeqing, Liu, Xiao, Li, Shisheng, Suenaga, Kazu, Feng, Yexin, Liu, Song
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2020
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.201906069

Cover

Abstract Crystal phase control still remains a challenge for the precise synthesis of 2D layered metal dichalcogenide (LMD) materials. The T′ phase structure has profound influences on enhancing electrical conductivity, increasing active sites, and improving intrinsic catalytic activity, which are urgently needed for enhancing hydrogen evolution reaction (HER) activity. Theoretical calculations suggest that metastable T′ phase 2D Sn1−xWxS2 alloys can be formed by combining W with 1T tin disulfide (SnS2) as a template to achieve a semiconductor‐to‐metallic transition. Herein, 2D Sn1−xWxS2 alloys with varying x are prepared by adjusting the molar ratio of reactants via hydrothermal synthesis, among which Sn0.3W0.7S2 displays a maximum of concentration of 81% in the metallic phase and features a distorted octahedral‐coordinated metastable 1T′ phase structure. The obtained 1T′‐Sn0.3W0.7S2 has high intrinsic electrical conductivity, lattice distortion, and defects, showing a prominently improved HER catalytic performance. Metallic Sn0.3W0.7S2 coupled with carbon black exhibits at least a 215‐fold improvement compared to pristine SnS2. It has excellent long‐term durability and HER activity. This work reveals a general phase transition strategy by using T phase materials as templates and merging heteroatoms to achieve synthetic metastable phase 2D LMDs that have a significantly improved HER catalytic performance. Sn1−xWxS2 alloys are synthesized with 1T SnS2 as the template by adjusting the molar ratios of the precursors. The Sn0.3W0.7S2 alloy shows up to 83% metallic properties and possess a distorted octahedral coordination 1T′ phase structure. Metallic 1T′‐Sn0.3W0.7S2 endows a markedly enhanced hydrogen evolution reaction (HER) performance. The auxiliary of carbon black further effectively improves HER, catalytic performance rarely attenuates, and structure morphology remains stable.
AbstractList Crystal phase control still remains a challenge for the precise synthesis of 2D layered metal dichalcogenide (LMD) materials. The T′ phase structure has profound influences on enhancing electrical conductivity, increasing active sites, and improving intrinsic catalytic activity, which are urgently needed for enhancing hydrogen evolution reaction (HER) activity. Theoretical calculations suggest that metastable T′ phase 2D Sn1−xWxS2 alloys can be formed by combining W with 1T tin disulfide (SnS2) as a template to achieve a semiconductor‐to‐metallic transition. Herein, 2D Sn1−xWxS2 alloys with varying x are prepared by adjusting the molar ratio of reactants via hydrothermal synthesis, among which Sn0.3W0.7S2 displays a maximum of concentration of 81% in the metallic phase and features a distorted octahedral‐coordinated metastable 1T′ phase structure. The obtained 1T′‐Sn0.3W0.7S2 has high intrinsic electrical conductivity, lattice distortion, and defects, showing a prominently improved HER catalytic performance. Metallic Sn0.3W0.7S2 coupled with carbon black exhibits at least a 215‐fold improvement compared to pristine SnS2. It has excellent long‐term durability and HER activity. This work reveals a general phase transition strategy by using T phase materials as templates and merging heteroatoms to achieve synthetic metastable phase 2D LMDs that have a significantly improved HER catalytic performance.
Crystal phase control still remains a challenge for the precise synthesis of 2D layered metal dichalcogenide (LMD) materials. The T′ phase structure has profound influences on enhancing electrical conductivity, increasing active sites, and improving intrinsic catalytic activity, which are urgently needed for enhancing hydrogen evolution reaction (HER) activity. Theoretical calculations suggest that metastable T′ phase 2D Sn1−xWxS2 alloys can be formed by combining W with 1T tin disulfide (SnS2) as a template to achieve a semiconductor‐to‐metallic transition. Herein, 2D Sn1−xWxS2 alloys with varying x are prepared by adjusting the molar ratio of reactants via hydrothermal synthesis, among which Sn0.3W0.7S2 displays a maximum of concentration of 81% in the metallic phase and features a distorted octahedral‐coordinated metastable 1T′ phase structure. The obtained 1T′‐Sn0.3W0.7S2 has high intrinsic electrical conductivity, lattice distortion, and defects, showing a prominently improved HER catalytic performance. Metallic Sn0.3W0.7S2 coupled with carbon black exhibits at least a 215‐fold improvement compared to pristine SnS2. It has excellent long‐term durability and HER activity. This work reveals a general phase transition strategy by using T phase materials as templates and merging heteroatoms to achieve synthetic metastable phase 2D LMDs that have a significantly improved HER catalytic performance. Sn1−xWxS2 alloys are synthesized with 1T SnS2 as the template by adjusting the molar ratios of the precursors. The Sn0.3W0.7S2 alloy shows up to 83% metallic properties and possess a distorted octahedral coordination 1T′ phase structure. Metallic 1T′‐Sn0.3W0.7S2 endows a markedly enhanced hydrogen evolution reaction (HER) performance. The auxiliary of carbon black further effectively improves HER, catalytic performance rarely attenuates, and structure morphology remains stable.
Author Wu, Binbin
Suenaga, Kazu
Feng, Yexin
Lin, Yung‐Chang
Ouzounian, Miray
Liu, Song
Li, Shisheng
Shao, Gonglei
Xu, Yeqing
Liu, Xiao
Hu, Travis Shihao
Xue, Xiong‐Xiong
Author_xml – sequence: 1
  givenname: Gonglei
  orcidid: 0000-0003-0082-2306
  surname: Shao
  fullname: Shao, Gonglei
  organization: Hunan University
– sequence: 2
  givenname: Xiong‐Xiong
  orcidid: 0000-0003-2342-1003
  surname: Xue
  fullname: Xue, Xiong‐Xiong
  organization: Hunan University
– sequence: 3
  givenname: Binbin
  surname: Wu
  fullname: Wu, Binbin
  organization: Hunan University
– sequence: 4
  givenname: Yung‐Chang
  orcidid: 0000-0002-3968-7239
  surname: Lin
  fullname: Lin, Yung‐Chang
  organization: National Institutes of Advanced Industrial Science and Technology (AIST)
– sequence: 5
  givenname: Miray
  surname: Ouzounian
  fullname: Ouzounian, Miray
  organization: California State University
– sequence: 6
  givenname: Travis Shihao
  surname: Hu
  fullname: Hu, Travis Shihao
  organization: California State University
– sequence: 7
  givenname: Yeqing
  surname: Xu
  fullname: Xu, Yeqing
  organization: Hunan University
– sequence: 8
  givenname: Xiao
  surname: Liu
  fullname: Liu, Xiao
  organization: Hunan University
– sequence: 9
  givenname: Shisheng
  orcidid: 0000-0001-9301-5559
  surname: Li
  fullname: Li, Shisheng
  organization: National Institute for Materials Science (NIMS)
– sequence: 10
  givenname: Kazu
  orcidid: 0000-0002-6107-1123
  surname: Suenaga
  fullname: Suenaga, Kazu
  organization: National Institutes of Advanced Industrial Science and Technology (AIST)
– sequence: 11
  givenname: Yexin
  orcidid: 0000-0001-5925-8645
  surname: Feng
  fullname: Feng, Yexin
  email: yexinfeng@hnu.edu.cn
  organization: Hunan University
– sequence: 12
  givenname: Song
  orcidid: 0000-0003-3390-7795
  surname: Liu
  fullname: Liu, Song
  email: liusong@hnu.edu.cn
  organization: Hunan University
BookMark eNo9kM1OwkAUhScGExHdup7EdXF-2s7MkiCICWgiGN1NpvRWSsoMdoqmOx7BZ_GReBLbYFjc3HOSL_fmnEvUsc4CQjeU9Ckh7M6k2abPCFUkJrE6Q10a0zjghMnOSdP3C3Tp_ZoQKgQPu2i1gM22MBUc9j8D73NfQYrnta1W0BjsMjyDyhRFvsR0cdj_Ntjckj5_I30xZ_jJWOdXAJXHmSvxpE5L9wEWj75csatyZ_ELmGUrrtB5ZgoP1_-7h17Ho8VwEkyfHx6Hg2mwZkqpQMVgaCijVNIYQhGnPKQSZDNCRCwJmTKJZCZJEyqbZKmJIpLwWIBkYWQM5z10e7y7Ld3nDnyl125X2ualZjwUUUSVaCl1pL7zAmq9LfONKWtNiW6r1G2V-lSlHtyPZyfH_wBXoW2Y
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201906069
DatabaseName Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID ADFM201906069
Genre article
GrantInformation_xml – fundername: JSPS‐KAKENHI
  funderid: JP16H06333; 18K14119
– fundername: Hunan Provincial Natural Science Foundation
  funderid: 2018JJ3035
– fundername: Fundamental Research Funds for the Central Universities
– fundername: JSPS
– fundername: National Basic Research Program of China
  funderid: 2016YFA0300901
– fundername: National Science Foundation
  funderid: NSF HRD‐1547723
– fundername: Kazato Research Encouragement Prize
– fundername: National Natural Science Foundation of China
  funderid: 21705036; 11604092
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
1OB
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-j2999-96ea1485d816e476d3418e818e7752b429ab82abdb18028da550b367e8245aa33
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sun Sep 07 03:37:04 EDT 2025
Sun Jul 06 04:45:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-j2999-96ea1485d816e476d3418e818e7752b429ab82abdb18028da550b367e8245aa33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2342-1003
0000-0001-9301-5559
0000-0002-3968-7239
0000-0002-6107-1123
0000-0001-5925-8645
0000-0003-3390-7795
0000-0003-0082-2306
PQID 2347551973
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2347551973
wiley_primary_10_1002_adfm_201906069_ADFM201906069
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2018; 29
2013; 25
2015; 5
2018; 140
2019; 10
2019; 13
2016; 30
2017; 29
2014; 2014
2016; 16
2015; 8
2016; 15
2017; 9
2018; 49
2014; 136
2011; 133
2017; 139
2012; 51
2016; 4
2016; 6
2018; 9
2016; 7
2014; 4
2018; 2
2015; 27
2013; 13
2017; 17
2013; 12
2017; 10
2018; 335
2013; 135
2019; 119
2018; 30
2018; 51
2016; 28
2018; 10
2014; 6
2018; 13
References_xml – volume: 9
  start-page: 4643
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 364
  year: 2016
  publication-title: Nat. Mater.
– volume: 15
  start-page: 1003
  year: 2016
  publication-title: Nat. Mater.
– volume: 5
  start-page: 2213
  year: 2015
  publication-title: ACS Catal.
– volume: 27
  start-page: 4837
  year: 2015
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1989
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 2386
  year: 2017
  publication-title: Nano Res.
– volume: 2
  start-page: 1024
  year: 2018
  publication-title: Joule
– volume: 8
  start-page: 566
  year: 2015
  publication-title: Nano Res.
– volume: 10
  start-page: 4630
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2014
  start-page: 17
  year: 2014
  publication-title: Int. J. Photoenergy
– volume: 133
  start-page: 7296
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 335
  start-page: 282
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 28
  start-page: 1917
  year: 2016
  publication-title: Adv. Mater.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 846
  year: 2016
  publication-title: Nano Energy
– volume: 10
  start-page: 638
  year: 2018
  publication-title: Nat. Chem.
– volume: 28
  start-page: 8945
  year: 2016
  publication-title: Adv. Mater.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 5807
  year: 2013
  publication-title: Adv. Mater.
– volume: 29
  year: 2018
  publication-title: Nanotechnology
– volume: 4
  start-page: 1312
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 294
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 4
  start-page: 1693
  year: 2014
  publication-title: ACS Catal.
– volume: 13
  start-page: 6222
  year: 2013
  publication-title: Nano Lett.
– volume: 51
  start-page: 8727
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 3611
  year: 2018
  publication-title: Nat. Commun.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 13
  start-page: 8265
  year: 2019
  publication-title: ACS Nano
– volume: 6
  start-page: 6585
  year: 2016
  publication-title: ACS Catal.
– volume: 49
  start-page: 634
  year: 2018
  publication-title: Nano Energy
– volume: 6
  start-page: 4953
  year: 2016
  publication-title: ACS Catal.
– volume: 119
  start-page: 1806
  year: 2019
  publication-title: Chem. Rev.
– volume: 17
  start-page: 4109
  year: 2017
  publication-title: Nano Lett.
– volume: 7
  start-page: 2304
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 12
  start-page: 850
  year: 2013
  publication-title: Nat. Mater.
– volume: 51
  start-page: 786
  year: 2018
  publication-title: Nano Energy
– volume: 16
  start-page: 1097
  year: 2016
  publication-title: Nano Lett.
– volume: 10
  start-page: 71
  year: 2019
  publication-title: Nat. Commun.
– volume: 6
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 140
  start-page: 9127
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 8187
  year: 2017
  publication-title: J. Mater. Chem. A
SSID ssj0017734
Score 2.538357
Snippet Crystal phase control still remains a challenge for the precise synthesis of 2D layered metal dichalcogenide (LMD) materials. The T′ phase structure has...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Carbon black
Catalytic activity
Crystal defects
Electrical resistivity
hydrogen evolution reaction
Hydrogen evolution reactions
Hydrothermal crystal growth
Materials science
metastable phase
Metastable phases
Nanosheets
Phase control
Phase transitions
Solid phases
T phase
template‐assisted synthesis
Tin disulfide
Title Template‐Assisted Synthesis of Metallic 1T′‐Sn0.3W0.7S2 Nanosheets for Hydrogen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201906069
https://www.proquest.com/docview/2347551973
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTsJAFIYnhpUuvBtRNLNwW2Au7ZQlEQgxwQWXyK6Z6UyDii3hYoIrHsFn8ZF4Es-0gOBSl5N0mnbmnDn_mc75itCdZbqpkAmHV7h0OBHa8f1QONSDNK4iddnXdh-y9eg1e_yh7_a3qvgzPsRmw816RrpeWweXalL6gYZKHdlKcghooMFtBR9hnoXn19obfhQRIvus7BF7wIv019TGMi3tdt_Rl9sqNQ0zjSMk1w-YnS55Lc6mqhh-_GI3_ucNjtHhSoPiamY0J2jPxKfoYItMeIYGXfM2GoIOXS4-YQatLWjcmccgF6GBkwi3DMj24XOISXe5-ILLOjGk5k_louhQDGt2MhkYM51gEMW4OdfjBCwV199Xlo7bJquoOEe9Rr1733RWP2VwXmglpXkaCSmUq33iGS48DWHQNxD2jRAuVRDepPKpVFpZtpyvJaRAinnC-JS7UjJ2gXJxEptLhKMKoSrSXjlkmmvK4NYgYHgEa0REtNF5VFhPSrDyrElAGReurbZleUTT0Q1GGZcjyAjMNLDjGmzGNajWGq1N6-ovna7RPrVpdrrzUkC56XhmbkCLTNVtam_fDFvYiQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LUsIwFM0oLtSFb0cUNQu3BZqmTbtkFAYVWPAY2XWSJh1ULAwPZ3DFJ_gtfhJf4k0LCC51mZkm0yb3ce7NvacI3WhONxFYzKAe5QY1mTRcN2AGcSCM87jMu1LnIas1p9yiD217UU2oe2ESfohlwk1rRmyvtYLrhHTuhzWUy1C3koNHAxDubaKt-JJO46L6kkHKZCy5WHZMXeJlthe8jXmSW5-_hjBXcWrsaEr7SCxeMakvec2ORyIbfPxib_zXNxygvTkMxYVEbg7RhoqO0O4KOeEx6jTVW78LUHQ2_YRD1OIgcWMSAWKEAe6FuKoAuXefA2w2Z9MveKwRQXT-lM-yBsFgtnvDjlKjIQZcjMsTOeiBsOLi-1zYcV0lTRUnqFUqNm_Lxvy_DMYL8WJCT8UhirKlazqKMkeCJ3QVeH7FmE0EeDguXMKFFJpezpUcoiBhOUy5hNqcW9YpSkW9SJ0hHHomEaF08oElqSQWLA0YhoZgJkJTKplGmcWp-HPlGvrEoszWDbdWGpF4e_1-Qs3hJyTMxNf76i_31S_clarL0flfJl2j7XKzWvEr97XHC7RDdNQdJ2IyKDUajNUlQJORuIqF7xupMNyn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsJAFJ0oJkYXvo0o6izcFul02mmXRCD4gBgekV0z05kGFQvhYYIrPsFv8ZP4Eu-0gOBSl5N0mnbm3nvOvZ17itCV1nQTgcUM6lFuUJNJw3UDZhAH0jiPy5wrdR2yUnXKTXrXsltLXfyJPsSi4KY9I47X2sF7Mrz-EQ3lMtSd5ABowMG9dbRBHcBKTYtqCwEpk7Hku7Jj6hNeZmsu25gj16vzVwjmMk2Ncaa0i_j8CZPjJa_Z0VBkg49f4o3_eYU9tDMjoTifWM0-WlPRAdpekiY8RO2Geut1gIhOJ5-whdoYJK6PI-CLMMDdEFcU8PbOc4DNxnTyBZfVI8jNn3JZVicYgnZ30FZqOMDAinF5LPtdMFVcfJ-ZOq6ppKXiCDVLxcZN2Zj9lcF4IV4s56k45FC2dE1HUeZIwEFXAe4rxmwiAN-4cAkXUmhxOVdyyIGE5TDlEmpzblnHKBV1I3WCcOiZRITSyQWWpJJYcGtgMDSEIBGaUsk0ysw3xZ-51sAnFmW2bre10ojEq-v3EmEOP5FgJr5eV3-xrn6-UKosRqd_mXSJNh8LJf_htnp_hraITrnjKkwGpYb9kToHXjIUF7HpfQMylttW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Template%E2%80%90Assisted+Synthesis+of+Metallic+1T%E2%80%B2%E2%80%90Sn0.3W0.7S2+Nanosheets+for+Hydrogen+Evolution+Reaction&rft.jtitle=Advanced+functional+materials&rft.au=Shao%2C+Gonglei&rft.au=Xue%2C+Xiong%E2%80%90Xiong&rft.au=Wu%2C+Binbin&rft.au=Lin%2C+Yung%E2%80%90Chang&rft.date=2020-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201906069&rft.externalDBID=10.1002%252Fadfm.201906069&rft.externalDocID=ADFM201906069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon