Template‐Assisted Synthesis of Metallic 1T′‐Sn0.3W0.7S2 Nanosheets for Hydrogen Evolution Reaction
Crystal phase control still remains a challenge for the precise synthesis of 2D layered metal dichalcogenide (LMD) materials. The T′ phase structure has profound influences on enhancing electrical conductivity, increasing active sites, and improving intrinsic catalytic activity, which are urgently n...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 5 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.201906069 |
Cover
Abstract | Crystal phase control still remains a challenge for the precise synthesis of 2D layered metal dichalcogenide (LMD) materials. The T′ phase structure has profound influences on enhancing electrical conductivity, increasing active sites, and improving intrinsic catalytic activity, which are urgently needed for enhancing hydrogen evolution reaction (HER) activity. Theoretical calculations suggest that metastable T′ phase 2D Sn1−xWxS2 alloys can be formed by combining W with 1T tin disulfide (SnS2) as a template to achieve a semiconductor‐to‐metallic transition. Herein, 2D Sn1−xWxS2 alloys with varying x are prepared by adjusting the molar ratio of reactants via hydrothermal synthesis, among which Sn0.3W0.7S2 displays a maximum of concentration of 81% in the metallic phase and features a distorted octahedral‐coordinated metastable 1T′ phase structure. The obtained 1T′‐Sn0.3W0.7S2 has high intrinsic electrical conductivity, lattice distortion, and defects, showing a prominently improved HER catalytic performance. Metallic Sn0.3W0.7S2 coupled with carbon black exhibits at least a 215‐fold improvement compared to pristine SnS2. It has excellent long‐term durability and HER activity. This work reveals a general phase transition strategy by using T phase materials as templates and merging heteroatoms to achieve synthetic metastable phase 2D LMDs that have a significantly improved HER catalytic performance.
Sn1−xWxS2 alloys are synthesized with 1T SnS2 as the template by adjusting the molar ratios of the precursors. The Sn0.3W0.7S2 alloy shows up to 83% metallic properties and possess a distorted octahedral coordination 1T′ phase structure. Metallic 1T′‐Sn0.3W0.7S2 endows a markedly enhanced hydrogen evolution reaction (HER) performance. The auxiliary of carbon black further effectively improves HER, catalytic performance rarely attenuates, and structure morphology remains stable. |
---|---|
AbstractList | Crystal phase control still remains a challenge for the precise synthesis of 2D layered metal dichalcogenide (LMD) materials. The T′ phase structure has profound influences on enhancing electrical conductivity, increasing active sites, and improving intrinsic catalytic activity, which are urgently needed for enhancing hydrogen evolution reaction (HER) activity. Theoretical calculations suggest that metastable T′ phase 2D Sn1−xWxS2 alloys can be formed by combining W with 1T tin disulfide (SnS2) as a template to achieve a semiconductor‐to‐metallic transition. Herein, 2D Sn1−xWxS2 alloys with varying x are prepared by adjusting the molar ratio of reactants via hydrothermal synthesis, among which Sn0.3W0.7S2 displays a maximum of concentration of 81% in the metallic phase and features a distorted octahedral‐coordinated metastable 1T′ phase structure. The obtained 1T′‐Sn0.3W0.7S2 has high intrinsic electrical conductivity, lattice distortion, and defects, showing a prominently improved HER catalytic performance. Metallic Sn0.3W0.7S2 coupled with carbon black exhibits at least a 215‐fold improvement compared to pristine SnS2. It has excellent long‐term durability and HER activity. This work reveals a general phase transition strategy by using T phase materials as templates and merging heteroatoms to achieve synthetic metastable phase 2D LMDs that have a significantly improved HER catalytic performance. Crystal phase control still remains a challenge for the precise synthesis of 2D layered metal dichalcogenide (LMD) materials. The T′ phase structure has profound influences on enhancing electrical conductivity, increasing active sites, and improving intrinsic catalytic activity, which are urgently needed for enhancing hydrogen evolution reaction (HER) activity. Theoretical calculations suggest that metastable T′ phase 2D Sn1−xWxS2 alloys can be formed by combining W with 1T tin disulfide (SnS2) as a template to achieve a semiconductor‐to‐metallic transition. Herein, 2D Sn1−xWxS2 alloys with varying x are prepared by adjusting the molar ratio of reactants via hydrothermal synthesis, among which Sn0.3W0.7S2 displays a maximum of concentration of 81% in the metallic phase and features a distorted octahedral‐coordinated metastable 1T′ phase structure. The obtained 1T′‐Sn0.3W0.7S2 has high intrinsic electrical conductivity, lattice distortion, and defects, showing a prominently improved HER catalytic performance. Metallic Sn0.3W0.7S2 coupled with carbon black exhibits at least a 215‐fold improvement compared to pristine SnS2. It has excellent long‐term durability and HER activity. This work reveals a general phase transition strategy by using T phase materials as templates and merging heteroatoms to achieve synthetic metastable phase 2D LMDs that have a significantly improved HER catalytic performance. Sn1−xWxS2 alloys are synthesized with 1T SnS2 as the template by adjusting the molar ratios of the precursors. The Sn0.3W0.7S2 alloy shows up to 83% metallic properties and possess a distorted octahedral coordination 1T′ phase structure. Metallic 1T′‐Sn0.3W0.7S2 endows a markedly enhanced hydrogen evolution reaction (HER) performance. The auxiliary of carbon black further effectively improves HER, catalytic performance rarely attenuates, and structure morphology remains stable. |
Author | Wu, Binbin Suenaga, Kazu Feng, Yexin Lin, Yung‐Chang Ouzounian, Miray Liu, Song Li, Shisheng Shao, Gonglei Xu, Yeqing Liu, Xiao Hu, Travis Shihao Xue, Xiong‐Xiong |
Author_xml | – sequence: 1 givenname: Gonglei orcidid: 0000-0003-0082-2306 surname: Shao fullname: Shao, Gonglei organization: Hunan University – sequence: 2 givenname: Xiong‐Xiong orcidid: 0000-0003-2342-1003 surname: Xue fullname: Xue, Xiong‐Xiong organization: Hunan University – sequence: 3 givenname: Binbin surname: Wu fullname: Wu, Binbin organization: Hunan University – sequence: 4 givenname: Yung‐Chang orcidid: 0000-0002-3968-7239 surname: Lin fullname: Lin, Yung‐Chang organization: National Institutes of Advanced Industrial Science and Technology (AIST) – sequence: 5 givenname: Miray surname: Ouzounian fullname: Ouzounian, Miray organization: California State University – sequence: 6 givenname: Travis Shihao surname: Hu fullname: Hu, Travis Shihao organization: California State University – sequence: 7 givenname: Yeqing surname: Xu fullname: Xu, Yeqing organization: Hunan University – sequence: 8 givenname: Xiao surname: Liu fullname: Liu, Xiao organization: Hunan University – sequence: 9 givenname: Shisheng orcidid: 0000-0001-9301-5559 surname: Li fullname: Li, Shisheng organization: National Institute for Materials Science (NIMS) – sequence: 10 givenname: Kazu orcidid: 0000-0002-6107-1123 surname: Suenaga fullname: Suenaga, Kazu organization: National Institutes of Advanced Industrial Science and Technology (AIST) – sequence: 11 givenname: Yexin orcidid: 0000-0001-5925-8645 surname: Feng fullname: Feng, Yexin email: yexinfeng@hnu.edu.cn organization: Hunan University – sequence: 12 givenname: Song orcidid: 0000-0003-3390-7795 surname: Liu fullname: Liu, Song email: liusong@hnu.edu.cn organization: Hunan University |
BookMark | eNo9kM1OwkAUhScGExHdup7EdXF-2s7MkiCICWgiGN1NpvRWSsoMdoqmOx7BZ_GReBLbYFjc3HOSL_fmnEvUsc4CQjeU9Ckh7M6k2abPCFUkJrE6Q10a0zjghMnOSdP3C3Tp_ZoQKgQPu2i1gM22MBUc9j8D73NfQYrnta1W0BjsMjyDyhRFvsR0cdj_Ntjckj5_I30xZ_jJWOdXAJXHmSvxpE5L9wEWj75csatyZ_ELmGUrrtB5ZgoP1_-7h17Ho8VwEkyfHx6Hg2mwZkqpQMVgaCijVNIYQhGnPKQSZDNCRCwJmTKJZCZJEyqbZKmJIpLwWIBkYWQM5z10e7y7Ld3nDnyl125X2ualZjwUUUSVaCl1pL7zAmq9LfONKWtNiW6r1G2V-lSlHtyPZyfH_wBXoW2Y |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201906069 |
DatabaseName | Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | ADFM201906069 |
Genre | article |
GrantInformation_xml | – fundername: JSPS‐KAKENHI funderid: JP16H06333; 18K14119 – fundername: Hunan Provincial Natural Science Foundation funderid: 2018JJ3035 – fundername: Fundamental Research Funds for the Central Universities – fundername: JSPS – fundername: National Basic Research Program of China funderid: 2016YFA0300901 – fundername: National Science Foundation funderid: NSF HRD‐1547723 – fundername: Kazato Research Encouragement Prize – fundername: National Natural Science Foundation of China funderid: 21705036; 11604092 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 1OB 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-j2999-96ea1485d816e476d3418e818e7752b429ab82abdb18028da550b367e8245aa33 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Sep 07 03:37:04 EDT 2025 Sun Jul 06 04:45:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-j2999-96ea1485d816e476d3418e818e7752b429ab82abdb18028da550b367e8245aa33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2342-1003 0000-0001-9301-5559 0000-0002-3968-7239 0000-0002-6107-1123 0000-0001-5925-8645 0000-0003-3390-7795 0000-0003-0082-2306 |
PQID | 2347551973 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2347551973 wiley_primary_10_1002_adfm_201906069_ADFM201906069 |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2018; 29 2013; 25 2015; 5 2018; 140 2019; 10 2019; 13 2016; 30 2017; 29 2014; 2014 2016; 16 2015; 8 2016; 15 2017; 9 2018; 49 2014; 136 2011; 133 2017; 139 2012; 51 2016; 4 2016; 6 2018; 9 2016; 7 2014; 4 2018; 2 2015; 27 2013; 13 2017; 17 2013; 12 2017; 10 2018; 335 2013; 135 2019; 119 2018; 30 2018; 51 2016; 28 2018; 10 2014; 6 2018; 13 |
References_xml | – volume: 9 start-page: 4643 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 364 year: 2016 publication-title: Nat. Mater. – volume: 15 start-page: 1003 year: 2016 publication-title: Nat. Mater. – volume: 5 start-page: 2213 year: 2015 publication-title: ACS Catal. – volume: 27 start-page: 4837 year: 2015 publication-title: Adv. Mater. – volume: 5 start-page: 1989 year: 2017 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 2386 year: 2017 publication-title: Nano Res. – volume: 2 start-page: 1024 year: 2018 publication-title: Joule – volume: 8 start-page: 566 year: 2015 publication-title: Nano Res. – volume: 10 start-page: 4630 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 2014 start-page: 17 year: 2014 publication-title: Int. J. Photoenergy – volume: 133 start-page: 7296 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 335 start-page: 282 year: 2018 publication-title: Chem. Eng. J. – volume: 28 start-page: 1917 year: 2016 publication-title: Adv. Mater. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 846 year: 2016 publication-title: Nano Energy – volume: 10 start-page: 638 year: 2018 publication-title: Nat. Chem. – volume: 28 start-page: 8945 year: 2016 publication-title: Adv. Mater. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 5807 year: 2013 publication-title: Adv. Mater. – volume: 29 year: 2018 publication-title: Nanotechnology – volume: 4 start-page: 1312 year: 2016 publication-title: J. Mater. Chem. A – volume: 13 start-page: 294 year: 2018 publication-title: Nat. Nanotechnol. – volume: 4 start-page: 1693 year: 2014 publication-title: ACS Catal. – volume: 13 start-page: 6222 year: 2013 publication-title: Nano Lett. – volume: 51 start-page: 8727 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 3611 year: 2018 publication-title: Nat. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 13 start-page: 8265 year: 2019 publication-title: ACS Nano – volume: 6 start-page: 6585 year: 2016 publication-title: ACS Catal. – volume: 49 start-page: 634 year: 2018 publication-title: Nano Energy – volume: 6 start-page: 4953 year: 2016 publication-title: ACS Catal. – volume: 119 start-page: 1806 year: 2019 publication-title: Chem. Rev. – volume: 17 start-page: 4109 year: 2017 publication-title: Nano Lett. – volume: 7 start-page: 2304 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 12 start-page: 850 year: 2013 publication-title: Nat. Mater. – volume: 51 start-page: 786 year: 2018 publication-title: Nano Energy – volume: 16 start-page: 1097 year: 2016 publication-title: Nano Lett. – volume: 10 start-page: 71 year: 2019 publication-title: Nat. Commun. – volume: 6 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 140 start-page: 9127 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 8187 year: 2017 publication-title: J. Mater. Chem. A |
SSID | ssj0017734 |
Score | 2.538357 |
Snippet | Crystal phase control still remains a challenge for the precise synthesis of 2D layered metal dichalcogenide (LMD) materials. The T′ phase structure has... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Carbon black Catalytic activity Crystal defects Electrical resistivity hydrogen evolution reaction Hydrogen evolution reactions Hydrothermal crystal growth Materials science metastable phase Metastable phases Nanosheets Phase control Phase transitions Solid phases T phase template‐assisted synthesis Tin disulfide |
Title | Template‐Assisted Synthesis of Metallic 1T′‐Sn0.3W0.7S2 Nanosheets for Hydrogen Evolution Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201906069 https://www.proquest.com/docview/2347551973 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTsJAFIYnhpUuvBtRNLNwW2Au7ZQlEQgxwQWXyK6Z6UyDii3hYoIrHsFn8ZF4Es-0gOBSl5N0mnbmnDn_mc75itCdZbqpkAmHV7h0OBHa8f1QONSDNK4iddnXdh-y9eg1e_yh7_a3qvgzPsRmw816RrpeWweXalL6gYZKHdlKcghooMFtBR9hnoXn19obfhQRIvus7BF7wIv019TGMi3tdt_Rl9sqNQ0zjSMk1w-YnS55Lc6mqhh-_GI3_ucNjtHhSoPiamY0J2jPxKfoYItMeIYGXfM2GoIOXS4-YQatLWjcmccgF6GBkwi3DMj24XOISXe5-ILLOjGk5k_louhQDGt2MhkYM51gEMW4OdfjBCwV199Xlo7bJquoOEe9Rr1733RWP2VwXmglpXkaCSmUq33iGS48DWHQNxD2jRAuVRDepPKpVFpZtpyvJaRAinnC-JS7UjJ2gXJxEptLhKMKoSrSXjlkmmvK4NYgYHgEa0REtNF5VFhPSrDyrElAGReurbZleUTT0Q1GGZcjyAjMNLDjGmzGNajWGq1N6-ovna7RPrVpdrrzUkC56XhmbkCLTNVtam_fDFvYiQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LUsIwFM0oLtSFb0cUNQu3BZqmTbtkFAYVWPAY2XWSJh1ULAwPZ3DFJ_gtfhJf4k0LCC51mZkm0yb3ce7NvacI3WhONxFYzKAe5QY1mTRcN2AGcSCM87jMu1LnIas1p9yiD217UU2oe2ESfohlwk1rRmyvtYLrhHTuhzWUy1C3koNHAxDubaKt-JJO46L6kkHKZCy5WHZMXeJlthe8jXmSW5-_hjBXcWrsaEr7SCxeMakvec2ORyIbfPxib_zXNxygvTkMxYVEbg7RhoqO0O4KOeEx6jTVW78LUHQ2_YRD1OIgcWMSAWKEAe6FuKoAuXefA2w2Z9MveKwRQXT-lM-yBsFgtnvDjlKjIQZcjMsTOeiBsOLi-1zYcV0lTRUnqFUqNm_Lxvy_DMYL8WJCT8UhirKlazqKMkeCJ3QVeH7FmE0EeDguXMKFFJpezpUcoiBhOUy5hNqcW9YpSkW9SJ0hHHomEaF08oElqSQWLA0YhoZgJkJTKplGmcWp-HPlGvrEoszWDbdWGpF4e_1-Qs3hJyTMxNf76i_31S_clarL0flfJl2j7XKzWvEr97XHC7RDdNQdJ2IyKDUajNUlQJORuIqF7xupMNyn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsJAFJ0oJkYXvo0o6izcFul02mmXRCD4gBgekV0z05kGFQvhYYIrPsFv8ZP4Eu-0gOBSl5N0mnbm3nvOvZ17itCV1nQTgcUM6lFuUJNJw3UDZhAH0jiPy5wrdR2yUnXKTXrXsltLXfyJPsSi4KY9I47X2sF7Mrz-EQ3lMtSd5ABowMG9dbRBHcBKTYtqCwEpk7Hku7Jj6hNeZmsu25gj16vzVwjmMk2Ncaa0i_j8CZPjJa_Z0VBkg49f4o3_eYU9tDMjoTifWM0-WlPRAdpekiY8RO2Geut1gIhOJ5-whdoYJK6PI-CLMMDdEFcU8PbOc4DNxnTyBZfVI8jNn3JZVicYgnZ30FZqOMDAinF5LPtdMFVcfJ-ZOq6ppKXiCDVLxcZN2Zj9lcF4IV4s56k45FC2dE1HUeZIwEFXAe4rxmwiAN-4cAkXUmhxOVdyyIGE5TDlEmpzblnHKBV1I3WCcOiZRITSyQWWpJJYcGtgMDSEIBGaUsk0ysw3xZ-51sAnFmW2bre10ojEq-v3EmEOP5FgJr5eV3-xrn6-UKosRqd_mXSJNh8LJf_htnp_hraITrnjKkwGpYb9kToHXjIUF7HpfQMylttW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Template%E2%80%90Assisted+Synthesis+of+Metallic+1T%E2%80%B2%E2%80%90Sn0.3W0.7S2+Nanosheets+for+Hydrogen+Evolution+Reaction&rft.jtitle=Advanced+functional+materials&rft.au=Shao%2C+Gonglei&rft.au=Xue%2C+Xiong%E2%80%90Xiong&rft.au=Wu%2C+Binbin&rft.au=Lin%2C+Yung%E2%80%90Chang&rft.date=2020-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201906069&rft.externalDBID=10.1002%252Fadfm.201906069&rft.externalDocID=ADFM201906069 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |