マダニ細胞の特徴とその有用性
「1. マダニ細胞の歴史」1950年代から様々な研究者によってマダニ由来細胞の樹立が試みられてきたが, 長らく成功には至らなかった. 世界で最初のマダニ細胞が報告されたのは1975年であり, VermaらによってRhipicephalus appendiculatus Neumann, 1901の実験室維持株から3種類の細胞が樹立された(Verma et al.,1975). それ以来, マダニ細胞の数は増え続け, 細胞認証データベース(Cellosaurus:https://web.expasy.org/cellosaurus/)によると, 2019年7月時点で登録されているマダニ細胞数は9...
        Saved in:
      
    
          | Published in | Medical Entomology and Zoology Vol. 70; no. 4; pp. 175 - 179 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | Japanese | 
| Published | 
            日本衛生動物学会
    
        25.12.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0424-7086 2185-5609  | 
| DOI | 10.7601/mez.70.175 | 
Cover
| Abstract | 「1. マダニ細胞の歴史」1950年代から様々な研究者によってマダニ由来細胞の樹立が試みられてきたが, 長らく成功には至らなかった. 世界で最初のマダニ細胞が報告されたのは1975年であり, VermaらによってRhipicephalus appendiculatus Neumann, 1901の実験室維持株から3種類の細胞が樹立された(Verma et al.,1975). それ以来, マダニ細胞の数は増え続け, 細胞認証データベース(Cellosaurus:https://web.expasy.org/cellosaurus/)によると, 2019年7月時点で登録されているマダニ細胞数は91株で実に8属21種のマダニに由来する(Table 1). しかしながら, それら全てが現在でも継代維持あるいは保存されているわけではなく, すでに失われて利用不可能なものも含まれる. 「2. マダニ細胞の樹立方法」これまでに樹立されたマダニ細胞の多くは, 発生段階のマダニ卵に含まれる胚(embryos)を材料に樹立されてきた. | 
    
|---|---|
| AbstractList | 「1. マダニ細胞の歴史」1950年代から様々な研究者によってマダニ由来細胞の樹立が試みられてきたが, 長らく成功には至らなかった. 世界で最初のマダニ細胞が報告されたのは1975年であり, VermaらによってRhipicephalus appendiculatus Neumann, 1901の実験室維持株から3種類の細胞が樹立された(Verma et al.,1975). それ以来, マダニ細胞の数は増え続け, 細胞認証データベース(Cellosaurus:https://web.expasy.org/cellosaurus/)によると, 2019年7月時点で登録されているマダニ細胞数は91株で実に8属21種のマダニに由来する(Table 1). しかしながら, それら全てが現在でも継代維持あるいは保存されているわけではなく, すでに失われて利用不可能なものも含まれる. 「2. マダニ細胞の樹立方法」これまでに樹立されたマダニ細胞の多くは, 発生段階のマダニ卵に含まれる胚(embryos)を材料に樹立されてきた. | 
    
| Author | 中尾, 亮 | 
    
| Author_xml | – sequence: 1 fullname: 中尾, 亮 organization: 北海道大学大学院獣医学研究院病原制御学分野寄生虫学教室  | 
    
| BookMark | eNo1kL9OwzAQhy1UJErpwmMgpZz_xI43UAUFqRILzJbjOJAoTaq0DHRq1aliZQRWOiGGLiy8TETLY-CosHy_O530ne72USMvcovQIYaO4ICPB3bSEdDBwt9BTYID3_M5yAZqAiPMExDwPdQejZIQwA-E5FQ00VE1f63m02r-uFl9_Lh69r5ZfH5_rarZspq9uHb9vNg8LdfTtwO0G-tsZNt_2UI352fX3Quvf9W77J72vZQIDJ6UjHIWaaJNEMeYS8JILCPNqTUYB1ToODKhkBA6GGJCGxGifYsNhTjUAW2h3tY7sFFidFbkWZJblRb3Ze72KjPkk6LICkUASwUgAJgLrMBdXkNSxjAVtelka0pHY31r1bBMBrp8ULocJyazyj1MCVCsRm1xjv-RudOlSjX9BQMldEs | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 日本衛生動物学会 | 
    
| Copyright_xml | – notice: 2019 日本衛生動物学会 | 
    
| CorporateAuthor | 北海道大学大学院獣医学研究院病原制御学分野寄生虫学教室 | 
    
| CorporateAuthor_xml | – name: 北海道大学大学院獣医学研究院病原制御学分野寄生虫学教室 | 
    
| DOI | 10.7601/mez.70.175 | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Public Health Zoology  | 
    
| EISSN | 2185-5609 | 
    
| EndPage | 179 | 
    
| ExternalDocumentID | cp6zoolo_2019_007004_001_0175_01793441378 article_mez_70_4_70_700401_article_char_ja  | 
    
| GroupedDBID | 5GY ABJNI ALMA_UNASSIGNED_HOLDINGS DYU JMI JSF MOJWN OZF P2P RJT  | 
    
| ID | FETCH-LOGICAL-j2710-994364da2ac8ff169242f9da63ec11837afdcb790bb79c2cbed22a5e1c30fba83 | 
    
| ISSN | 0424-7086 | 
    
| IngestDate | Thu Jul 10 16:14:56 EDT 2025 Wed Sep 03 06:30:23 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | Japanese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-j2710-994364da2ac8ff169242f9da63ec11837afdcb790bb79c2cbed22a5e1c30fba83 | 
    
| OpenAccessLink | https://www.jstage.jst.go.jp/article/mez/70/4/70_700401/_article/-char/ja | 
    
| PageCount | 5 | 
    
| ParticipantIDs | medicalonline_journals_cp6zoolo_2019_007004_001_0175_01793441378 jstage_primary_article_mez_70_4_70_700401_article_char_ja  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019/12/25 20191225  | 
    
| PublicationDateYYYYMMDD | 2019-12-25 | 
    
| PublicationDate_xml | – month: 12 year: 2019 text: 2019/12/25 day: 25  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Medical Entomology and Zoology | 
    
| PublicationTitleAlternate | 衛生動物 | 
    
| PublicationYear | 2019 | 
    
| Publisher | 日本衛生動物学会 | 
    
| Publisher_xml | – name: 日本衛生動物学会 | 
    
| References | Alberdi, M. P., Dalby, M. J., Rodriguez-Andres, J., Fazakerley, J. K., Kohl, A. and Bell-Sakyi, L. 2012. Detection and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines. Ticks Tick Borne Dis., 3: 137–146. Bell-Sakyi, L., Darby, A., Baylis, M. and Makepeace, B. L. 2018. The Tick Cell Biobank: A global resource for in vitro research on ticks, other arthropods and the pathogens they transmit. Ticks Tick Borne Dis., 9: 1364–1371. Bell-Sakyi, L. and Attoui, H. 2016. Virus discovery using tick cell lines. Evol. Bioinform. Online, 12: 31–34. Pohl, P. C., Carvalho, D. D., Daffre, S., Vaz Ida, S. Jr. and Masuda, A. 2014. In vitro establishment of ivermectin-resistant Rhipicephalus microplus cell line and the contribution of ABC transporters on the resistance mechanism. Vet. Parasitol., 204: 316–322. Blouin, E. F., de la Fuente, J., Garcia-Garcia, J. C., Sauer, J. R., Saliki, J. T. and Kocan, K. M. 2002. Applications of a cell culture system for studying the interaction of Anaplasma marginale with tick cells. Anim. Health Res. Rev., 3: 57–68. Hernandez, E. P., Kusakisako, K., Talactac, M. R., Galay, R. L., Yoshii, K. and Tanaka, T. 2018. Induction of intracellular ferritin expression in embryo-derived Ixodes scapularis cell line (ISE6). Sci. Rep., 8: 16566. Schnettler, E., Tykalová, H., Watson, M., Sharma, M., Sterken, M. G., Obbard, D. J., Lewis, S. H., McFarlane, M., Bell-Sakyi, L., Barry, G., Weisheit, S., Best, S. M., Kuhn, R. J., Pijlman, G. P., Chase-Topping, M. E., Gould, E. A., Grubhoffer, L., Fazakerley, J. K. and Kohl, A. 2014. Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses. Nucleic Acids Res., 42: 9436–9446. Bell-Sakyi, L., Kohl, A., Bente, D. A. and Fazakerley, J. K. 2012. Tick cell lines for study of Crimean-Congo hemorrhagic fever virus and other arboviruses. Vector Borne Zoonotic Dis., 12: 769–781. Sterba, J., Vancova, M., Sterbova, J., Bell-Sakyi, L. and Grubhoffer, L. 2014. The majority of sialylated glycoproteins in adult Ixodes ricinus ticks originate in the host, not the tick. Carbohydr. Res., 389: 93–99. Weisheit, S., Villar, M., Tykalová, H., Popara, M., Loecherbach, J., Watson, M., Růžek, D., Grubhoffer, L., de la Fuente, J., Fazakerley, J. K. and Bell-Sakyi, L. 2015. Ixodes scapularis and Ixodes ricinus tick cell lines respond to infection with tick-borne encephalitis virus: transcriptomic and proteomic analysis. Parasit. Vectors, 8: 599. Contreras, M., Alberdi, P., Fernández De Mera, I. G., Krull, C., Nijhof, A., Villar, M. and De La Fuente, J. 2017. Vaccinomics approach to the identification of candidate protective antigens for the control of tick vector infestations and Anaplasma phagocytophilum infection. Front. Cell. Infect. Microbiol., 7: 360. Cabezas-Cruz, A., Zweygarth, E., Vancová, M., Broniszewska, M., Grubhoffer, L., Passos, L. M. F., Ribeiro, M. F. B., Alberdi, P. and de la Fuente, J. 2016. Ehrlichia minasensis sp. nov., isolated from the tick Rhipicephalus microplus. Int. J. Syst. Evol. Microbiol., 66: 1426–1430. Smith, A. A., Navasa, N., Yang, X., Wilder, C. N., Buyuktanir, O., Marques, A., Anguita, J. and Pal, U. 2016. Cross-species interferon signaling boosts microbicidal activity within the tick vector. Cell Host Microbe, 20: 91–98. Truchan, H. K., Cockburn, C. L., Hebert, K. S., Magunda, F., Noh, S. M. and Carlyon, J. A. 2016. The Pathogen-Occupied Vacuoles of Anaplasma phagocytophilum and Anaplasma marginale Interact with the Endoplasmic Reticulum. Front. Cell. Infect. Microbiol., 6: 22. Rosa, R. D., Capelli-Peixoto, J., Mesquita, R. D., Kalil, S. P., Pohl, P. C., Braz, G. R., Fogaça, A. C. and Daffre, S. 2016. Exploring the immune signalling pathway-related genes of the cattle tick Rhipicephalus microplus: From molecular characterization to transcriptional profile upon microbial challenge. Dev. Comp. Immunol., 59: 1–14. Yoshii, K., Yanagihara, N., Ishizuka, M., Sakai, M. and Kariwa, H. 2013. N-linked glycan in tick-borne encephalitis virus envelope protein affects viral secretion in mammalian cells, but not in tick cells. J. Gen. Virol., 94: 2249–2258. Yoshii, K., Okamoto, N., Nakao, R., Klaus Hofstetter, R., Yabu, T., Masumoto, H., Someya, A., Kariwa, H. and Maeda, A. 2015. Isolation of the Thogoto virus from a Haemaphysalis longicornis in Kyoto City, Japan. J. Gen. Virol., 96: 2099–2103. Thu, M. J., Qiu, Y., Kataoka-Nakamura, C., Sugimoto, C., Katakura, K., Isoda, N. and Nakao, R. 2019. Isolation of Rickettsia, Rickettsiella, and Spiroplasma from questing ticks in Japan using arthropod cells. Vector Borne Zoonotic Dis., 19: 474–485. Munderloh, U. G., Liu, Y., Wang, M., Chen, C. and Kurtti, T. J. 1994. Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J. Parasitol., 80: 533–543. Miller, J. R., Koren, S., Dilley, K. A., Harkins, D. M., Stockwell, T. B., Shabman, R. S. and Sutton, G. G. 2018. A draft genome sequence for the Ixodes scapularis cell line, ISE6. F1000 Res., 7: 297. Tonk, M., Cabezas-Cruz, A., Valdés, J. J., Rego, R. O., Chrudimská, T., Strnad, M., Šíma, R., Bell-Sakyi, L., Franta, Z., Vilcinskas, A., Grubhoffer, L. and Rahnamaeian, M. 2014a. Defensins from the tick Ixodes scapularis are effective against phytopathogenic fungi and the human bacterial pathogen Listeria grayi. Parasit. Vectors, 7: 554. Kwak, M. L. 2018. A checklist of the ticks (Acari: Argasidae, Ixodidae) of Japan. Exp. Appl. Acarol., 75: 263–267. Mazelier, M., Rouxel, R. N., Zumstein, M., Mancini, R., Bell-Sakyi, L. and Lozach, P. Y. 2016. Uukuniemi virus as a tick-borne virus model. J. Virol., 90: 6784–6798. Torii, S., Matsuno, K., Qiu, Y., Mori-Kajihara, A., Kajihara, M., Nakao, R., Nao, N., Okazaki, K., Sashika, M., Hiono, T., Okamatsu, M., Sakoda, Y., Ebihara, H., Takada, A. and Sawa, H. 2019. Infection of newly identified phleboviruses in ticks and wild animals in Hokkaido, Japan indicating tick-borne life cycles. Ticks Tick Borne Dis., 10: 328–335. Koh-Tan, H. H., Strachan, E., Cooper, K., Bell-Sakyi, L. and Jonsson, N. N. 2016. Identification of a novel β-adrenergic octopamine receptor-like gene (βAOR-like) and increased ATP-binding cassette B10 (ABCB10) expression in a Rhipicephalus microplus cell line derived from acaricide-resistant ticks. Parasit. Vectors, 9: 425. Nakao, R., Matsuno, K., Qiu, Y., Maruyama, J., Eguchi, N., Nao, N., Kajihara, M., Yoshii, K., Sawa, H., Takada, A. and Sugimoto, C. 2017. Putative RNA viral sequences detected in an Ixodes scapularis-derived cell line. Ticks Tick Borne Dis., 8: 103–111. Cramaro, W. J., Hunewald, O. E., Bell-Sakyi, L. and Muller, C. P. 2017. Genome scaffolding and annotation for the pathogen vector Ixodes ricinus by ultra-long single molecule sequencing. Parasit. Vectors, 10: 71. Nakao, R., Abe, T., Nijhof, A. M., Yamamoto, S., Jongejan, F., Ikemura, T. and Sugimoto, C. 2013. A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks. ISME J., 7: 1003–1015. Bell-Sakyi, L., Zweygarth, E., Blouin, E. F., Gould, E. A. and Jongejan, F. 2007. Tick cell lines: tools for tick and tick-borne disease research. Trends Parasitol., 23: 450–457. Kusakisako, K., Ido, A., Masatani, T., Morokuma, H., Hernandez, E. P., Talactac, M. R., Yoshii, K. and Tanaka, T. 2018b. Transcriptional activities of two newly identified Haemaphysalis longicornis tick-derived promoter regions in the Ixodes scapularis tick cell line (ISE6). Insect Mol. Biol., 27: 590–602. Chen, C., Munderloh, U. G. and Kurtti, T. J. 1994. Cytogenetic characteristics of cell lines from Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol., 31: 425–434. Kusakisako, K., Hernandez, E. P., Talactac, M. R., Yoshii, K., Umemiya-Shirafuji, R., Fujisaki, K. and Tanaka, T. 2018a. Peroxiredoxins are important for the regulation of hydrogen peroxide concentrations in ticks and tick cell line. Ticks Tick Borne Dis., 9: 872–881. Oltean, B. M., Ernst, M., Renneker, S., Bakheit, M. A., Seitzer, U. and Ahmed, J. 2013. Whole antigenic lysates of Ixodes ricinus, but not Der-p2 allergen-like protein, are potent inducers of basophil activation in previously tick-exposed human hosts. Transbound. Emerg. Dis., 60: 162–171. Qiu, Y., Abe, T., Nakao, R., Satoh, K. and Sugimoto, C. 2019. Viral population analysis of the taiga tick, Ixodes persulcatus, by using Batch Learning Self-Organizing Maps and BLAST search. J. Vet. Med. Sci., 81: 401–410. Tonk, M., Cabezas-Cruz, A., Valdés, J. J., Rego, R. O., Rudenko, N., Golovchenko, M., Bell-Sakyi, L., de la Fuente, J. and Grubhoffer, L. 2014b. Identification and partial characterisation of new members of the Ixodes ricinus defensin family. Gene, 540: 146–152. Ferreira, J. D. S., Souza Oliveira, D. A., Santos, J. P., Ribeiro, C. C. D. U., Baêta, B. A., Teixeira, R. C., Neumann, A. D. S., Rosa, P. S., Pessolani, M. C. V., Moraes, M. O., Bechara, G. H., de Oliveira, P. L., Sorgine, M. H. F., Suffys, P. N., Fontes, A. N. B., Bell-Sakyi, L., Fonseca, A. H. and Lara, F. A. 2018. Ticks as potential vectors of Mycobacterium leprae: Use of tick cell lines to culture the bacilli and generate transgenic strains. PLoS Negl. Trop. Dis., 12: e0007001. Antunes, S., Merino, O., Mosqueda, J., Moreno-Cid, J. A., Bell-Sakyi, L., Fragkoudis, R., Weisheit, S., Pérez de la Lastra, J. M., Alberdi, P., Domingos, A. and de la Fuente, J. 2014. Tick capillary feeding for the study of proteins involved in tick-pathogen interactions as potential antigens for the control of tick infestation and pathogen infection. Parasit. Vectors, 7: 42. Qiu, Y., Nakao, R., Ohnuma, A., Kawamori, F. and Sugimoto, C. 2014. Microbial population analysis of the salivary glands of ticks; a possible strategy for the surveillance of bacterial pathogens. PLoS One, 9: e103961. Varma, M. G., Pudney, M. and Leake, C. J. 1975. The establishment of three cell lines from the tick Rhipicephalus appendiculatus (Acari: Ixodidae) and their infection with some arboviruses. J. Med. Entomol., 11: 698–706. Lim, F.-  | 
    
| References_xml | – reference: Nakao, R., Matsuno, K., Qiu, Y., Maruyama, J., Eguchi, N., Nao, N., Kajihara, M., Yoshii, K., Sawa, H., Takada, A. and Sugimoto, C. 2017. Putative RNA viral sequences detected in an Ixodes scapularis-derived cell line. Ticks Tick Borne Dis., 8: 103–111. – reference: Kusakisako, K., Hernandez, E. P., Talactac, M. R., Yoshii, K., Umemiya-Shirafuji, R., Fujisaki, K. and Tanaka, T. 2018a. Peroxiredoxins are important for the regulation of hydrogen peroxide concentrations in ticks and tick cell line. Ticks Tick Borne Dis., 9: 872–881. – reference: Pohl, P. C., Carvalho, D. D., Daffre, S., Vaz Ida, S. Jr. and Masuda, A. 2014. In vitro establishment of ivermectin-resistant Rhipicephalus microplus cell line and the contribution of ABC transporters on the resistance mechanism. Vet. Parasitol., 204: 316–322. – reference: Sterba, J., Vancova, M., Sterbova, J., Bell-Sakyi, L. and Grubhoffer, L. 2014. The majority of sialylated glycoproteins in adult Ixodes ricinus ticks originate in the host, not the tick. Carbohydr. Res., 389: 93–99. – reference: Grabowski, J. M., Perera, R., Roumani, A. M., Hedrick, V. E., Inerowicz, H. D., Hill, C. A. and Kuhn, R. J. 2016. Changes in the Proteome of Langat-Infected Ixodes scapularis ISE6 Cells: Metabolic Pathways Associated with Flavivirus Infection. PLoS Negl. Trop. Dis., 10: e0004180. – reference: Thu, M. J., Qiu, Y., Kataoka-Nakamura, C., Sugimoto, C., Katakura, K., Isoda, N. and Nakao, R. 2019. Isolation of Rickettsia, Rickettsiella, and Spiroplasma from questing ticks in Japan using arthropod cells. Vector Borne Zoonotic Dis., 19: 474–485. – reference: Contreras, M., Alberdi, P., Fernández De Mera, I. G., Krull, C., Nijhof, A., Villar, M. and De La Fuente, J. 2017. Vaccinomics approach to the identification of candidate protective antigens for the control of tick vector infestations and Anaplasma phagocytophilum infection. Front. Cell. Infect. Microbiol., 7: 360. – reference: Tonk, M., Cabezas-Cruz, A., Valdés, J. J., Rego, R. O., Rudenko, N., Golovchenko, M., Bell-Sakyi, L., de la Fuente, J. and Grubhoffer, L. 2014b. Identification and partial characterisation of new members of the Ixodes ricinus defensin family. Gene, 540: 146–152. – reference: Yoshii, K., Okamoto, N., Nakao, R., Klaus Hofstetter, R., Yabu, T., Masumoto, H., Someya, A., Kariwa, H. and Maeda, A. 2015. Isolation of the Thogoto virus from a Haemaphysalis longicornis in Kyoto City, Japan. J. Gen. Virol., 96: 2099–2103. – reference: Koh-Tan, H. H., Strachan, E., Cooper, K., Bell-Sakyi, L. and Jonsson, N. N. 2016. Identification of a novel β-adrenergic octopamine receptor-like gene (βAOR-like) and increased ATP-binding cassette B10 (ABCB10) expression in a Rhipicephalus microplus cell line derived from acaricide-resistant ticks. Parasit. Vectors, 9: 425. – reference: Kamio, T., Mitsuhashi, J. and Fujisaki, K. 1986. Primary culture of developing adult tissue in a nymphal tick, Haemaphysalis longicornis (Acarina: Ixodidae). Appl. Entomol. Zool., 21: 394–398. – reference: Hernandez, E. P., Kusakisako, K., Talactac, M. R., Galay, R. L., Yoshii, K. and Tanaka, T. 2018. Induction of intracellular ferritin expression in embryo-derived Ixodes scapularis cell line (ISE6). Sci. Rep., 8: 16566. – reference: Truchan, H. K., Cockburn, C. L., Hebert, K. S., Magunda, F., Noh, S. M. and Carlyon, J. A. 2016. The Pathogen-Occupied Vacuoles of Anaplasma phagocytophilum and Anaplasma marginale Interact with the Endoplasmic Reticulum. Front. Cell. Infect. Microbiol., 6: 22. – reference: Bell-Sakyi, L., Darby, A., Baylis, M. and Makepeace, B. L. 2018. The Tick Cell Biobank: A global resource for in vitro research on ticks, other arthropods and the pathogens they transmit. Ticks Tick Borne Dis., 9: 1364–1371. – reference: Miller, J. R., Koren, S., Dilley, K. A., Harkins, D. M., Stockwell, T. B., Shabman, R. S. and Sutton, G. G. 2018. A draft genome sequence for the Ixodes scapularis cell line, ISE6. F1000 Res., 7: 297. – reference: Mangia, C., Vismarra, A., Kramer, L., Bell-Sakyi, L., Porretta, D., Otranto, D., Epis, S. and Grandi, G. 2016. Evaluation of the in vitro expression of ATP binding-cassette (ABC) proteins in an Ixodes ricinus cell line exposed to ivermectin. Parasit. Vectors, 9: 215. – reference: Varma, M. G., Pudney, M. and Leake, C. J. 1975. The establishment of three cell lines from the tick Rhipicephalus appendiculatus (Acari: Ixodidae) and their infection with some arboviruses. J. Med. Entomol., 11: 698–706. – reference: Mazelier, M., Rouxel, R. N., Zumstein, M., Mancini, R., Bell-Sakyi, L. and Lozach, P. Y. 2016. Uukuniemi virus as a tick-borne virus model. J. Virol., 90: 6784–6798. – reference: Nakao, R., Abe, T., Nijhof, A. M., Yamamoto, S., Jongejan, F., Ikemura, T. and Sugimoto, C. 2013. A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks. ISME J., 7: 1003–1015. – reference: Oltean, B. M., Ernst, M., Renneker, S., Bakheit, M. A., Seitzer, U. and Ahmed, J. 2013. Whole antigenic lysates of Ixodes ricinus, but not Der-p2 allergen-like protein, are potent inducers of basophil activation in previously tick-exposed human hosts. Transbound. Emerg. Dis., 60: 162–171. – reference: Bell-Sakyi, L. and Attoui, H. 2016. Virus discovery using tick cell lines. Evol. Bioinform. Online, 12: 31–34. – reference: Alberdi, M. P., Dalby, M. J., Rodriguez-Andres, J., Fazakerley, J. K., Kohl, A. and Bell-Sakyi, L. 2012. Detection and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines. Ticks Tick Borne Dis., 3: 137–146. – reference: Cramaro, W. J., Hunewald, O. E., Bell-Sakyi, L. and Muller, C. P. 2017. Genome scaffolding and annotation for the pathogen vector Ixodes ricinus by ultra-long single molecule sequencing. Parasit. Vectors, 10: 71. – reference: Antunes, S., Merino, O., Mosqueda, J., Moreno-Cid, J. A., Bell-Sakyi, L., Fragkoudis, R., Weisheit, S., Pérez de la Lastra, J. M., Alberdi, P., Domingos, A. and de la Fuente, J. 2014. Tick capillary feeding for the study of proteins involved in tick-pathogen interactions as potential antigens for the control of tick infestation and pathogen infection. Parasit. Vectors, 7: 42. – reference: Yoshii, K., Yanagihara, N., Ishizuka, M., Sakai, M. and Kariwa, H. 2013. N-linked glycan in tick-borne encephalitis virus envelope protein affects viral secretion in mammalian cells, but not in tick cells. J. Gen. Virol., 94: 2249–2258. – reference: Qiu, Y., Nakao, R., Ohnuma, A., Kawamori, F. and Sugimoto, C. 2014. Microbial population analysis of the salivary glands of ticks; a possible strategy for the surveillance of bacterial pathogens. PLoS One, 9: e103961. – reference: Blouin, E. F., de la Fuente, J., Garcia-Garcia, J. C., Sauer, J. R., Saliki, J. T. and Kocan, K. M. 2002. Applications of a cell culture system for studying the interaction of Anaplasma marginale with tick cells. Anim. Health Res. Rev., 3: 57–68. – reference: Ferreira, J. D. S., Souza Oliveira, D. A., Santos, J. P., Ribeiro, C. C. D. U., Baêta, B. A., Teixeira, R. C., Neumann, A. D. S., Rosa, P. S., Pessolani, M. C. V., Moraes, M. O., Bechara, G. H., de Oliveira, P. L., Sorgine, M. H. F., Suffys, P. N., Fontes, A. N. B., Bell-Sakyi, L., Fonseca, A. H. and Lara, F. A. 2018. Ticks as potential vectors of Mycobacterium leprae: Use of tick cell lines to culture the bacilli and generate transgenic strains. PLoS Negl. Trop. Dis., 12: e0007001. – reference: Torii, S., Matsuno, K., Qiu, Y., Mori-Kajihara, A., Kajihara, M., Nakao, R., Nao, N., Okazaki, K., Sashika, M., Hiono, T., Okamatsu, M., Sakoda, Y., Ebihara, H., Takada, A. and Sawa, H. 2019. Infection of newly identified phleboviruses in ticks and wild animals in Hokkaido, Japan indicating tick-borne life cycles. Ticks Tick Borne Dis., 10: 328–335. – reference: Uchiyama, T., Ogawa, M., Kishi, M., Yamashita, T., Kishimoto, T. and Kurane, I. 2009. Restriction of the growth of typhus group rickettsiae in tick cells. Clin. Microbiol. Infect., 15: 332–333. – reference: Yoshii, K., Goto, A., Kawakami, K., Kariwa, H. and Takashima, I. 2008. Construction and application of chimeric virus-like particles of tick-borne encephalitis virus and mosquito-borne Japanese encephalitis virus. J. Gen. Virol., 89: 200–211. – reference: Chen, C., Munderloh, U. G. and Kurtti, T. J. 1994. Cytogenetic characteristics of cell lines from Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol., 31: 425–434. – reference: Tonk, M., Cabezas-Cruz, A., Valdés, J. J., Rego, R. O., Chrudimská, T., Strnad, M., Šíma, R., Bell-Sakyi, L., Franta, Z., Vilcinskas, A., Grubhoffer, L. and Rahnamaeian, M. 2014a. Defensins from the tick Ixodes scapularis are effective against phytopathogenic fungi and the human bacterial pathogen Listeria grayi. Parasit. Vectors, 7: 554. – reference: Socolovschi, C., Mediannikov, O., Raoult, D. and Parola, P. 2009. The relationship between spotted fever group Rickettsiae and ixodid ticks. Vet. Res., 40: 34. – reference: Kwak, M. L. 2018. A checklist of the ticks (Acari: Argasidae, Ixodidae) of Japan. Exp. Appl. Acarol., 75: 263–267. – reference: Weisheit, S., Villar, M., Tykalová, H., Popara, M., Loecherbach, J., Watson, M., Růžek, D., Grubhoffer, L., de la Fuente, J., Fazakerley, J. K. and Bell-Sakyi, L. 2015. Ixodes scapularis and Ixodes ricinus tick cell lines respond to infection with tick-borne encephalitis virus: transcriptomic and proteomic analysis. Parasit. Vectors, 8: 599. – reference: Munderloh, U. G., Liu, Y., Wang, M., Chen, C. and Kurtti, T. J. 1994. Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J. Parasitol., 80: 533–543. – reference: Rosa, R. D., Capelli-Peixoto, J., Mesquita, R. D., Kalil, S. P., Pohl, P. C., Braz, G. R., Fogaça, A. C. and Daffre, S. 2016. Exploring the immune signalling pathway-related genes of the cattle tick Rhipicephalus microplus: From molecular characterization to transcriptional profile upon microbial challenge. Dev. Comp. Immunol., 59: 1–14. – reference: Schnettler, E., Tykalová, H., Watson, M., Sharma, M., Sterken, M. G., Obbard, D. J., Lewis, S. H., McFarlane, M., Bell-Sakyi, L., Barry, G., Weisheit, S., Best, S. M., Kuhn, R. J., Pijlman, G. P., Chase-Topping, M. E., Gould, E. A., Grubhoffer, L., Fazakerley, J. K. and Kohl, A. 2014. Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses. Nucleic Acids Res., 42: 9436–9446. – reference: Smith, A. A., Navasa, N., Yang, X., Wilder, C. N., Buyuktanir, O., Marques, A., Anguita, J. and Pal, U. 2016. Cross-species interferon signaling boosts microbicidal activity within the tick vector. Cell Host Microbe, 20: 91–98. – reference: Bell-Sakyi, L., Kohl, A., Bente, D. A. and Fazakerley, J. K. 2012. Tick cell lines for study of Crimean-Congo hemorrhagic fever virus and other arboviruses. Vector Borne Zoonotic Dis., 12: 769–781. – reference: Bell-Sakyi, L., Zweygarth, E., Blouin, E. F., Gould, E. A. and Jongejan, F. 2007. Tick cell lines: tools for tick and tick-borne disease research. Trends Parasitol., 23: 450–457. – reference: Lim, F.-S., Khoo, J.-J., Chen, F., Bell-Sakyi, L., Khor, C.-S., Chang, L.-Y. and AbuBakar, S. 2017. Initiation of primary cell cultures from embryonic Haemaphysalis bispinosa ticks. Syst. Appl. Acarol., 22: 323–332. – reference: Qiu, Y., Abe, T., Nakao, R., Satoh, K. and Sugimoto, C. 2019. Viral population analysis of the taiga tick, Ixodes persulcatus, by using Batch Learning Self-Organizing Maps and BLAST search. J. Vet. Med. Sci., 81: 401–410. – reference: Cabezas-Cruz, A., Zweygarth, E., Vancová, M., Broniszewska, M., Grubhoffer, L., Passos, L. M. F., Ribeiro, M. F. B., Alberdi, P. and de la Fuente, J. 2016. Ehrlichia minasensis sp. nov., isolated from the tick Rhipicephalus microplus. Int. J. Syst. Evol. Microbiol., 66: 1426–1430. – reference: Kusakisako, K., Ido, A., Masatani, T., Morokuma, H., Hernandez, E. P., Talactac, M. R., Yoshii, K. and Tanaka, T. 2018b. Transcriptional activities of two newly identified Haemaphysalis longicornis tick-derived promoter regions in the Ixodes scapularis tick cell line (ISE6). Insect Mol. Biol., 27: 590–602. – reference: Matsuno, K., Kajihara, M., Nakao, R., Nao, N., Mori-Kajihara, A., Muramatsu, M., Qiu, Y., Torii, S., Igarashi, M., Kasajima, N., Mizuma, K., Yoshii, K., Sawa, H., Sugimoto, C., Takada, A. and Ebihara, H. 2018. The unique phylogenetic position of a novel tick-borne phlebovirus ensures an ixodid origin of the genus Phlebovirus. MSphere, 3: 3.  | 
    
| SSID | ssib005879637 ssib022622216 ssj0058409 ssib007484647 ssib000937678 ssib001265881 ssib002484250 ssib023161481 ssib031740900 ssib002523973 ssib003562562 ssib008548673 ssib003110056  | 
    
| Score | 2.2091303 | 
    
| Snippet | 「1. マダニ細胞の歴史」1950年代から様々な研究者によってマダニ由来細胞の樹立が試みられてきたが, 長らく成功には至らなかった. 世界で最初のマダニ細胞が報... | 
    
| SourceID | medicalonline jstage  | 
    
| SourceType | Publisher | 
    
| StartPage | 175 | 
    
| SubjectTerms | cell lines endogenous viruses endosymbionts ISE6 isolation pathogens  | 
    
| Title | マダニ細胞の特徴とその有用性 | 
    
| URI | https://www.jstage.jst.go.jp/article/mez/70/4/70_700401/_article/-char/ja http://mol.medicalonline.jp/en/journal/download?GoodsID=cp6zoolo/2019/007004/001&name=0175-0179j  | 
    
| Volume | 70 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| ispartofPNX | 衛生動物, 2019/12/25, Vol.70(4), pp.175-179 | 
    
| journalDatabaseRights | – providerCode: PRVCAB databaseName: Nutrition and Food Sciences Database customDbUrl: eissn: 2185-5609 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0058409 issn: 0424-7086 databaseCode: DYU dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.cabidigitallibrary.org/product/zd providerName: CAB International – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2185-5609 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib007484647 issn: 0424-7086 databaseCode: KQ8 dateStart: 19500101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV2_b9QwFLaqIiQkhKCAKL_UAS9IKUnsxPFG7pqqQoKplQqLlTi54aT-ELRLp1adKlZGYKUTYujCwsz_caLlz-B7ce7ORQwFFstxXvIsP8fve479mbFHUTkY1DazQZwKEWCUtEGlQxmklZVw0A1cCG1wfv4iXVmTz9aT9ZmZ796qpd2datHu_XFfyb9YFWWwK-2S_QvLTl6KAuRhX6SwMNIL2ZgXgmeC66LLZOE40-OF4j3JeyjJPJmI5wXdyjTvaV4kvFeQWHcr6zJ6yRNOue6TPJ7SspVJSVGufFxLWnI82OvE9DK9HNXQSacun8w48AL1gvhSqz-kKsDObWkOjf48RNQeouD2LLc9p62O4nnS1SvvX0QzlUBdnrZK-lzn3vgnYxmocMyU3ZYBkCQBQJr2B3B38kjXUaU3GkfuUJbOsUfu1JrffQYtCoKhN5q9RQUPMn7kHAd3Z2EDIaNCIymhcwHCyIxv0SY5MwRSvxTDv9AhIksv1_x5I5V6xGlRDOR3jniOfof6xHAxgKIX-BKzn8d6JChu9Ygek0xhJJ0CSWKI9YnisoSYFSfvA-YGLpwGBgD5RAg7qQ9AJeJ-WlzsME1C0wCEacYmcUS_1HRPpg0HEDdESENcFVc33G9GR_fiIbbV6-xaF2ot5K7pbrCZYTnHrrp56gW3_W6OXX611f5Yuskejw4_jg73R4dvz06-_ET-4PPZ0dcf305GB8ejgw-4PH1_dPbu-HT_0y22tlys9leC7iSRYBgDQgdaS5HKuoxLmw0GUaoBTAe6LlPRWETYQpUYsCqlwwqJjW3V1HFcJk1kRTioykzcZrObW5vNHbZQ28TGUqkyRgNHTallCkNJUTY6E3UdzTPtGsFsO7oYc_HOM8-enms30401b4zdTveoOQx9eYY4ukJJy1ENHGpiWi-LuEao7O5_qL_Hrkw_7Ptsduf1bvMAkHunetj25l85LqwA | 
    
| linkProvider | CAB International | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E3%83%9E%E3%83%80%E3%83%8B%E7%B4%B0%E8%83%9E%E3%81%AE%E7%89%B9%E5%BE%B4%E3%81%A8%E3%81%9D%E3%81%AE%E6%9C%89%E7%94%A8%E6%80%A7&rft.jtitle=%E8%A1%9B%E7%94%9F%E5%8B%95%E7%89%A9&rft.au=%E4%B8%AD%E5%B0%BE%2C+%E4%BA%AE&rft.date=2019-12-25&rft.pub=%E6%97%A5%E6%9C%AC%E8%A1%9B%E7%94%9F%E5%8B%95%E7%89%A9%E5%AD%A6%E4%BC%9A&rft.issn=0424-7086&rft.eissn=2185-5609&rft.volume=70&rft.issue=4&rft.spage=175&rft.epage=179&rft_id=info:doi/10.7601%2Fmez.70.175&rft.externalDocID=article_mez_70_4_70_700401_article_char_ja | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0424-7086&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0424-7086&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0424-7086&client=summon |