高酸素負荷新生仔ラットの脳障害モデルとしての有用性の検討
生直後から12日齢まで80%酸素にて飼育した未熟児網膜症モデルラットと以前,報告された高酸素負荷による酸化ストレス誘発性脳障害モデルと比較し,未熟児網膜症モデルの酸化ストレス誘発性脳障害モデルとしての有効性について検討した.出生直後より12日齢まで80%高酸素負荷ラット(P12)およびその後大気中に移動し24時間飼育したラット(P13)は,脳(海馬)を摘出した.海馬の凍結切片を作製し,DNA酸化損傷マーカーである8-hydroxy-2'-deoxyguanosine(8-OHdG)を免疫染色し,局在を確認した.また,ホモジェネートを作製し,酸化ストレスマーカーであるreactive...
Saved in:
Published in | 昭和学士会雑誌 Vol. 75; no. 4; pp. 450 - 457 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | Japanese |
Published |
昭和大学学士会
2015
|
Subjects | |
Online Access | Get full text |
ISSN | 2187-719X 2188-529X |
DOI | 10.14930/jshowaunivsoc.75.450 |
Cover
Abstract | 生直後から12日齢まで80%酸素にて飼育した未熟児網膜症モデルラットと以前,報告された高酸素負荷による酸化ストレス誘発性脳障害モデルと比較し,未熟児網膜症モデルの酸化ストレス誘発性脳障害モデルとしての有効性について検討した.出生直後より12日齢まで80%高酸素負荷ラット(P12)およびその後大気中に移動し24時間飼育したラット(P13)は,脳(海馬)を摘出した.海馬の凍結切片を作製し,DNA酸化損傷マーカーである8-hydroxy-2'-deoxyguanosine(8-OHdG)を免疫染色し,局在を確認した.また,ホモジェネートを作製し,酸化ストレスマーカーであるreactive oxygen species(ROS),脂質過酸化物(malondialdehyde: MDA),酸化型グルタチオン(GSSG)量を,RT-PCR法によりO2-を酸素と過酸化水素へ不均化する酸化還元酵素Cu/Znsuperoxidedismutase(SOD)mRNAを測定し,記憶や学習に関わる海馬への酸化ストレスを確認した.さらに,ROSを積極的に産生する酵素type 4 nicotinamide adenine dinucleotide phosphate(NADPH)oxidase(Nox4)mRNAを測定し,Nox4の役割について考察した.8-OHdGはコントロール群に比べて,高酸素負荷終了直後(P12)増加していた.特に,CA1,CA3,歯状回(DG)では8-OHdG陽性細胞数の増加は顕著だった.P12海馬内ROS,Cu/Zn SOD mRNA,GSSG,MDA量は高酸素負荷群でコントロール群に比べ有意に増加しており,P13でも同様の結果を示した.P12での海馬内酸化ストレスの結果はこれまでの報告と一致していた.海馬Nox4 mRNAはコントロールに比べP13の酸素負荷群で2.7倍となり,相対的低酸素状態(脳虚血)から低酸素状態への適応(再灌流)による神経変性を増悪する可能性が示唆された.ラット脳,網膜などの神経組織が成熟する生後12日(P12)まで高酸素投与を継続する未熟児網膜症モデルは本研究により初めて酸化ストレス誘発性脳障害モデルとしても応用可能であることが示された. |
---|---|
AbstractList | 生直後から12日齢まで80%酸素にて飼育した未熟児網膜症モデルラットと以前,報告された高酸素負荷による酸化ストレス誘発性脳障害モデルと比較し,未熟児網膜症モデルの酸化ストレス誘発性脳障害モデルとしての有効性について検討した.出生直後より12日齢まで80%高酸素負荷ラット(P12)およびその後大気中に移動し24時間飼育したラット(P13)は,脳(海馬)を摘出した.海馬の凍結切片を作製し,DNA酸化損傷マーカーである8-hydroxy-2'-deoxyguanosine(8-OHdG)を免疫染色し,局在を確認した.また,ホモジェネートを作製し,酸化ストレスマーカーであるreactive oxygen species(ROS),脂質過酸化物(malondialdehyde: MDA),酸化型グルタチオン(GSSG)量を,RT-PCR法によりO2-を酸素と過酸化水素へ不均化する酸化還元酵素Cu/Znsuperoxidedismutase(SOD)mRNAを測定し,記憶や学習に関わる海馬への酸化ストレスを確認した.さらに,ROSを積極的に産生する酵素type 4 nicotinamide adenine dinucleotide phosphate(NADPH)oxidase(Nox4)mRNAを測定し,Nox4の役割について考察した.8-OHdGはコントロール群に比べて,高酸素負荷終了直後(P12)増加していた.特に,CA1,CA3,歯状回(DG)では8-OHdG陽性細胞数の増加は顕著だった.P12海馬内ROS,Cu/Zn SOD mRNA,GSSG,MDA量は高酸素負荷群でコントロール群に比べ有意に増加しており,P13でも同様の結果を示した.P12での海馬内酸化ストレスの結果はこれまでの報告と一致していた.海馬Nox4 mRNAはコントロールに比べP13の酸素負荷群で2.7倍となり,相対的低酸素状態(脳虚血)から低酸素状態への適応(再灌流)による神経変性を増悪する可能性が示唆された.ラット脳,網膜などの神経組織が成熟する生後12日(P12)まで高酸素投与を継続する未熟児網膜症モデルは本研究により初めて酸化ストレス誘発性脳障害モデルとしても応用可能であることが示された. |
Author | 舟橋, 久幸 齋藤, 雄太 中西, 孝子 佐藤, 千佳 辻, まゆみ 植田, 俊彦 小出, 良平 木村, 謙吾 小口, 勝司 |
Author_xml | – sequence: 1 fullname: 木村, 謙吾 organization: 昭和大学医学部薬理学講座(医科薬理学部門) – sequence: 1 fullname: 辻, まゆみ organization: 昭和大学医学部薬理学講座(医科薬理学部門) – sequence: 1 fullname: 齋藤, 雄太 organization: 昭和大学医学部眼科学講座 – sequence: 1 fullname: 舟橋, 久幸 organization: 昭和大学医学部解剖学講座(顕微解剖学部門) – sequence: 1 fullname: 中西, 孝子 organization: 昭和大学医学部生理学講座(生体制御学部門) – sequence: 1 fullname: 佐藤, 千佳 organization: 昭和大学医学部薬理学講座(医科薬理学部門) – sequence: 1 fullname: 植田, 俊彦 organization: 昭和大学医学部眼科学講座 – sequence: 1 fullname: 小口, 勝司 organization: 昭和大学医学部薬理学講座(医科薬理学部門) – sequence: 1 fullname: 小出, 良平 organization: 昭和大学医学部眼科学講座 |
BookMark | eNpVUNFKAkEAXMIgMz-hTzjb3bttbx9DygKhFwPfjt31zDtM486K3jq2qB7qSSpCSCLKECQyKOhztvT8i8wiaB5mBmaYh5kFiVq95gIwj2AGWcyEC35Yqe_xnZq3G9ZlhpKMReAUSGJk2wbBrJiYeGpQxIozIB2GnoCI2tREiygJCqPu1ejobfjSjp_b8dnr4OJp2Lz5eG9q9aiV0upER734sD-6bn32-lrdanWsVVdHHR1d6uh-nA5ap8NmZ3Dw8O3vWnHnfA5Ml3k1dNO_mgIbK8uF7KqRX8-tZZfyho8JoQZ3ObHLVJZMgSln3KLQghQKzrGQxGaWXUIUmcKUggiJmVvCjAvCxrCkjbCZArmfXT9s8E3X2Q68LR7sOzxoeLLqOv-ucShxrAkR-NeQFR44Pje_ADUjg5U |
ContentType | Journal Article |
Copyright | 2015 昭和大学学士会 |
Copyright_xml | – notice: 2015 昭和大学学士会 |
DOI | 10.14930/jshowaunivsoc.75.450 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2188-529X |
EndPage | 457 |
ExternalDocumentID | article_jshowaunivsoc_75_4_75_450_article_char_ja |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JSF KQ8 RJT |
ID | FETCH-LOGICAL-j2557-aea58f7cd3b27a9a4704070baa2bc58948d1713b3cb5bc29ed29ab599994c8123 |
ISSN | 2187-719X |
IngestDate | Wed Sep 03 06:29:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2557-aea58f7cd3b27a9a4704070baa2bc58948d1713b3cb5bc29ed29ab599994c8123 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jshowaunivsoc/75/4/75_450/_article/-char/ja |
PageCount | 8 |
ParticipantIDs | jstage_primary_article_jshowaunivsoc_75_4_75_450_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2015 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015 |
PublicationDecade | 2010 |
PublicationTitle | 昭和学士会雑誌 |
PublicationTitleAlternate | 昭和学士会誌 |
PublicationYear | 2015 |
Publisher | 昭和大学学士会 |
Publisher_xml | – name: 昭和大学学士会 |
References | 27) St Hilaire C, Koupenova M, Carroll SH, et al. TNF-alpha upregulates the A2B adenosine receptor gene: the role of NDA(P)H oxidase 4. Biochem Biophys Res Commun. 2008;375:292-296. 24) Ramani M, van Groen T, Kadish I, et al. Neurodevelopmental impairment following neonatal hyperoxia in the mouse. Neurobiol Dis. 2013;50:69-75. 28) Gerstner B, Sifringer M, Dzietko M, et al. Estradiol attenuates hyperoxia-induced cell death in the developing white matter. Ann Neurol. 2007;61:562-573. 3) Johnson S, Wolke D, Hennessy E, et al. Educational outcomes in extremely preterm children: neuropsychological correlates and predictors of attainment. Dev Neuropsychol. 2011;36:74-95. 29) Sifringer M, Brait D, Weichelt U, et al. Erythropoietin attenuates hyperoxia-induced oxidative stress in the developing rat brain. Brain Behav Immun. 2010;24:792-799. 2) Vasiljevic B, Maglajlic-Djukic S, Gojnic M, et al. The role of oxidative stress in perinatal hypoxic-ischemic brain injury. Srp Arh Celok Lek. 2012;140:35-41. 20) Taridi NM, Abd Rani N, Abd Latiff A, et al. Tocotrienol rich fraction reverses age-related deficits in spatial learning and memory in aged rats. Lipids. 2014;49:855-869. 7) Gerstner B, DeSilva TM, Genz K, et al. Hyperoxia causes maturation-dependent cell death in the developing white matter. J Neurosci. 2008;28:1236-1245. 23) Felderhoff-Mueser U, Sifringer M, Polley O, et al. Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain. Ann Neurol. 2005;57:50-59. 10) Sumimoto H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J. 2008;275:3249-3277. 4) Saugstad OD. Hyperoxia in the term newborn: more evidence is still needed for optimal oxygen therapy. Acta Pediatr Suppl. 2012;101(464):34-38. 17) Yis U, Kurul SH, Kumral A, et al. Hyperoxic exposure leads to cell death in the developing brain. Brain Dev. 2008;30:556-562. 9) Inder T, Mocatta T, Dariow B, et al. Elevated free radical products in the cerebrospinal fluid of VLBW infants with cerebral white matter injury. Pediatr Res. 2002;52:213-218. 30) da Silva AI, Monteiro Galindo LC, Nascimento L, et al. Fluoxetine treatment of rat neonates significantly reduces oxidative stress in the hippocampus and in behavioral indicators of anxiety later in postnatal life. Can J Physiol Pharmacol. 2014;92:330-337. 18)Bendix I, Weichelt U, Strasser K, et al. Hyperoxia changes the balance of the thioredoxin/peroxiredoxin system in the neonatal rat brain. Brain Res. 2012;1484:68-75. 22) Sifringer M, Bendix I, Borner C, et al. Prevention of neonatal oxygen-induced brain damage by reduction of intrinsic apoptosis. Cell Death Dis (Internet). 2012;3:e250. (accessed 2011 Aug 30) http://dx.doi.org/10.1038/cddis.2011.133 15) Freidja ML, Toutain B, Caillon A, et al. Heme oxygenase1 is differentially involved in blood flow-dependent arterial remodeling: role of inflammation,oxidative stress, and nitric oxide. Hypertension. 2011;58:225-231. 8) Schmitz T, Ritter J, Mueller S, et al. Cellular changes underlying hyperoxia-induced delay of white matter development. J Neurosci. 2011;31:4327-4344. 11) Shiose A, Kuroda J, Tsuruya K, et al. A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem. 2001;276:1417-1423. 13) Hasebe Y, Thomson LR, Dorey CK. Pentoxifylline inhibition of vasculogenesis in the neonatal rat retina. Invest Ophthalmol Vis Sci. 2000;41:2774-2778. 21) Talarowska M, Galecki P, Maes M, et al. Malondialdehyde plasma concentration correlates with declarative and working memory in patients with recurrent depressive disorder. Mol Biol Rep. 2012;39:5359-5366. 25) Minami M, Hasebe Y, Nakanishi-Ueda T, et al. Inhibition of oxygen-induced retinal neovascularization in neonatal rat by green tea extract. J Clin Biochem Nutr. 2003;33:23-31. 19) Solberg R, Longini M, Proietti F, et al. Resuscitation with supplementary oxygen induces oxidative injury in the cerebral cortex. Free Radic Biol Med. 2012;53:1061-1067. 16) Kurul SH, Yis U, Kumral A, et al. Protective effects of topiramate against hyperoxic brain injury in the developing brain. Neuropediatrics. 2009;40:22-27. 6) Davis JM, Auten RL. Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med. 2010;15:191-195. 5) Finkel T. Signal transduction by reactive oxygen species. J Cell Biol. 2011;194:7-15. 14) Afzal M, Matsugo S, Sasai M, et al. Method to overcome photoreaction, a serious drawback to the use of dichlorofluorescin in evaluation of reactive oxygen species. Biochem Biophys Res Commun. 2003;304:619-624. 26) Niatsetskaya ZV, Sosunov SA, Matsiukevich D, et al. The oxygen free radicals originating from mitochondrial complex I contribute to oxidative brain injury following hypoxia-ischemia in neonatal mice. J Neurosci. 2012;32:3235-3244. 1) Moore T, Hennessy EM, Myles J, et al. Neurological and developmental outcome in extremely preterm children born in England in 1995 and 2006: the EPICure studies. BMJ(Internet). 2012;345:e7961. (accessed 2012 Nov 9) http://www.bmj.com/content/345/bmj.e7961.long 12) Kleinschnitz C, Grund H, Wingler K, et al. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol (Internet). 2010;8:pii:e1000479. (accessed 2010 Feb 19) http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1000479 |
References_xml | – reference: 17) Yis U, Kurul SH, Kumral A, et al. Hyperoxic exposure leads to cell death in the developing brain. Brain Dev. 2008;30:556-562. – reference: 13) Hasebe Y, Thomson LR, Dorey CK. Pentoxifylline inhibition of vasculogenesis in the neonatal rat retina. Invest Ophthalmol Vis Sci. 2000;41:2774-2778. – reference: 30) da Silva AI, Monteiro Galindo LC, Nascimento L, et al. Fluoxetine treatment of rat neonates significantly reduces oxidative stress in the hippocampus and in behavioral indicators of anxiety later in postnatal life. Can J Physiol Pharmacol. 2014;92:330-337. – reference: 19) Solberg R, Longini M, Proietti F, et al. Resuscitation with supplementary oxygen induces oxidative injury in the cerebral cortex. Free Radic Biol Med. 2012;53:1061-1067. – reference: 20) Taridi NM, Abd Rani N, Abd Latiff A, et al. Tocotrienol rich fraction reverses age-related deficits in spatial learning and memory in aged rats. Lipids. 2014;49:855-869. – reference: 10) Sumimoto H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J. 2008;275:3249-3277. – reference: 4) Saugstad OD. Hyperoxia in the term newborn: more evidence is still needed for optimal oxygen therapy. Acta Pediatr Suppl. 2012;101(464):34-38. – reference: 1) Moore T, Hennessy EM, Myles J, et al. Neurological and developmental outcome in extremely preterm children born in England in 1995 and 2006: the EPICure studies. BMJ(Internet). 2012;345:e7961. (accessed 2012 Nov 9) http://www.bmj.com/content/345/bmj.e7961.long – reference: 2) Vasiljevic B, Maglajlic-Djukic S, Gojnic M, et al. The role of oxidative stress in perinatal hypoxic-ischemic brain injury. Srp Arh Celok Lek. 2012;140:35-41. – reference: 22) Sifringer M, Bendix I, Borner C, et al. Prevention of neonatal oxygen-induced brain damage by reduction of intrinsic apoptosis. Cell Death Dis (Internet). 2012;3:e250. (accessed 2011 Aug 30) http://dx.doi.org/10.1038/cddis.2011.133 – reference: 7) Gerstner B, DeSilva TM, Genz K, et al. Hyperoxia causes maturation-dependent cell death in the developing white matter. J Neurosci. 2008;28:1236-1245. – reference: 18)Bendix I, Weichelt U, Strasser K, et al. Hyperoxia changes the balance of the thioredoxin/peroxiredoxin system in the neonatal rat brain. Brain Res. 2012;1484:68-75. – reference: 16) Kurul SH, Yis U, Kumral A, et al. Protective effects of topiramate against hyperoxic brain injury in the developing brain. Neuropediatrics. 2009;40:22-27. – reference: 8) Schmitz T, Ritter J, Mueller S, et al. Cellular changes underlying hyperoxia-induced delay of white matter development. J Neurosci. 2011;31:4327-4344. – reference: 27) St Hilaire C, Koupenova M, Carroll SH, et al. TNF-alpha upregulates the A2B adenosine receptor gene: the role of NDA(P)H oxidase 4. Biochem Biophys Res Commun. 2008;375:292-296. – reference: 12) Kleinschnitz C, Grund H, Wingler K, et al. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol (Internet). 2010;8:pii:e1000479. (accessed 2010 Feb 19) http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1000479 – reference: 11) Shiose A, Kuroda J, Tsuruya K, et al. A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem. 2001;276:1417-1423. – reference: 28) Gerstner B, Sifringer M, Dzietko M, et al. Estradiol attenuates hyperoxia-induced cell death in the developing white matter. Ann Neurol. 2007;61:562-573. – reference: 14) Afzal M, Matsugo S, Sasai M, et al. Method to overcome photoreaction, a serious drawback to the use of dichlorofluorescin in evaluation of reactive oxygen species. Biochem Biophys Res Commun. 2003;304:619-624. – reference: 15) Freidja ML, Toutain B, Caillon A, et al. Heme oxygenase1 is differentially involved in blood flow-dependent arterial remodeling: role of inflammation,oxidative stress, and nitric oxide. Hypertension. 2011;58:225-231. – reference: 26) Niatsetskaya ZV, Sosunov SA, Matsiukevich D, et al. The oxygen free radicals originating from mitochondrial complex I contribute to oxidative brain injury following hypoxia-ischemia in neonatal mice. J Neurosci. 2012;32:3235-3244. – reference: 6) Davis JM, Auten RL. Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med. 2010;15:191-195. – reference: 5) Finkel T. Signal transduction by reactive oxygen species. J Cell Biol. 2011;194:7-15. – reference: 24) Ramani M, van Groen T, Kadish I, et al. Neurodevelopmental impairment following neonatal hyperoxia in the mouse. Neurobiol Dis. 2013;50:69-75. – reference: 9) Inder T, Mocatta T, Dariow B, et al. Elevated free radical products in the cerebrospinal fluid of VLBW infants with cerebral white matter injury. Pediatr Res. 2002;52:213-218. – reference: 21) Talarowska M, Galecki P, Maes M, et al. Malondialdehyde plasma concentration correlates with declarative and working memory in patients with recurrent depressive disorder. Mol Biol Rep. 2012;39:5359-5366. – reference: 3) Johnson S, Wolke D, Hennessy E, et al. Educational outcomes in extremely preterm children: neuropsychological correlates and predictors of attainment. Dev Neuropsychol. 2011;36:74-95. – reference: 29) Sifringer M, Brait D, Weichelt U, et al. Erythropoietin attenuates hyperoxia-induced oxidative stress in the developing rat brain. Brain Behav Immun. 2010;24:792-799. – reference: 23) Felderhoff-Mueser U, Sifringer M, Polley O, et al. Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain. Ann Neurol. 2005;57:50-59. – reference: 25) Minami M, Hasebe Y, Nakanishi-Ueda T, et al. Inhibition of oxygen-induced retinal neovascularization in neonatal rat by green tea extract. J Clin Biochem Nutr. 2003;33:23-31. |
SSID | ssib017873161 ssib058494430 ssj0003304619 |
Score | 2.0070233 |
Snippet | 生直後から12日齢まで80%酸素にて飼育した未熟児網膜症モデルラットと以前,報告された高酸素負荷による酸化ストレス誘発性脳障害モデルと比較し,未熟児網膜症モデルの... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 450 |
SubjectTerms | Nox4 海馬 脳障害モデル 酸化ストレス 高濃度酸素負荷 |
Title | 高酸素負荷新生仔ラットの脳障害モデルとしての有用性の検討 |
URI | https://www.jstage.jst.go.jp/article/jshowaunivsoc/75/4/75_450/_article/-char/ja |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 昭和学士会雑誌, 2015, Vol.75(4), pp.450-457 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2188-529X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003304619 issn: 2187-719X databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFA-1XryIouI3PTjH1HxMMjM3M7spRVAQWugt5GvRPbSiWwVPLlHUg54WFSlYRLRSKGIFBf-caLv9IwTfm0x2U6xgFZbw9u2bN795L5P3JjsfhnEhtToxPOUSM-9Qz6SZK0xhZb7pC7uDu6lkNMaFwleu-rPz9PKCtzBx4Gdj1tJyL5lO7-25ruRfvAo88Cuukt2HZ0dKgQE0-Beu4GG4_pWPSShIIIngSHCPSCAYkZQEFgk5kY4meJtIRkKfCJ9IC2UEJWKGhJRIiXToEo5_mGsCPprgirBJECo9IO9iXSIgokVCD_myFg6cuhSrObIuXusRrOb4Dc0-auNCA0NhH2dgBGyXTEBVpRwFeNjMqpUG4LcRknAIr7C1VS1AVEgAfAuRI35ota1UBSBc33QaSFW_aKMI3IBKDAoKpdwiMhzLg41DNKESU1DhOxKAoW6gnBnLCyLbhEssCJaABqmCCg_YFqFC84OmfvAAOspH53BdETREuRvkgZC8-eamWrWqetkfrEKVXZvm2dtO4xAB-Rkzma0OI4ZoXvO46Tmap2NcdTqN7su0EbBote2vzn1otVn4b2GVChcnonZvX1-6Gy8v3rgDT45p5k2PSu_asVz3h2iXeMS8iKqLZ0W1BK4sjLowvDnoMEgUcU7FtVE4sCGWuPZ42TWkyoLWhwVgouWq0wJwgDuyg16jh3gv7oUW8swujLrqGZsqiZw7YhzWo7-poAJ21JjoxseMuZ31lzsPv25_Xh1-Wh0-_bL1_OP24PX3b4Oy-FAWRVk8LvsbwwebO69WfmxslsWbsnhUFutlf63svyj77-DXrZUn24O1rfvvkX67Mlx7dtyYnwnnWrOmPuzE7MKonplxHnu8w9LMTRwWi5gyCK_MSuLYSVKPC8ozm9lu4qaJl6SOyDNHxIkH4ztBU8jS3RPG5OLSYn7SmMotETs8Fx2e-5R7NMky5sQup5YNA4rcOWVcqowQ3ax2tIn27bHT_6_ijHEIO0X1OvOsMdm7tZyfgwS_l5xXt8EvjWvXbw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%AB%98%E9%85%B8%E7%B4%A0%E8%B2%A0%E8%8D%B7%E6%96%B0%E7%94%9F%E4%BB%94%E3%83%A9%E3%83%83%E3%83%88%E3%81%AE%E8%84%B3%E9%9A%9C%E5%AE%B3%E3%83%A2%E3%83%87%E3%83%AB%E3%81%A8%E3%81%97%E3%81%A6%E3%81%AE%E6%9C%89%E7%94%A8%E6%80%A7%E3%81%AE%E6%A4%9C%E8%A8%8E&rft.jtitle=%E6%98%AD%E5%92%8C%E5%AD%A6%E5%A3%AB%E4%BC%9A%E9%9B%91%E8%AA%8C&rft.au=%E6%9C%A8%E6%9D%91%2C+%E8%AC%99%E5%90%BE&rft.au=%E8%BE%BB%2C+%E3%81%BE%E3%82%86%E3%81%BF&rft.au=%E9%BD%8B%E8%97%A4%2C+%E9%9B%84%E5%A4%AA&rft.au=%E8%88%9F%E6%A9%8B%2C+%E4%B9%85%E5%B9%B8&rft.date=2015&rft.pub=%E6%98%AD%E5%92%8C%E5%A4%A7%E5%AD%A6%E5%AD%A6%E5%A3%AB%E4%BC%9A&rft.issn=2187-719X&rft.eissn=2188-529X&rft.volume=75&rft.issue=4&rft.spage=450&rft.epage=457&rft_id=info:doi/10.14930%2Fjshowaunivsoc.75.450&rft.externalDocID=article_jshowaunivsoc_75_4_75_450_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2187-719X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2187-719X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2187-719X&client=summon |