風力下で漂流する船舶の簡易数学モデルによる運動シミュレーション

Dead ships in rough sea make strong drifting motions and sometimes cause the significant accidents such as grounding or destroying offshore structures. For the prediction of such drift motion, it is necessary that the suitable mathematical model should be provided. Although many mathematical models...

Full description

Saved in:
Bibliographic Details
Published in日本船舶海洋工学会論文集 Vol. 31; pp. 47 - 57
Main Authors 平林, 紳一郎, 福井, 寛史, 高瀬, 康一, 鈴木, 英之, 芳村, 康男
Format Journal Article
LanguageJapanese
Published 公益社団法人 日本船舶海洋工学会 2020
Online AccessGet full text
ISSN1880-3717
1881-1760
DOI10.2534/jjasnaoe.31.47

Cover

Abstract Dead ships in rough sea make strong drifting motions and sometimes cause the significant accidents such as grounding or destroying offshore structures. For the prediction of such drift motion, it is necessary that the suitable mathematical model should be provided. Although many mathematical models for the conventional maneuvering ship motion are proposed and widely used, most of them are limited within the conventional maneuvering motion. They cannot be used for the large drift angle such as 90° including the zero-ship speed turning. It is very difficult for the conventional mathematical model to express the hull forces in such drift motion. One of the authors tried to make them using crossflow drag model1),2),4),5),6). However, the above models include the longitudinal integral terms, which makes the difficulties when using for real-time simulators or system identifications.In this paper, the authors have developed a simple mathematical model that has the almost equivalent hydrodynamic force characteristics for conventional crossflow model instead of using the integral terms. The new model can also express the hydrodynamic forces with large drift and turning motion including zero ship speed condition. In order to validate the mathematical model, the drift tests in the uniform wind were carried out and the simulated results were compared with the measured data. From the comparison between experimental results and simulated them, it is found that the proposed mathematical model as well as the original crossflow drag model make it possible to predict the wide range of drift motion. Furthermore, the parameters in the proposed mathematical model can be easily obtained from the principal particulars of ship based on the regression analysis. Then the drifting simulations become very easy by using the proposed simple mathematical model and the empirical formulas of the parameters.
AbstractList Dead ships in rough sea make strong drifting motions and sometimes cause the significant accidents such as grounding or destroying offshore structures. For the prediction of such drift motion, it is necessary that the suitable mathematical model should be provided. Although many mathematical models for the conventional maneuvering ship motion are proposed and widely used, most of them are limited within the conventional maneuvering motion. They cannot be used for the large drift angle such as 90° including the zero-ship speed turning. It is very difficult for the conventional mathematical model to express the hull forces in such drift motion. One of the authors tried to make them using crossflow drag model1),2),4),5),6). However, the above models include the longitudinal integral terms, which makes the difficulties when using for real-time simulators or system identifications.In this paper, the authors have developed a simple mathematical model that has the almost equivalent hydrodynamic force characteristics for conventional crossflow model instead of using the integral terms. The new model can also express the hydrodynamic forces with large drift and turning motion including zero ship speed condition. In order to validate the mathematical model, the drift tests in the uniform wind were carried out and the simulated results were compared with the measured data. From the comparison between experimental results and simulated them, it is found that the proposed mathematical model as well as the original crossflow drag model make it possible to predict the wide range of drift motion. Furthermore, the parameters in the proposed mathematical model can be easily obtained from the principal particulars of ship based on the regression analysis. Then the drifting simulations become very easy by using the proposed simple mathematical model and the empirical formulas of the parameters.
Author 鈴木, 英之
高瀬, 康一
福井, 寛史
芳村, 康男
平林, 紳一郎
Author_xml – sequence: 1
  fullname: 平林, 紳一郎
  organization: 東京大学大学院新領域創成科学研究科
– sequence: 1
  fullname: 福井, 寛史
  organization: 東京大学大学院工学系研究科
– sequence: 1
  fullname: 高瀬, 康一
  organization: 東京大学大学院新領域創成科学研究科(研究当時)
– sequence: 1
  fullname: 鈴木, 英之
  organization: 東京大学大学院工学系研究科
– sequence: 1
  fullname: 芳村, 康男
  organization: 東京大学大学院工学系研究科
BookMark eNo9UM1LAkEcHcIgta79F2szzowzHkX6AqFLHWOZ3cZyMY1dLx1355C0xxCKDpFQBlYI0Rf43_xy0_8is4_Le7_Hezz4vQxKNZoNjdAywbk8p2zF81TQUE2doyTHxBxKEymJRUQBp2Y3tqggYgFlgsDDmE1NmUa7k-7d6PTy4y2GsJcMo-Q5hPAConjcfh-3XyB8_BxcJ-dnSWcwergF0wVzAqYPYR-i9jQ2CeNR3IHoFcwVmBsw92CGM9kD87SI5quqHuilX86inbXV7fKGVdla3yyXKpaX55hbRGIuHOEQXmRYOUJLV7tO0VVUabnH2PQ7zrEQFFPpyIIjBC5KXCV5TbDinNMsKv30ekFL7Wv7yK8dKv_YVn6r5ta1_TeNTYmNv4GJf889UL7tKfoFKCmBpg
ContentType Journal Article
Copyright 2020 社団法人 日本船舶海洋工学会
Copyright_xml – notice: 2020 社団法人 日本船舶海洋工学会
DOI 10.2534/jjasnaoe.31.47
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Military & Naval Science
EISSN 1881-1760
EndPage 57
ExternalDocumentID article_jjasnaoe_31_0_31_47_article_char_ja
GroupedDBID 2WC
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
OK1
RJT
ID FETCH-LOGICAL-j2505-18057b7b15940ab7e8cecb9ca3ae8d44534550773038b86b770980f12e10a5553
ISSN 1880-3717
IngestDate Wed Sep 03 06:30:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2505-18057b7b15940ab7e8cecb9ca3ae8d44534550773038b86b770980f12e10a5553
OpenAccessLink https://www.jstage.jst.go.jp/article/jjasnaoe/31/0/31_47/_article/-char/ja
PageCount 11
ParticipantIDs jstage_primary_article_jjasnaoe_31_0_31_47_article_char_ja
PublicationCentury 2000
PublicationDate 20200000
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationTitle 日本船舶海洋工学会論文集
PublicationTitleAlternate 日本船舶海洋工学会論文集
PublicationYear 2020
Publisher 公益社団法人 日本船舶海洋工学会
Publisher_xml – name: 公益社団法人 日本船舶海洋工学会
References 8) Yasukawa, H. and Yoshimura, Y.: Introduction of MMG Standard Method for Ship Maneuvering Predictions, Journal of Marine Science and Technology, Vol.20, No.1, pp.37-52, 2015.
7) Karasuno, K., Okano, S., Maekawa, K. and Miyoshi, J.: A Component-type Mathematical Model of Hydrodynamic Forces in Steering Motion derived from a Simplified Vortex Model (5th Report), Journal of Naval Architects of Japan, Vol.190, pp.169-180, 2001 (in Japanese).
2) Oltman, P. and Sharma, S. D.: Simulation of Combined Engine and Rudder Manoeuvers using an Improved Model of Hull-propeller-rudder Interactions, Proceedings of 15th Symposium of Naval Hydrodynamics, pp.83-108, 1984.
石川貴浩, 安川宏紀, 芳村康男,松田秋彦:大斜航・旋回状態における船体流体力モデル,日本船舶海洋工学会講演会論文集, 28, pp.517-522, 2019.
11) Ishikawa, T., Yasukawa, H., Yoshimura, Y. and Matsuda A.: Mathematical Model for Large Drift and/or Turning Motion, Conference Proceedings of the Japan Society of Naval Architects and Ocean Engineers, Vol.28 pp.517-522, 2019 (in Japanese).
3) Takashina, J.: Ship Maneuvering Motion due to Tugboats and its Mathematical model, Journal of Naval Architects of Japan, Vol. 160, pp.93-102, 1986 (in Japanese).
5) Yoshimura, Y., Masumoto, Y. and Miwa, C.: New Mathematical Model of Hydrodynamic Hull Force in Ocean and Harbor Maneuvering, Conference Proceedings of the Japan Society of Naval Architects and Ocean Engineers, Vol.4, pp.271-274, 2007 (in Japanese).
芳村康男,増本友美子,三輪千尋:港内操船を含む操縦運動時の主船体流体力モデルの検討,日本船舶海洋工学会講演会論文集, 4, pp.271-274, 2007.
10) Fujiwara, T., Ueno, M. and Ikeda, Y.: A New Estimation Method of Wind Forces and Moments acting on Ships on the basis of Physical Component Models, Journal of Japan Society of Naval Architects and Ocean Engineers Vol.2,pp.243-255, 2005 (in Japanese).
小川陽弘, 小山健夫, 貴島勝郎:MMG 報告-I 操縦運動の数学モデルについて, 日本造船学会誌, 575, pp.22-28, 1977.
9) Yasukawa, H., Sano, M., Hirata, N., Yonemasu, I., Kayama, Y. and Hashizume, Y.: Maneuverability of Cb-Series Full Hull Ships (1st Report: Tank Tests), Journal of Japan Society of Naval Architects and Ocean Engineers, Vol.21, pp.11-22, 2015 (in Japanese).
6) Yoshimura, Y., Nakao, I. and Ishibashi, A.: Unified Mathematical Model for Ocean and Harbor Maneuvering, Proceedings of MARSIM-2009, pp.M116-M124, 2009.
4) Yoshimura, Y.: Mathematical Model for the Maneuvering Ship Motion in Shallow Water (2nd Report: Mathematical Model at Slow Forward Speed), Journal of Kansai Society of Naval Architects Japan, Vol. 210, pp.77-84, 1988 (in Japanese).
1) Ogawa, A., Koyama, T. and Kijima, K.: MMG report-I, On the Mathematical Model of Ship Maneuvering, Bulletin of Naval Architects of Japan, No, 575, pp.22-28, 1977 (in Japanese).
References_xml – reference: 6) Yoshimura, Y., Nakao, I. and Ishibashi, A.: Unified Mathematical Model for Ocean and Harbor Maneuvering, Proceedings of MARSIM-2009, pp.M116-M124, 2009.
– reference: 芳村康男,増本友美子,三輪千尋:港内操船を含む操縦運動時の主船体流体力モデルの検討,日本船舶海洋工学会講演会論文集, 4, pp.271-274, 2007.
– reference: 7) Karasuno, K., Okano, S., Maekawa, K. and Miyoshi, J.: A Component-type Mathematical Model of Hydrodynamic Forces in Steering Motion derived from a Simplified Vortex Model (5th Report), Journal of Naval Architects of Japan, Vol.190, pp.169-180, 2001 (in Japanese).
– reference: 10) Fujiwara, T., Ueno, M. and Ikeda, Y.: A New Estimation Method of Wind Forces and Moments acting on Ships on the basis of Physical Component Models, Journal of Japan Society of Naval Architects and Ocean Engineers Vol.2,pp.243-255, 2005 (in Japanese).
– reference: 3) Takashina, J.: Ship Maneuvering Motion due to Tugboats and its Mathematical model, Journal of Naval Architects of Japan, Vol. 160, pp.93-102, 1986 (in Japanese).
– reference: 8) Yasukawa, H. and Yoshimura, Y.: Introduction of MMG Standard Method for Ship Maneuvering Predictions, Journal of Marine Science and Technology, Vol.20, No.1, pp.37-52, 2015.
– reference: 2) Oltman, P. and Sharma, S. D.: Simulation of Combined Engine and Rudder Manoeuvers using an Improved Model of Hull-propeller-rudder Interactions, Proceedings of 15th Symposium of Naval Hydrodynamics, pp.83-108, 1984.
– reference: 1) Ogawa, A., Koyama, T. and Kijima, K.: MMG report-I, On the Mathematical Model of Ship Maneuvering, Bulletin of Naval Architects of Japan, No, 575, pp.22-28, 1977 (in Japanese).
– reference: 9) Yasukawa, H., Sano, M., Hirata, N., Yonemasu, I., Kayama, Y. and Hashizume, Y.: Maneuverability of Cb-Series Full Hull Ships (1st Report: Tank Tests), Journal of Japan Society of Naval Architects and Ocean Engineers, Vol.21, pp.11-22, 2015 (in Japanese).
– reference: 5) Yoshimura, Y., Masumoto, Y. and Miwa, C.: New Mathematical Model of Hydrodynamic Hull Force in Ocean and Harbor Maneuvering, Conference Proceedings of the Japan Society of Naval Architects and Ocean Engineers, Vol.4, pp.271-274, 2007 (in Japanese).
– reference: 11) Ishikawa, T., Yasukawa, H., Yoshimura, Y. and Matsuda A.: Mathematical Model for Large Drift and/or Turning Motion, Conference Proceedings of the Japan Society of Naval Architects and Ocean Engineers, Vol.28 pp.517-522, 2019 (in Japanese).
– reference: 小川陽弘, 小山健夫, 貴島勝郎:MMG 報告-I 操縦運動の数学モデルについて, 日本造船学会誌, 575, pp.22-28, 1977.
– reference: 4) Yoshimura, Y.: Mathematical Model for the Maneuvering Ship Motion in Shallow Water (2nd Report: Mathematical Model at Slow Forward Speed), Journal of Kansai Society of Naval Architects Japan, Vol. 210, pp.77-84, 1988 (in Japanese).
– reference: 石川貴浩, 安川宏紀, 芳村康男,松田秋彦:大斜航・旋回状態における船体流体力モデル,日本船舶海洋工学会講演会論文集, 28, pp.517-522, 2019.
SSID ssj0048818
ssib025353319
ssib031741110
ssib023160803
ssib000936973
ssib020472916
ssib002484520
Score 2.212301
Snippet Dead ships in rough sea make strong drifting motions and sometimes cause the significant accidents such as grounding or destroying offshore structures. For the...
SourceID jstage
SourceType Publisher
StartPage 47
Title 風力下で漂流する船舶の簡易数学モデルによる運動シミュレーション
URI https://www.jstage.jst.go.jp/article/jjasnaoe/31/0/31_47/_article/-char/ja
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 日本船舶海洋工学会論文集, 2020, Vol.31, pp.47-57
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1881-1760
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048818
  issn: 1880-3717
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1NaxNBdCn14kX8pH6Sg-NFEvdjJjvjbTduKEILQgu9SJhNN4ccqtR6ULwke7CYoxQUD2JBK1SlIH5B_83a2P4L33uzm2yrB6tehpeZ92bex2zee5uZF8u67GmtvYQvVuuutKs8qbersqOdqhbgfDuOrR0q9jwzW5-e5zcXxMLE5KPy7ZKVuNZ--Nt7JX9jVegDu-It2UNYdjQpdAAM9oUWLAztH9mYRYoFLgskiwSTAVMhizgLJZMAeBAkssBnUZ2FDSZdAgR2miGlCHAJGUgkC1UB1AvyiEU-C20WOEiuJFMeAQI7YdHgBgsMsoecGED6Rc-IjbBYS5YWVTiEgMAW5jRDYUGumsU8ogAaORA2DiIHBRB65YCbuPVpBgAaNMOvwpJmQqMrnrMUGqqRjBwXVQFSgTiKqKBFYRVqXo7ecRK1AkYIJcL1YSOTJjn1GhvZpAHgORoT-riUbBJKgCohQuChScYVOBa6Y3xFvEgkhPlAuBwfiFGcfKEyPkrMC2VIg08bJnQIHzDC8qsg1x49trS-IBX6JHFADANRhEPQE5DIICIak0QIg6v_3QQlRwp-AZyXuZdbS4o-BwuS2mXvm8cAxn1yvxSImcLlB128KzyOLr6r7y3pO0nNc2oF1b6y6flD2SoQW57TsrHhfqsYw4uNrS5kV0dcH-JUPNJxq5Sc4H9d-uVgVnIxTq5crLNaSq4gUarbcnymARiFVGpcLBECde5QsG3iRPCc9OvDSFOmpCzKd22_dBAcdyFVLI6ZUuQ7d9w6lqeslcCIc8Ka6OqT1tQMlfdfflC5UpnV8KVWyaOEU9btvfW3O09efP86yHobw-3-8FMv6z3P-oPd1W-7q5-z3ocfW6-Gz54O17Z23r_J0vUsfZylm1lvM-uvAtpeb7AzWMv6X7L0ZZa-ztJ3WbpNHzey9ONpa74ZzTWmq_m_uFS7mF5VHQkpYezHkDdxW8d-IttJO1Zt7elELnIO8mJNRYg0PBnLeuz7tpJ2x3ET8BRCCO-MNbl0ZymZsiqx0LG2ndhZ7GieeI6uQ7yhhR13FvF4hDprXTeKat01pXpah9gF5_6F-Lx1FB9I8272gjW5snw_uQjZykp8iTbVTyFY_wg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%A2%A8%E5%8A%9B%E4%B8%8B%E3%81%A7%E6%BC%82%E6%B5%81%E3%81%99%E3%82%8B%E8%88%B9%E8%88%B6%E3%81%AE%E7%B0%A1%E6%98%93%E6%95%B0%E5%AD%A6%E3%83%A2%E3%83%87%E3%83%AB%E3%81%AB%E3%82%88%E3%82%8B%E9%81%8B%E5%8B%95%E3%82%B7%E3%83%9F%E3%83%A5%E3%83%AC%E3%83%BC%E3%82%B7%E3%83%A7%E3%83%B3&rft.jtitle=%E6%97%A5%E6%9C%AC%E8%88%B9%E8%88%B6%E6%B5%B7%E6%B4%8B%E5%B7%A5%E5%AD%A6%E4%BC%9A%E8%AB%96%E6%96%87%E9%9B%86&rft.au=%E5%B9%B3%E6%9E%97%2C+%E7%B4%B3%E4%B8%80%E9%83%8E&rft.au=%E7%A6%8F%E4%BA%95%2C+%E5%AF%9B%E5%8F%B2&rft.au=%E9%AB%98%E7%80%AC%2C+%E5%BA%B7%E4%B8%80&rft.au=%E9%88%B4%E6%9C%A8%2C+%E8%8B%B1%E4%B9%8B&rft.date=2020&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E8%88%B9%E8%88%B6%E6%B5%B7%E6%B4%8B%E5%B7%A5%E5%AD%A6%E4%BC%9A&rft.issn=1880-3717&rft.eissn=1881-1760&rft.volume=31&rft.spage=47&rft.epage=57&rft_id=info:doi/10.2534%2Fjjasnaoe.31.47&rft.externalDocID=article_jjasnaoe_31_0_31_47_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1880-3717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1880-3717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1880-3717&client=summon