風力下で漂流する船舶の簡易数学モデルによる運動シミュレーション
Dead ships in rough sea make strong drifting motions and sometimes cause the significant accidents such as grounding or destroying offshore structures. For the prediction of such drift motion, it is necessary that the suitable mathematical model should be provided. Although many mathematical models...
Saved in:
Published in | 日本船舶海洋工学会論文集 Vol. 31; pp. 47 - 57 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Japanese |
Published |
公益社団法人 日本船舶海洋工学会
2020
|
Online Access | Get full text |
ISSN | 1880-3717 1881-1760 |
DOI | 10.2534/jjasnaoe.31.47 |
Cover
Abstract | Dead ships in rough sea make strong drifting motions and sometimes cause the significant accidents such as grounding or destroying offshore structures. For the prediction of such drift motion, it is necessary that the suitable mathematical model should be provided. Although many mathematical models for the conventional maneuvering ship motion are proposed and widely used, most of them are limited within the conventional maneuvering motion. They cannot be used for the large drift angle such as 90° including the zero-ship speed turning. It is very difficult for the conventional mathematical model to express the hull forces in such drift motion. One of the authors tried to make them using crossflow drag model1),2),4),5),6). However, the above models include the longitudinal integral terms, which makes the difficulties when using for real-time simulators or system identifications.In this paper, the authors have developed a simple mathematical model that has the almost equivalent hydrodynamic force characteristics for conventional crossflow model instead of using the integral terms. The new model can also express the hydrodynamic forces with large drift and turning motion including zero ship speed condition. In order to validate the mathematical model, the drift tests in the uniform wind were carried out and the simulated results were compared with the measured data. From the comparison between experimental results and simulated them, it is found that the proposed mathematical model as well as the original crossflow drag model make it possible to predict the wide range of drift motion. Furthermore, the parameters in the proposed mathematical model can be easily obtained from the principal particulars of ship based on the regression analysis. Then the drifting simulations become very easy by using the proposed simple mathematical model and the empirical formulas of the parameters. |
---|---|
AbstractList | Dead ships in rough sea make strong drifting motions and sometimes cause the significant accidents such as grounding or destroying offshore structures. For the prediction of such drift motion, it is necessary that the suitable mathematical model should be provided. Although many mathematical models for the conventional maneuvering ship motion are proposed and widely used, most of them are limited within the conventional maneuvering motion. They cannot be used for the large drift angle such as 90° including the zero-ship speed turning. It is very difficult for the conventional mathematical model to express the hull forces in such drift motion. One of the authors tried to make them using crossflow drag model1),2),4),5),6). However, the above models include the longitudinal integral terms, which makes the difficulties when using for real-time simulators or system identifications.In this paper, the authors have developed a simple mathematical model that has the almost equivalent hydrodynamic force characteristics for conventional crossflow model instead of using the integral terms. The new model can also express the hydrodynamic forces with large drift and turning motion including zero ship speed condition. In order to validate the mathematical model, the drift tests in the uniform wind were carried out and the simulated results were compared with the measured data. From the comparison between experimental results and simulated them, it is found that the proposed mathematical model as well as the original crossflow drag model make it possible to predict the wide range of drift motion. Furthermore, the parameters in the proposed mathematical model can be easily obtained from the principal particulars of ship based on the regression analysis. Then the drifting simulations become very easy by using the proposed simple mathematical model and the empirical formulas of the parameters. |
Author | 鈴木, 英之 高瀬, 康一 福井, 寛史 芳村, 康男 平林, 紳一郎 |
Author_xml | – sequence: 1 fullname: 平林, 紳一郎 organization: 東京大学大学院新領域創成科学研究科 – sequence: 1 fullname: 福井, 寛史 organization: 東京大学大学院工学系研究科 – sequence: 1 fullname: 高瀬, 康一 organization: 東京大学大学院新領域創成科学研究科(研究当時) – sequence: 1 fullname: 鈴木, 英之 organization: 東京大学大学院工学系研究科 – sequence: 1 fullname: 芳村, 康男 organization: 東京大学大学院工学系研究科 |
BookMark | eNo9UM1LAkEcHcIgta79F2szzowzHkX6AqFLHWOZ3cZyMY1dLx1355C0xxCKDpFQBlYI0Rf43_xy0_8is4_Le7_Hezz4vQxKNZoNjdAywbk8p2zF81TQUE2doyTHxBxKEymJRUQBp2Y3tqggYgFlgsDDmE1NmUa7k-7d6PTy4y2GsJcMo-Q5hPAConjcfh-3XyB8_BxcJ-dnSWcwergF0wVzAqYPYR-i9jQ2CeNR3IHoFcwVmBsw92CGM9kD87SI5quqHuilX86inbXV7fKGVdla3yyXKpaX55hbRGIuHOEQXmRYOUJLV7tO0VVUabnH2PQ7zrEQFFPpyIIjBC5KXCV5TbDinNMsKv30ekFL7Wv7yK8dKv_YVn6r5ta1_TeNTYmNv4GJf889UL7tKfoFKCmBpg |
ContentType | Journal Article |
Copyright | 2020 社団法人 日本船舶海洋工学会 |
Copyright_xml | – notice: 2020 社団法人 日本船舶海洋工学会 |
DOI | 10.2534/jjasnaoe.31.47 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Military & Naval Science |
EISSN | 1881-1760 |
EndPage | 57 |
ExternalDocumentID | article_jjasnaoe_31_0_31_47_article_char_ja |
GroupedDBID | 2WC ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS JSF KQ8 OK1 RJT |
ID | FETCH-LOGICAL-j2505-18057b7b15940ab7e8cecb9ca3ae8d44534550773038b86b770980f12e10a5553 |
ISSN | 1880-3717 |
IngestDate | Wed Sep 03 06:30:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2505-18057b7b15940ab7e8cecb9ca3ae8d44534550773038b86b770980f12e10a5553 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jjasnaoe/31/0/31_47/_article/-char/ja |
PageCount | 11 |
ParticipantIDs | jstage_primary_article_jjasnaoe_31_0_31_47_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 20200000 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationTitle | 日本船舶海洋工学会論文集 |
PublicationTitleAlternate | 日本船舶海洋工学会論文集 |
PublicationYear | 2020 |
Publisher | 公益社団法人 日本船舶海洋工学会 |
Publisher_xml | – name: 公益社団法人 日本船舶海洋工学会 |
References | 8) Yasukawa, H. and Yoshimura, Y.: Introduction of MMG Standard Method for Ship Maneuvering Predictions, Journal of Marine Science and Technology, Vol.20, No.1, pp.37-52, 2015. 7) Karasuno, K., Okano, S., Maekawa, K. and Miyoshi, J.: A Component-type Mathematical Model of Hydrodynamic Forces in Steering Motion derived from a Simplified Vortex Model (5th Report), Journal of Naval Architects of Japan, Vol.190, pp.169-180, 2001 (in Japanese). 2) Oltman, P. and Sharma, S. D.: Simulation of Combined Engine and Rudder Manoeuvers using an Improved Model of Hull-propeller-rudder Interactions, Proceedings of 15th Symposium of Naval Hydrodynamics, pp.83-108, 1984. 石川貴浩, 安川宏紀, 芳村康男,松田秋彦:大斜航・旋回状態における船体流体力モデル,日本船舶海洋工学会講演会論文集, 28, pp.517-522, 2019. 11) Ishikawa, T., Yasukawa, H., Yoshimura, Y. and Matsuda A.: Mathematical Model for Large Drift and/or Turning Motion, Conference Proceedings of the Japan Society of Naval Architects and Ocean Engineers, Vol.28 pp.517-522, 2019 (in Japanese). 3) Takashina, J.: Ship Maneuvering Motion due to Tugboats and its Mathematical model, Journal of Naval Architects of Japan, Vol. 160, pp.93-102, 1986 (in Japanese). 5) Yoshimura, Y., Masumoto, Y. and Miwa, C.: New Mathematical Model of Hydrodynamic Hull Force in Ocean and Harbor Maneuvering, Conference Proceedings of the Japan Society of Naval Architects and Ocean Engineers, Vol.4, pp.271-274, 2007 (in Japanese). 芳村康男,増本友美子,三輪千尋:港内操船を含む操縦運動時の主船体流体力モデルの検討,日本船舶海洋工学会講演会論文集, 4, pp.271-274, 2007. 10) Fujiwara, T., Ueno, M. and Ikeda, Y.: A New Estimation Method of Wind Forces and Moments acting on Ships on the basis of Physical Component Models, Journal of Japan Society of Naval Architects and Ocean Engineers Vol.2,pp.243-255, 2005 (in Japanese). 小川陽弘, 小山健夫, 貴島勝郎:MMG 報告-I 操縦運動の数学モデルについて, 日本造船学会誌, 575, pp.22-28, 1977. 9) Yasukawa, H., Sano, M., Hirata, N., Yonemasu, I., Kayama, Y. and Hashizume, Y.: Maneuverability of Cb-Series Full Hull Ships (1st Report: Tank Tests), Journal of Japan Society of Naval Architects and Ocean Engineers, Vol.21, pp.11-22, 2015 (in Japanese). 6) Yoshimura, Y., Nakao, I. and Ishibashi, A.: Unified Mathematical Model for Ocean and Harbor Maneuvering, Proceedings of MARSIM-2009, pp.M116-M124, 2009. 4) Yoshimura, Y.: Mathematical Model for the Maneuvering Ship Motion in Shallow Water (2nd Report: Mathematical Model at Slow Forward Speed), Journal of Kansai Society of Naval Architects Japan, Vol. 210, pp.77-84, 1988 (in Japanese). 1) Ogawa, A., Koyama, T. and Kijima, K.: MMG report-I, On the Mathematical Model of Ship Maneuvering, Bulletin of Naval Architects of Japan, No, 575, pp.22-28, 1977 (in Japanese). |
References_xml | – reference: 6) Yoshimura, Y., Nakao, I. and Ishibashi, A.: Unified Mathematical Model for Ocean and Harbor Maneuvering, Proceedings of MARSIM-2009, pp.M116-M124, 2009. – reference: 芳村康男,増本友美子,三輪千尋:港内操船を含む操縦運動時の主船体流体力モデルの検討,日本船舶海洋工学会講演会論文集, 4, pp.271-274, 2007. – reference: 7) Karasuno, K., Okano, S., Maekawa, K. and Miyoshi, J.: A Component-type Mathematical Model of Hydrodynamic Forces in Steering Motion derived from a Simplified Vortex Model (5th Report), Journal of Naval Architects of Japan, Vol.190, pp.169-180, 2001 (in Japanese). – reference: 10) Fujiwara, T., Ueno, M. and Ikeda, Y.: A New Estimation Method of Wind Forces and Moments acting on Ships on the basis of Physical Component Models, Journal of Japan Society of Naval Architects and Ocean Engineers Vol.2,pp.243-255, 2005 (in Japanese). – reference: 3) Takashina, J.: Ship Maneuvering Motion due to Tugboats and its Mathematical model, Journal of Naval Architects of Japan, Vol. 160, pp.93-102, 1986 (in Japanese). – reference: 8) Yasukawa, H. and Yoshimura, Y.: Introduction of MMG Standard Method for Ship Maneuvering Predictions, Journal of Marine Science and Technology, Vol.20, No.1, pp.37-52, 2015. – reference: 2) Oltman, P. and Sharma, S. D.: Simulation of Combined Engine and Rudder Manoeuvers using an Improved Model of Hull-propeller-rudder Interactions, Proceedings of 15th Symposium of Naval Hydrodynamics, pp.83-108, 1984. – reference: 1) Ogawa, A., Koyama, T. and Kijima, K.: MMG report-I, On the Mathematical Model of Ship Maneuvering, Bulletin of Naval Architects of Japan, No, 575, pp.22-28, 1977 (in Japanese). – reference: 9) Yasukawa, H., Sano, M., Hirata, N., Yonemasu, I., Kayama, Y. and Hashizume, Y.: Maneuverability of Cb-Series Full Hull Ships (1st Report: Tank Tests), Journal of Japan Society of Naval Architects and Ocean Engineers, Vol.21, pp.11-22, 2015 (in Japanese). – reference: 5) Yoshimura, Y., Masumoto, Y. and Miwa, C.: New Mathematical Model of Hydrodynamic Hull Force in Ocean and Harbor Maneuvering, Conference Proceedings of the Japan Society of Naval Architects and Ocean Engineers, Vol.4, pp.271-274, 2007 (in Japanese). – reference: 11) Ishikawa, T., Yasukawa, H., Yoshimura, Y. and Matsuda A.: Mathematical Model for Large Drift and/or Turning Motion, Conference Proceedings of the Japan Society of Naval Architects and Ocean Engineers, Vol.28 pp.517-522, 2019 (in Japanese). – reference: 小川陽弘, 小山健夫, 貴島勝郎:MMG 報告-I 操縦運動の数学モデルについて, 日本造船学会誌, 575, pp.22-28, 1977. – reference: 4) Yoshimura, Y.: Mathematical Model for the Maneuvering Ship Motion in Shallow Water (2nd Report: Mathematical Model at Slow Forward Speed), Journal of Kansai Society of Naval Architects Japan, Vol. 210, pp.77-84, 1988 (in Japanese). – reference: 石川貴浩, 安川宏紀, 芳村康男,松田秋彦:大斜航・旋回状態における船体流体力モデル,日本船舶海洋工学会講演会論文集, 28, pp.517-522, 2019. |
SSID | ssj0048818 ssib025353319 ssib031741110 ssib023160803 ssib000936973 ssib020472916 ssib002484520 |
Score | 2.212301 |
Snippet | Dead ships in rough sea make strong drifting motions and sometimes cause the significant accidents such as grounding or destroying offshore structures. For the... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 47 |
Title | 風力下で漂流する船舶の簡易数学モデルによる運動シミュレーション |
URI | https://www.jstage.jst.go.jp/article/jjasnaoe/31/0/31_47/_article/-char/ja |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 日本船舶海洋工学会論文集, 2020, Vol.31, pp.47-57 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1881-1760 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048818 issn: 1880-3717 databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1NaxNBdCn14kX8pH6Sg-NFEvdjJjvjbTduKEILQgu9SJhNN4ccqtR6ULwke7CYoxQUD2JBK1SlIH5B_83a2P4L33uzm2yrB6tehpeZ92bex2zee5uZF8u67GmtvYQvVuuutKs8qbersqOdqhbgfDuOrR0q9jwzW5-e5zcXxMLE5KPy7ZKVuNZ--Nt7JX9jVegDu-It2UNYdjQpdAAM9oUWLAztH9mYRYoFLgskiwSTAVMhizgLJZMAeBAkssBnUZ2FDSZdAgR2miGlCHAJGUgkC1UB1AvyiEU-C20WOEiuJFMeAQI7YdHgBgsMsoecGED6Rc-IjbBYS5YWVTiEgMAW5jRDYUGumsU8ogAaORA2DiIHBRB65YCbuPVpBgAaNMOvwpJmQqMrnrMUGqqRjBwXVQFSgTiKqKBFYRVqXo7ecRK1AkYIJcL1YSOTJjn1GhvZpAHgORoT-riUbBJKgCohQuChScYVOBa6Y3xFvEgkhPlAuBwfiFGcfKEyPkrMC2VIg08bJnQIHzDC8qsg1x49trS-IBX6JHFADANRhEPQE5DIICIak0QIg6v_3QQlRwp-AZyXuZdbS4o-BwuS2mXvm8cAxn1yvxSImcLlB128KzyOLr6r7y3pO0nNc2oF1b6y6flD2SoQW57TsrHhfqsYw4uNrS5kV0dcH-JUPNJxq5Sc4H9d-uVgVnIxTq5crLNaSq4gUarbcnymARiFVGpcLBECde5QsG3iRPCc9OvDSFOmpCzKd22_dBAcdyFVLI6ZUuQ7d9w6lqeslcCIc8Ka6OqT1tQMlfdfflC5UpnV8KVWyaOEU9btvfW3O09efP86yHobw-3-8FMv6z3P-oPd1W-7q5-z3ocfW6-Gz54O17Z23r_J0vUsfZylm1lvM-uvAtpeb7AzWMv6X7L0ZZa-ztJ3WbpNHzey9ONpa74ZzTWmq_m_uFS7mF5VHQkpYezHkDdxW8d-IttJO1Zt7elELnIO8mJNRYg0PBnLeuz7tpJ2x3ET8BRCCO-MNbl0ZymZsiqx0LG2ndhZ7GieeI6uQ7yhhR13FvF4hDprXTeKat01pXpah9gF5_6F-Lx1FB9I8272gjW5snw_uQjZykp8iTbVTyFY_wg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%A2%A8%E5%8A%9B%E4%B8%8B%E3%81%A7%E6%BC%82%E6%B5%81%E3%81%99%E3%82%8B%E8%88%B9%E8%88%B6%E3%81%AE%E7%B0%A1%E6%98%93%E6%95%B0%E5%AD%A6%E3%83%A2%E3%83%87%E3%83%AB%E3%81%AB%E3%82%88%E3%82%8B%E9%81%8B%E5%8B%95%E3%82%B7%E3%83%9F%E3%83%A5%E3%83%AC%E3%83%BC%E3%82%B7%E3%83%A7%E3%83%B3&rft.jtitle=%E6%97%A5%E6%9C%AC%E8%88%B9%E8%88%B6%E6%B5%B7%E6%B4%8B%E5%B7%A5%E5%AD%A6%E4%BC%9A%E8%AB%96%E6%96%87%E9%9B%86&rft.au=%E5%B9%B3%E6%9E%97%2C+%E7%B4%B3%E4%B8%80%E9%83%8E&rft.au=%E7%A6%8F%E4%BA%95%2C+%E5%AF%9B%E5%8F%B2&rft.au=%E9%AB%98%E7%80%AC%2C+%E5%BA%B7%E4%B8%80&rft.au=%E9%88%B4%E6%9C%A8%2C+%E8%8B%B1%E4%B9%8B&rft.date=2020&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E8%88%B9%E8%88%B6%E6%B5%B7%E6%B4%8B%E5%B7%A5%E5%AD%A6%E4%BC%9A&rft.issn=1880-3717&rft.eissn=1881-1760&rft.volume=31&rft.spage=47&rft.epage=57&rft_id=info:doi/10.2534%2Fjjasnaoe.31.47&rft.externalDocID=article_jjasnaoe_31_0_31_47_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1880-3717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1880-3717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1880-3717&client=summon |