Clinical Application of Airway Collapsibility Measurements by Abrupt Interruption of Airflow During Forced Expiration

We previously introduced a new method for estimating the airway compliance from the mouth-pressure curve obtained after abrupt interruption of airflow during forced expiration. Within about 100msec after the interruption of airflow at the mouth, the pressure curve suddenly increases (first step) and...

Full description

Saved in:
Bibliographic Details
Published inNihon Kyōbu Shikkan Gakkai zasshi Vol. 25; no. 3; pp. 312 - 319
Main Authors Sakurai, Shigeru, Huang, Jyongsu, Matsuda, Masafumi, Takase, Keiichiro, Toga, Hirohisa, Maekawa, Yutaka, Ohya, Nobuo, Fukunaga, Toshiharu
Format Journal Article
LanguageJapanese
Published Japan The Japanese Respiratory Society 01.03.1987
Subjects
Online AccessGet full text
ISSN0301-1542
1883-471X
DOI10.11389/jjrs1963.25.312

Cover

Abstract We previously introduced a new method for estimating the airway compliance from the mouth-pressure curve obtained after abrupt interruption of airflow during forced expiration. Within about 100msec after the interruption of airflow at the mouth, the pressure curve suddenly increases (first step) and is followed by exponential rise (exponential phase) which reaches the alveolar pressure. Under iso-volume conditions, the exponential phase of the curve, which is effort independent, is determined by the pressure-volume characteristics of the downstream segment below the choke point. Using this method, we measured the airway compliance of the downstream segment below the choke point in patients with tracheobronchopathia osteochondroplastica (TBO), tracheobronchomegaly (TBM), and chronic obstructive pulmonary disease (COPD). According to the wave-speed theory, the maximum flow (Vmax) during forced expiration is limited by the cross-sectional area and the airway collapsibility at the choke point. Fiberoptic bronchoscopy, which demonstrates the cross-sectional area and dynamic properties of the trachea during forced expiration, allowed us to validate our method, and evaluate the airway collapsibility. The TBO patient was shown to have a very hard and narrow trachea by bronchoscopy; it hardly collapsed during cough or forced expiration. Her airway compliance was estimated to be zero at 60% forced vital capacity (FVC). This suggests that the downstream segment did not collapse at 60% FVC. The trachea and main bronchi of the TBM patient collapsed very easily during forced expiration. In this patient the airway compliance value was 1.45ml/cm H2O at 40% FVC, larger than that of normal subjects. In patients with COPD (n=3), the compliance values were 2.0-2.5ml/cm H2O at 50% FVC. These values were larger than those of normal subjects (1.00ml/cm H2O at 50% FVC). This implies that the downstream segment of the airway is collapsible in COPD patients. Considering the clinical, radiographic and endoscopic findings of the patients, we conclude that the values obtained by our method for measuring the airway compliance are reasonable. This method also provides the pressure-volume curve of the airway below the choke point. This curve is influenced by two factors: the location of the choke point and the collapsibility of the downstream airway segment. We think, therefore, that this method is very valuable in detecting functional disorders of the airway and lung. Unfortunately, however, the factors cannot be separated.
AbstractList We previously introduced a new method for estimating the airway compliance from the mouth-pressure curve obtained after abrupt interruption of airflow during forced expiration. Within about 100msec after the interruption of airflow at the mouth, the pressure curve suddenly increases (first step) and is followed by exponential rise (exponential phase) which reaches the alveolar pressure. Under iso-volume conditions, the exponential phase of the curve, which is effort independent, is determined by the pressure-volume characteristics of the downstream segment below the choke point. Using this method, we measured the airway compliance of the downstream segment below the choke point in patients with tracheobronchopathia osteochondroplastica (TBO), tracheobronchomegaly (TBM), and chronic obstructive pulmonary disease (COPD). According to the wave-speed theory, the maximum flow (Vmax) during forced expiration is limited by the cross-sectional area and the airway collapsibility at the choke point. Fiberoptic bronchoscopy, which demonstrates the cross-sectional area and dynamic properties of the trachea during forced expiration, allowed us to validate our method, and evaluate the airway collapsibility. The TBO patient was shown to have a very hard and narrow trachea by bronchoscopy; it hardly collapsed during cough or forced expiration. Her airway compliance was estimated to be zero at 60% forced vital capacity (FVC). This suggests that the downstream segment did not collapse at 60% FVC. The trachea and main bronchi of the TBM patient collapsed very easily during forced expiration. In this patient the airway compliance value was 1.45ml/cm H2O at 40% FVC, larger than that of normal subjects. In patients with COPD (n=3), the compliance values were 2.0-2.5ml/cm H2O at 50% FVC. These values were larger than those of normal subjects (1.00ml/cm H2O at 50% FVC). This implies that the downstream segment of the airway is collapsible in COPD patients. Considering the clinical, radiographic and endoscopic findings of the patients, we conclude that the values obtained by our method for measuring the airway compliance are reasonable. This method also provides the pressure-volume curve of the airway below the choke point. This curve is influenced by two factors: the location of the choke point and the collapsibility of the downstream airway segment. We think, therefore, that this method is very valuable in detecting functional disorders of the airway and lung. Unfortunately, however, the factors cannot be separated.
Author Maekawa, Yutaka
Matsuda, Masafumi
Ohya, Nobuo
Huang, Jyongsu
Toga, Hirohisa
Sakurai, Shigeru
Takase, Keiichiro
Fukunaga, Toshiharu
Author_xml – sequence: 1
  fullname: Sakurai, Shigeru
  organization: Division of Respiratory Disease, Department of Internal Medicine, Kanazawa Medical University
– sequence: 1
  fullname: Huang, Jyongsu
  organization: Division of Respiratory Disease, Department of Internal Medicine, Kanazawa Medical University
– sequence: 1
  fullname: Matsuda, Masafumi
  organization: Division of Respiratory Disease, Department of Internal Medicine, Kanazawa Medical University
– sequence: 1
  fullname: Takase, Keiichiro
  organization: Division of Respiratory Disease, Department of Internal Medicine, Kanazawa Medical University
– sequence: 1
  fullname: Toga, Hirohisa
  organization: Division of Respiratory Disease, Department of Internal Medicine, Kanazawa Medical University
– sequence: 1
  fullname: Maekawa, Yutaka
  organization: Division of Respiratory Disease, Department of Internal Medicine, Kanazawa Medical University
– sequence: 1
  fullname: Ohya, Nobuo
  organization: Division of Respiratory Disease, Department of Internal Medicine, Kanazawa Medical University
– sequence: 1
  fullname: Fukunaga, Toshiharu
  organization: Department of Clinical Pathology, Kanazawa Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/3656822$$D View this record in MEDLINE/PubMed
BookMark eNpFkU1PwzAMhiMEgvFx54KUE7eOfLVNjtPYAAnEBSRuVdq6I1WWliTV2L-nwBgX29Lz2pb9nqJD1zlA6JKSKaVcqpu29YGqjE9ZOuWUHaAJlZInIqdvh2hCOKEJTQU7QRchtIQQmgtGhDhGxzxLM8nYBA1za5yptMWzvrdjEU3ncNfgmfEbvcXzzlrdB1Maa-IWP4EOg4c1uBhwucWz0g99xA8ugv-u_psb223w7eCNW-Fl5yuo8eKzN_5nwTk6arQNcLHLZ-h1uXiZ3yePz3cP89lj0jKuYkJBa5XpnFOlhZSkYZyJsmaQV0C5EnXGVQa5TqWqdU5FVjMtUinyKm2aRtT8DF3_zu199zFAiMXahArGkxx0QygkJYwpno_Cq51wKNdQF703a-23xe5PI7_95W2IegV7rn00lYXiz4mCpcUujIbscfWufQGOfwGsh4eF
ContentType Journal Article
Copyright by The Japanese Respiratory Society
Copyright_xml – notice: by The Japanese Respiratory Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.11389/jjrs1963.25.312
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1883-471X
EndPage 319
ExternalDocumentID 3656822
article_jjrs1963_25_3_25_3_312_article_char_en
Genre English Abstract
Journal Article
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
F5P
JSF
KQ8
RJT
CGR
CUY
CVF
ECM
EIF
MOJWN
NPM
7X8
ID FETCH-LOGICAL-j239t-1eaa96a7319a4880f2324bd2e7ce1394d6396e7a589da7146d2a45847c5fff4d3
ISSN 0301-1542
IngestDate Fri Jul 11 02:46:05 EDT 2025
Wed Feb 19 01:10:11 EST 2025
Wed Sep 03 06:30:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 3
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j239t-1eaa96a7319a4880f2324bd2e7ce1394d6396e7a589da7146d2a45847c5fff4d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/jjrs1963/25/3/25_3_312/_article/-char/en
PMID 3656822
PQID 81022937
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_81022937
pubmed_primary_3656822
jstage_primary_article_jjrs1963_25_3_25_3_312_article_char_en
PublicationCentury 1900
PublicationDate 1987-03-00
PublicationDateYYYYMMDD 1987-03-01
PublicationDate_xml – month: 03
  year: 1987
  text: 1987-03-00
PublicationDecade 1980
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Nihon Kyōbu Shikkan Gakkai zasshi
PublicationTitleAlternate The Japanese journal of thoracic diseases
PublicationYear 1987
Publisher The Japanese Respiratory Society
Publisher_xml – name: The Japanese Respiratory Society
References 8) Pedersen, O. F., Thiessen, B. & Lyager, S.: Airway compliance and flow limitation during forced expiration in dogs. J. Appl. Physiol., Respirat. Environ. Exericse Physiol., 52: 357, 1982.
11) Dolyniuk, M. V. & Fahey, P. J.: Relationship of tracheal size to maximal expiratory airflow and density dependence. J. Appl. Physiol., 60: 501, 1986.
13) Hyatt, R. E., Wilson, T. A. & Bar-Yishay, E.: Prediction of maximal expiratory flow in excised human lungs. J. Appl. Physiol., Respirat. Environ. Exercise Physiol., 48: 991, 1980.
3) 黄正寿, 大谷信夫, 福永寿晴, 栂博久, 寺畑喜朔: 努力呼出中の気流阻止口腔内圧波形の性質. 呼吸, 3: 544, 1984.
10) Gibellino, F., Osmanliev, D. P., Watson, A. & Pride, N. B.: Increase in trancheal size with age. Am. Rev. Respir. Dis., 132: 784, 1985.
4) 黄正寿, 大谷信夫, 福永寿晴, 栂博久, 高瀬恵一郎, 寺畑喜朔: 努力呼出中の気流阻止口腔内波形を用いた気道の圧―量特性の推定. 呼吸, 4: 316, 1985.
2) Elliot, E. A. & Dawson, S. V.: Test of wave-speed theory of flow limitation in elastic tubes. J. Appl. Physiol., Respirat. Environ. Exercise Physiol., 43: 516, 1977.
7) Mead, J., Turner, J. M., Macklem, P. T. & Little, J. B.: Significance of the relationship between lung recoil and maximum expiratory flow. J. Appl. Physiol., 22: 95, 1967.
12) Silvers, G. W., Maisel, J. C., Petty, T. L., Mitchell, R. S. & Filley, G. F.: Central airway resistance in excised emphysematous lungs. Chest, 61: 603, 1972.
1) Dawson, S. V. & Elliott, E. A.: Wave-speed limitation on expiratory flow—A unifying concept. J. Appl. Physiol., Respirat. Environ. Exercise Physiol., 43: 498, 1977.
6) 山本博, 大谷信夫, 栂博久, 前田直大, 山崎洋, 高瀬恵一郎, 早瀬満, 北川駿介, 奥田洽爾: Tracheobronchomegaly の1例. 気管支学, 6: 253, 1984.
5) 栂博久, 大谷信夫, 野口哲彦, 桜井滋, 松田正史, 前川裕, 前田直大, 山崎洋, 高瀬恵一郎, 早瀬満, 北川駿介, 福永寿晴, 黄正寿, 山本博: Tracheobronchopathia osteochondroplastica の2例―進行例と軽症例の比較. 気管支学, 8: 279, 1986.
9) Smaldone, G. C. & Smith, P. L.: Location of flow-limiting segments via airway catheters near residual volume in humans., J. Appl. Physiol., 59: 502, 1985.
References_xml – reference: 6) 山本博, 大谷信夫, 栂博久, 前田直大, 山崎洋, 高瀬恵一郎, 早瀬満, 北川駿介, 奥田洽爾: Tracheobronchomegaly の1例. 気管支学, 6: 253, 1984.
– reference: 1) Dawson, S. V. & Elliott, E. A.: Wave-speed limitation on expiratory flow—A unifying concept. J. Appl. Physiol., Respirat. Environ. Exercise Physiol., 43: 498, 1977.
– reference: 8) Pedersen, O. F., Thiessen, B. & Lyager, S.: Airway compliance and flow limitation during forced expiration in dogs. J. Appl. Physiol., Respirat. Environ. Exericse Physiol., 52: 357, 1982.
– reference: 2) Elliot, E. A. & Dawson, S. V.: Test of wave-speed theory of flow limitation in elastic tubes. J. Appl. Physiol., Respirat. Environ. Exercise Physiol., 43: 516, 1977.
– reference: 10) Gibellino, F., Osmanliev, D. P., Watson, A. & Pride, N. B.: Increase in trancheal size with age. Am. Rev. Respir. Dis., 132: 784, 1985.
– reference: 12) Silvers, G. W., Maisel, J. C., Petty, T. L., Mitchell, R. S. & Filley, G. F.: Central airway resistance in excised emphysematous lungs. Chest, 61: 603, 1972.
– reference: 5) 栂博久, 大谷信夫, 野口哲彦, 桜井滋, 松田正史, 前川裕, 前田直大, 山崎洋, 高瀬恵一郎, 早瀬満, 北川駿介, 福永寿晴, 黄正寿, 山本博: Tracheobronchopathia osteochondroplastica の2例―進行例と軽症例の比較. 気管支学, 8: 279, 1986.
– reference: 9) Smaldone, G. C. & Smith, P. L.: Location of flow-limiting segments via airway catheters near residual volume in humans., J. Appl. Physiol., 59: 502, 1985.
– reference: 11) Dolyniuk, M. V. & Fahey, P. J.: Relationship of tracheal size to maximal expiratory airflow and density dependence. J. Appl. Physiol., 60: 501, 1986.
– reference: 7) Mead, J., Turner, J. M., Macklem, P. T. & Little, J. B.: Significance of the relationship between lung recoil and maximum expiratory flow. J. Appl. Physiol., 22: 95, 1967.
– reference: 13) Hyatt, R. E., Wilson, T. A. & Bar-Yishay, E.: Prediction of maximal expiratory flow in excised human lungs. J. Appl. Physiol., Respirat. Environ. Exercise Physiol., 48: 991, 1980.
– reference: 3) 黄正寿, 大谷信夫, 福永寿晴, 栂博久, 寺畑喜朔: 努力呼出中の気流阻止口腔内圧波形の性質. 呼吸, 3: 544, 1984.
– reference: 4) 黄正寿, 大谷信夫, 福永寿晴, 栂博久, 高瀬恵一郎, 寺畑喜朔: 努力呼出中の気流阻止口腔内波形を用いた気道の圧―量特性の推定. 呼吸, 4: 316, 1985.
SSID ssj0001742044
ssib058493853
ssib005879741
ssib000940322
Score 1.195337
Snippet We previously introduced a new method for estimating the airway compliance from the mouth-pressure curve obtained after abrupt interruption of airflow during...
SourceID proquest
pubmed
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 312
SubjectTerms Airflow interruption method
Airway compliance
Chronic obstructive pulmonary disease
Flow volume curve
Humans
Lung Compliance
Lung Diseases, Obstructive - physiopathology
Lung Volume Measurements
Pulmonary Ventilation
Trachea - physiopathology
Wave-speed theory
Title Clinical Application of Airway Collapsibility Measurements by Abrupt Interruption of Airflow During Forced Expiration
URI https://www.jstage.jst.go.jp/article/jjrs1963/25/3/25_3_312/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/3656822
https://www.proquest.com/docview/81022937
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX The Japanese journal of thoracic diseases, 1987/03/25, Vol.25(3), pp.312-319
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1883-471X
  dateEnd: 19971231
  omitProxy: true
  ssIdentifier: ssj0001742044
  issn: 0301-1542
  databaseCode: KQ8
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZguXBBIFhRnj6wXKqUxM7zwAGVXSq6dIVIpd4iO3G2aaEtaaIl--sZx86jPMTj4kZpnaaer18-z3g8CL2gljB9kfgG87lv2IRRIzCJMHhqJjAbI4LV5YA-zNzJ3H6_cBadQ7_OLin4KL7-ZV7J_1gVzoFdZZbsP1i2vSicgGOwL7RgYWj_ysbjJq2xF4auA_tZfsWqYW3jnV7_Wg2_dO7AvVSdjOflrqg3jMjlUdc5_by9ahIYQdTKJQLiWx2Rb6yo5ewsW0KnaXUydk78t7wcflpm6zVQxjsGL9nwGqT5Mus82cqL20anLpYVOwgHTUrtvm691yFbM1X7cdo5KKQLo1uh1SRmmZYBSu2AdFW2swYX7TEoVauqf2Z2UFaS2lf5XpLGiDgj_dHDTbRnF9HZ_Pw8Ck8X4cvdV0PWF5NxeF1s5Sa6RYD_ZZGP6ceeEA1sk_Y2MnR8L_A6oQgqLaCNsKm9d55NTFvtTaZ_XRMDh_t89cNdgrpZgda_FL-fxtRyJryL7uh5CH6jQHUP3Vix-6hsAIV7gMLbFCtA4UNA4T6gMK-wAhTuA0p3loDCClBYAQp3gHqA5men4Xhi6LocxorQoDAswVjgMg_Ym0n-T6Uq5wkRXixgQmEnoHpd4THHDxLmwaM4IawOx8dOmqZ2Qo_R0Wa7EQ8Rtl3T4tTjLhCEHQcJqGW4GKUksPyYc3uAXquRi3Zq85VI_9miZogj4kS6gZFu35Y5i0ARA_S8GfAIeFMGw9hGbMt95EtXB2jzATpWdmi_gcIUB2Tzoz92fYxud3h_go6KvBRPQaIW_FmNru8HRZRu
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+application+of+airway+collapsibility+measurements+by+abrupt+interruption+of+airflow+during+forced+expiration&rft.jtitle=Nihon+Ky%C5%8Dbu+Shikkan+Gakkai+zasshi&rft.au=Toga%2C+H&rft.au=Ohya%2C+N&rft.au=Huang%2C+J&rft.au=Takase%2C+K&rft.date=1987-03-01&rft.issn=0301-1542&rft.volume=25&rft.issue=3&rft.spage=312&rft_id=info:doi/10.11389%2Fjjrs1963.25.312&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-1542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-1542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-1542&client=summon